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ABSTRACT

In this paper, we propose a speaker-independent multi-speaker
monaural speech separation system (CBLDNN-GAT) based on
convolutional, bidirectional long short-term memory, deep feed-
forward neural network (CBLDNN) with generative adversarial
training (GAT). Our system aims at obtaining better speech quality
instead of only minimizing a mean square error (MSE). In the initial
phase, we utilize log-mel filterbank and pitch features to warm up
our CBLDNN in a multi-task manner. Thus, the information that
contributes to separating speech and improving speech quality is
integrated into the model. We execute GAT throughout the train-
ing, which makes the separated speech indistinguishable from the
real one. We evaluate CBLDNN-GAT on WSJ0-2mix dataset. The
experimental results show that the proposed model achieves 11.0d-
B signal-to-distortion ratio (SDR) improvement, which is the new
state-of-the-art result.

Index Terms— speech separation, multi-task learning, genera-
tive adversarial training, CBLDNN.

1. INTRODUCTION

In recent years, speaker-independent multi-speaker separation has
attracted more and more attention. The purpose of this issue is to
separate the mixed speech of multiple speakers into the speech of
each person, which improves the performance of conference tran-
scription system, human-computer interaction system and large vo-
cabulary continuous speech recognition (LVCSR) system.

Many approaches have been proposed for decades. Compu-
tational auditory scene analysis (CASA) [1, 2] is widely adopted.
Based on perceptual grouping cues, it cuts mixed speech into time-
frequency (T-F) segments, which are assumed to be derived from the
different sources. Independent streams are generated from these seg-
ments by clustering. Non-negative matrix factorization (NMF) based
methods [3, 4, 5] decompose signal into sets of bases and weight
matrices, which are used to estimate mixing factors during evalua-
tion. Both CASA and NMF have limited performance. GMM-HMM
based separations [6, 7] also show impressive results, but these meth-
ods only work well in close-set speaker condition.

Deep neural network is gradually applied to speech separation.
Deep clustering (DPCL) [8] achieves impressive results. A DNN
is trained to derive embeddings for each T-F bin to optimize seg-
mentation criterion. During evaluation, each T-F bin is mapped in-
to embedding space. Clustering is then applied to generating parti-
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tion. Deep attractor is proposed in [9], where network forms attractor
points in a high-dimensional embedding space of the signal, and the
similarity between attractors and T-F embeddings is converted into a
soft separation mask. A novel training criterion named permutation
invariant training (PIT) is proposed in [10, 11]. PIT determines the
best output assignment automatically and then minimizes the error
given the assignment, which is implemented inside the network. It
solves the label permutation problem and integrates speaker tracing
in PIT. Thus separation and tracing can be trained in one step.

However, the methods above come with several shortcomings.
For example, researchers assume that each T-F bin only belongs to
one speaker in DPCL, which is sub-optimal. It is also inefficient
to perform end-to-end mapping. The limitation of deep attractor is
the requirement to estimate attractor points during test. Besides, the
MSE loss in all methods only concerns the numerical difference in
the estimation, and the numerical error reduction may not necessar-
ily lead to perceptual improvement on the separated speech. Sim-
ilarly, in super-resolution (SR) problems [12], texture detail in the
reconstructed SR images is typically absent after optimizing MSE
loss. The same in our task, the ability of MSE to capture perceptual-
ly relevant differences, such as high texture detail, is very limited as
they are defined based on each T-F differences.

Short time fourier transform (STFT) spectral magnitude contain-
s sufficient information and has the advantage of fast calculation,
which is used as input. Log-mel filterbank (fBank) is based on hu-
man hearing perceptions. Pitch is selected as an important cue in
CASA [2]. In order to enable the model to take advantage of these
information to make separated speech has a better quality and use
these features to drive the network into a convergent state because of
their compact structure. fBank-pitch feature is fed into training by
multi-task learning (MTL) [13]. Our contributions are as follows:
(1). A more sophisticated structure, CBLDNN, is used to improve
the performance; (2). MTL strategy is adopted to warm up the net-
work for the first 10 epochs; (3). GAT is employed to train the net-
work to further enhance the speech quality.

The experiments are conducted on WSJ0-2mix dataset [8], and
SDR [14] improvement is utilized to evaluate the performance.
Compared with uPIT-BLSTM in paper [10], experimental results
show that our CBLDNN-based models achieve better performance
when using the same training criterion. Through 10 rounds of MTL,
an average increase of 0.25dB SDR improvement is obtained. After
GAT, the proposed system, CBLDNN-GAT, achieves 11.0dB SDR
improvement, which outperforms the current algorithms.

This paper is organized as follow. Section 2 introduces monau-
ral speech separation. Section 3 describes GAT used in this paper.
Experimental setup and results of our experiment are presented in
Section 4. Finally, Section 5 concludes our work.
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2. MONAURAL SPEECH SEPARATION AND TRAINING
TARGETS

Speech separation aims at estimating individual source signals in
mixed speech. In this paper, we focus on monaural speech sepa-
ration task. The source signals are assumed linearly mixed, which
can be represented as:

y(n) =

S∑
s=1

xs(n), (1)

where S is the number of source signals. xs(n) and y(n) denote the
s-th source signal and the mixed speech, respectively. The following
relationship is still satisfied after STFT

Y (t, f) =

S∑
s=1

Xs(t, f), (2)

where Y (t, f) and Xs(t, f) represent the STFT of speech y(n) and
xs(n) respectively. Thus, our task is clarified as recovering each
source signal xs(n) from y(n) or Y (t, f). It is well-known that bet-
ter results can be obtained by estimating a set of masks [15]. In our
experiment, we firstly deploy a deep neural network to estimate a set
of masks M(t, f) in frequency domain instead of directly recover-
ing xs(n) from y(n). In the following equation, Hs(|Y (t, f)|, θ)
represents a non-linear representation from STFT spectral magni-
tude |Y (t, f)| to Ms(t, f). Ms(t, f) represents the mask of the s-th
signal

Hs(|Y (t, f)|, θ) =Ms(t, f), (3)
and |Xs(t, f)| can be recovered by Ms(t, f) × |Y (t, f)| (× in-
dicates element-wise multiplication). The separated speech signal
xs(n) can be obtained after inverse STFT.

Masks are to be estimated as the training targets, and three
widely-accepted masks [10, 16] are utilized in this paper. The ideal
ratio mask (IRM) for each source is defined as

M IRM
s = |Xs(t, f)|/

S∑
s=1

|Xs(t, f)|. (4)

The IRM maximizes the SDR when the phase of y(n) is used for
reconstruction and all sources have the same phase, which is an in-
valid assumption. Besides, |Xs(t, f)| can not be obtained in prac-
tice. Like [10], IRM is used to compute an upper bound of perfor-
mance. Another mask is ideal amplitude mask (IAM), which for
each source is defined as

M IAM
s = |Xs(t, f)|/|Ys(t, f)|. (5)

IAM can achieve the highest SDR when the phase of each source e-
quals the mixed speech. Since IAM ignores the differences of phas-
es, phase sensitive mask (PSM) is put forward to address this issue.
The PSM for each source is defined as

MPSM
s = |Xs(t, f)| × cos(θy(t, f)− θs(t, f))/|Ys(t, f)|, (6)

where θy(t, f) is the phase of mixed speech, and θs(t, f) is the phase
of s-th source signal.

3. GENERATIVE ADVERSARIAL TRAINING

Generative adversarial net [17] comprises of two adversarial sub net-
works, a generator which generates the fake examples from the ran-
dom noises, and a discriminator which discriminates whether the
input is real or generated by the generator.
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Fig. 1: CLDNN-based speech separation with GAT.

In this paper, we implement a conditional GAN [18, 19], where
the generator, a CLDNN-based model, performs mapping condi-
tioned on some extra information. Specifically, the generator learns
a mapping from observed feature |Y (t, f)| to each mask Ms(t, f).
The discriminator is trained to classify whether the STFT feature
comes from real speech or generated. This training procedure is di-
agrammed in Fig. 1.

3.1. CBLDNN-based generator with MTL

For solving tracing and permutation problem, an utterance-level
CLDNN-based generator is proposed. Convolutional layers are
good at modeling frequency variations [20]. Some acoustic varia-
tions can be effectively normalized and the resultant feature repre-
sentation may be immune to speaker variations, colored background
and channel noises. Besides, filters that work on local frequency
region provide an efficient way to represent local structures and
their combinations, which give a more precise spectral structure
to separated speech. BLSTMs well model temporal variations and
DNN layers map features to a more separable space. The CBLDNN
architecture incorporates the three layers in a unified framework,
fusing the benefits of individual layers.

The proposed CBLDNN model is similar to [21], but with fine
adjustment and more sophisticated structure. As depicted in Fig. 1.
The proposed model consists of 5 stacked convolutional layers, 2
stacked BLSTM layers and 2 independent output layers. In (inChan-
nel, outChannel, kernelW, kernelH) format, the convolutional layers
have one (1,4,5,5), one (4,4,3,3), one (4,8,5,5), one (8,8,3,3) and one
(8,8,1,1) convolution layer with no pooling and 1 stride in height and
width. Each BLSTM layer has 400 units. The model has 2 fully-
connected (FC) independent output layers and each has 129 output
nodes. The output is the mask of separated speech.

MTL is an effective approach to improve the performance of a
single task with the help of other related tasks [13]. It provides a con-
venient way of combining information from multiple tasks. The hu-
man perception of the frequency contents of speech signals is nonlin-
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ear. fBank is based on the human peripheral auditory system. Pitch
is an important cue in CASA [2]. We aim to separate the speech not
only with considerable numerical error reduction but with high qual-
ity. We use fBank-pitch based speech separation as another task in
MTL. In this experiment, we only share BLSTM layers, and ReLU
is adopted as activation function of output layer, which is depicted in
Fig. 1. Besides, we only use MTL for 10 rounds, which is also used
to warm up the network.

3.2. BLCDNN-based discriminator

In our experiment, we use utterance-level BLCDNN-based discrim-
inator, which is depicted in Fig. 1.

We aim to use BLSTM to model the dependency of the speech
and convolutional layer to extract discriminative features that are
useful for classification task. In convolutional layer, to enable the
network to extract complementary features and enrich the represen-
tation, we learn several different filters simultaneously. Convolution-
al filters with multiple sizes capture valuable features from different
scales, which contribute a lot to robust classification. The feature
maps produced by the convolution layer are forwarded to the pool-
ing layer. 1-max pooling is employed on each feature map to reduce
it to a single but the most dominant feature. The features are then
joined to form a feature vector input to the final layer. This step
transforms the variable-length, high-dimensional vector into a fixed-
length vector. Finally, a fully-connected layer maps it to one output
node. The input is more like a real speech when the output value is
closer to 1.

The BLCDNN model consists of 2 BLSTM layers, 1 convolu-
tional layer and 1 fully-connected layer. Each BLSTM layer has 256
units. In (kernelW, kernelH) format, the convolutional layer has 3 d-
ifferent filter sizes that are (5, 5), (3, 3) and (1, 1) both with 4 output
channels and 1 stride in height and width.

3.3. Loss function

For comparison, we use utterance-level PIT-based speech separation
systems [10] as baselines. For end-to-end training, we firstly restore
|X̂(t, f)|, which means STFT spectral magnitude generated by gen-
erator. The loss function based on IAM is

LIAM
2 =

1

N

S∑
s=1

||M IAM
s × |Y | − |Xφ∗ |||2, (7)

where M , |Y | and |X| represent mask, STFT spectral magnitude
of mixed speech and STFT spectral magnitude of source signal for
one utterance respectively. N is the total number of T-F bins over all
sources, and φ∗ is the permutation that minimizes the utterance-level
separation error defined as

φ∗ = argmin
φ

S∑
s=1

||M IAM
s × |Y | − |Xφ∗ |||2. (8)

For PSM-based method, the loss function can be modified as

LPSM
2 =

1

N

S∑
s=1

||MPSM
s × |Y | − |Xφ∗ | cos(θy − θφ(s))||2, (9)

where φ∗ is the permutation that minimizes the utterance-level sep-
aration error defined as

φ∗ = argmin
φ

S∑
s=1

||MPSM
s ×|Y |−|Xφ∗ | cos(θy−θφ(s))||2. (10)

The equations above are traditional MSE-based PIT loss function-
s. In this experiment, we train the network by GAT. Thus the loss
function is modified. We use LSGAN [22] based method. At the
same time, L1-regularization is utilized to guide the training. In or-
der to balance GAN loss and L1-regularization, λ is taken as hyper-
parameter in this experiment

min
D
L(D) = E|X|∼pdata (|X|)[(D(|X|)− 1)2]

+ E|Y |∼pdata (|Y |)[(D(G(|Y |)× |Y |))2],

min
G
L(G) = E|Y |∼pdata (|Y |)[(D(G(|Y |)× |Y |)− 1)2] + λLPSM

1 .

(11)
After employing MTL, our final loss function has the following form

L =

{LT1 + µLT2 , if epoch ≤ 10

LT1 , if epoch > 10
, (12)

where L is the total loss. LT1 is the loss of LPSM
2 or L(G) based

on the training method. LT2 represents the loss of the second task,
fBank-pitch based PIT. µ is a hyper-parameter used to balance the
loss between multiple tasks.

4. EXPERIMENTS

4.1. Experimental setup

We evaluate CLDNN-GAT on WSJ0-2mix dataset [8], which is de-
rived from WSJ corpus [23]. WSJ0-2mix contains 30 hours of train-
ing data, 10 hours of development data (Dev set) and 5 hours of test
data (Test set).

The input features of generator and discriminator are 129-
dimensional STFT spectral magnitude computed with a frame size
of 32ms and 16ms shift. For MTL, 40-dimensional fBank features
and 3-dimensional pitch features are extracted. The phase of the
source signal is used to build PSM-based loss function, and the
phase of the mixed speech is used to restore the speech. After fine
adjustment, hyper-parameters λ and µ are set as 1 and 0.5 respec-
tively. fBank-pitch is extracted by Kaldi [24] and the models are all
trained on Tensorflow [25]. RMSprop algorithm [26] is utilized for
training where the learning rate started at 0.0002.

4.2. Baseline systems

In this experiment, we conduct several CBLDNN-based baseline
systems by using utterance-level PIT [10]. The experimental results
are shown in Table 1. From the table, we can see that the system-
s trained with phase information obtain better performance. This
shows that phase information does improve performance. Among
baselines, CBLDNN-PSM-ReLU obtains the best result, which im-
proves SDR by 9.7dB in the test set. At the same time, compared
with uPIT-BLSTM in [10], our baseline systems achieve better per-
formance when using the same training method, about 0.45dB SDR
improvement in average is obtained. This shows that CNN effective-
ly extracts local features and applies them to subsequent separation.
It also indicates that our CBLDNN systems have better modeling
capabilities.

4.3. CBLDNN-based systems with MTL

CBLDNN-MTL is trained with extra MTL compared with CBLDNN
in section 4.2. In this experiment, MTL is applied at the first 10
rounds. The experimental results are shown in Table 1.
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(d) Source signal

Fig. 2: An example of separated speech and its source signal, which
is randomly selected. The output of CBLDNN achieves 10.02dB S-
DR improvement, and the output of CBLDNN-GAT achieves 11.5d-
B SDR improvement.

Table 1: SDR improvement for different separation methods.

Model Mask Activation SDR Imp. (dB)
Dev set Test set

CBLDNN

IAM
Sigmoid 8.2 8.3
ReLU 8.7 8.9

Softmax 8.9 8.9

PSM
Sigmoid 9.4 9.3
ReLU 9.6 9.7

Softmax 9.6 9.6

CBLDNN-MTL

IAM
Sigmoid 8.8 8.8
ReLU 9.0 9.1

Softmax 9.2 9.2

PSM
Sigmoid 9.6 9.6
ReLU 9.7 9.7

Softmax 9.8 9.8

From Table 1 we can see that MTL can be used to improve
SDR. Compared with baselines, an average increase of 0.25dB S-
DR improvement is obtained. CBLDNN-IAM-Sigmoid-MTL has
achieved the most significant performance improvement compared
with corresponding baseline system, which is 0.5dB SDR improve-
ment. Besides, CBLDNN-PSM-Softmax-MTL achieves best SDR
improvement, 9.8dB. This shows that the information of fBank-pitch
has been modeled by network successfully, and this information can
be used to improve the performance.

4.4. CBLDNN-based systems with GAT

In this section, we explore the impact of GAT. In the beginning, MTL
is conducted to train the network for 10 rounds. GAT is applied to
training the network from the beginning to the end. As phase infor-
mation brings performance improvement, only PSM-based method
is evaluated in this section. In GAT, PSM is used to measure the loss
of L1, which is utilized to minimize the distance between genera-

Table 2: SDR improvement for different separation methods.

Model Activation SDR Imp. (dB)
Dev set Test set

CBLDNN-L1 loss
Sigmoid 9.7 9.7
ReLU 9.6 9.6

Softmax 9.5 9.6

CBLDNN-GAT
Sigmoid 11.0 11.0
ReLU 10.7 10.8

Softmax 10.6 10.6
DPCL [8] - 5.9 5.8

DPCL+ [9] - - 9.1
DPCL++ [27] - - 10.8

DANet [9] - - 9.6
DANet-6 anchor [28] - - 10.4

uPIT-BLSTM [10] ReLU 9.4 9.4
uPIT-BLSTM-ST [10] ReLU 10.0 10.0

IRM - 12.4 12.7

tions and the clean examples.
We adopt L1-regularization to GAT. Thus we attempt to find out

whether L1-regularization has greatly improved performance and
the results show that the systems perform similarly as baselines do.
With GAT, SDR has been significantly improved, which means that
GAT plays a more important role in improving the performance. Our
system, CBLDNN-GAT with sigmoid activation function achieves
best results, with 11.0dB SDR improvement. At the same time, com-
pared with exited methods, experimental results show that our sys-
tem obtains the best results. GAT makes the separated speech pro-
duced by generator approaches to real one. Compared with PIT, our
goal is no longer to only reduce the numerical differences between
the separated speech and target speech but to separate the speech
with high speech quality. In practice, the network does not need dis-
criminator network. Thus we can achieve better performance com-
pared with PIT while having the same network structure.

Fig. 2 shows the spectrogram of separated speech based on d-
ifferent separation methods. Compared with speech separated by
CBLDNN, the speech separated by CBLDNN-GAT has clearer spec-
trum structure and complete high-frequency spectrum. At the same
time, the speech separated by CBLDNN-GAT has limited interfer-
ence. But the speech separated by CBLDNN contains obviously
interference. More examples of separated speech are provided at
https://github.com/chenxinglili/SpeechSeparationExamples

5. CONCLUSION AND DISCUSSION

In this paper, we introduce CBLDNN-based speaker-independent
speech separation system with GAT. Our results on two-speaker
mixed speech separation task indicate that CBLDNN-GAT can
achieve a new state-of-the-art performance. Additionally, CBLDNN-
GAT effectively deals with the label permutation and tracing prob-
lem. We note that the proposed method has great potential for the
further improvement. Firstly, we can increase the number of train-
ing epochs of MTL to see if further improvement can be obtained.
Secondly, we will extend the experiment to three-speaker mix task.
Thirdly, from Fig. 2, the spectrums miss in some T-F bins. Although
the missing parts have no voice, we will test the speech recognition
performance to explore the impact and evaluate the speech quality in
objective standards, such as perceptual evaluation of speech quality.
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