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a b s t r a c t 

Brain-computer interfaces (BCIs) based on Steady-State Visual Evoked Potentials (SSVEPs) has been at- 

tracting much attention because of its high information transfer rate and little user training. However, 

most methods applied to decode SSVEPs are limited to CCA and some extended CCA-based methods. This 

study proposed a comparing network based on Convolutional Neural Network (CNN), which was used to 

learn the relationship between EEG signals and the templates corresponding to each stimulus frequency 

of SSVEPs. The effectiveness of the proposed method is validated by comparing it with the standard CCA 

and other state-of-the art methods for decoding SSVEPs (i.e., CNN and TRCA) on the actual SSVEP datasets 

collected from 23 subjects. The comparison results indicate that the CNN-based comparing network can 

significantly improve the classification accuracy. Furthermore, the comparing network with TRCA achieved 

the best performance among three methods based on comparing network with the averaged accuracy of 

91.24% (data length: 2s) and 86.15% (data length: 1s). The study validated the efficiency of the proposed 

CNN-based comparing network in decoding SSVEPs. It suggests that the comparing network with TRCA is 

a promising methodology for target identification of SSVEPs and could further improve the performance 

of SSVEP-based BCI system. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Brain-Computer Interfaces (BCIs) are communication systems

that translate brain activities into computer commands without

making use of peripheral nerve activity or muscles [1 , 2] . There are

many applications such as spelling interfaces [3–5] , playing com-

puter games [6 , 7] and other assistive devices [8–10] . And it can

provide environmental control capability for several disabled per-

sons to improve life quality [11–14] . Recently, electroencephalo-

gram (EEG)-based BCIs have achieved rapid progress in perfor-

mance, functionality and practicality [15–19] . There are several

typical EEG paradigms for BCIs, such as: sensorimotor mu/beta

rhythms through motor imagine (MI) [16 , 17] , P300 [18 , 41] , and

steady-state visual evoked potentials (SSVEPs) [19 , 26 , 40 , 43] . 
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SSVEP-based BCI system has been widely used due to its

igh information transfer rate (ITR) compared with other EEG

aradigms [20 , 21] . SSVEPs are brain responses elicited by stimu-

ating the retina of the eyeball at a fixed frequency (1–100 Hz)

22] . The distribution of SSVEPs in the spectrum is multiplied by

he frequency of visual stimulus. For example, when a 6 Hz fixed

odulation frequency stimulates the eyeball, peaks at frequencies

f 6 Hz, 12 Hz, and 18 Hz are observed in the spectrum [23] . 

So far, there are many methods for detecting SSVEPs. Based

n the frequency feature of SSVEP signals, power spectrum den-

ity analysis (PSDA) through discrete Fourier transform (DFT) was

idely used to detect target frequency of SSVEPs from each single

hannel [24 , 25] . Canonical correlation analysis (CCA) is the most

opular method to detect SSVEPs tagged with frequency coding. It

aximizes the correlation between EEG and sine-cosine reference

ignals in multi-channel [26] . Many modified CCA-based meth-

ds were proposed such as individual template-based CCA (IT-

CA) [27] , multi-way CCA (MwayCCA) [28] , L1-regularized multi-

ay CCA [29] , and multi-set CCA (MsetCCA) [30] , which showed

etter performance than standard CCA through optimizing the ref-

rence signals. In addition, Chen et al. proposed a filter bank

https://doi.org/10.1016/j.neucom.2020.03.048
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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Fig. 1. The whole diagram of the experiment. 
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anonical correlation analysis (FBCCA) method to incorporate fun-

amental and harmonic frequency components to improve the de-

ection of SSVEPs [31] . 

In 2013, Tanaka et al. proposed a new method which can

xtract task-related components from time-locked near-infrared

pectroscopy (NIRS) data, named task-related component analy-

is (TRCA) [32] . TRCA can remove artifacts effectively to improve

ignal to noise ratio. By maximizing the reproducibility of time-

ocked activities across trials, the TRCA method showed good per-

ormance in extracting task-related components. SSVEPs are known

s time-locked photic driving responses to repetitive visual stimu-

us [33 , 34] . Considering the stability of the latency in SSVEPs, the

RCA-based spatial filtering approach has great potential to im-

rove the SNR of SSVEPs. In a recent study, Nakanishi et al. ap-

lied TRCA as a spatial filter to improve the SNR of SSVEPs, and the

RCA-based approach showed better performance than CCA [35] . 

Despite many examples of impressive progress to classify

SVEPs [36–38] , there is still room for considerable improvement

ith respect to the accuracy. In recent years, convolutional neural

etwork (CNN) is one of the largest advances in machine learning.

NNs allow automatic feature extraction within their layers, which

eans learning feature by itself instead of manually designing

eatures. Moreover, SSVEPs has much abundant inner information.

NNs have advantages in dealing with this internal information

ompared with traditional methods. There are some advantages

hat traditional technology does not have: good fault tolerance,

elf-learning ability, good adaptive performance and high resolu-

ion. CNNs have better generalization than other methods. Thus,

NN has been used for decoding brain signals in some recent stud-

es. In [37] , Cecotti proposed a CNN architecture, which simulates

FT process, to classify time domain SSVEP signals. In 2017, Kwak

t al. proposed a classifier based deep CNN that used frequency

eatures as input for robust SSVEP detection and found highly

ncouraging SSVEP decoding results for the CNN architecture [39] . 

In this study, we aim to use deep learning methods to improve

lassification performance of SSVEPs. We combined advantages of

eep learning and CCA and proposed a CNN-based comparing net-

ork to identify the target of SSVEPs. We designed templates to

epresent the prior information of the SSVEPs, such as SSVEP fre-

uency, personal EEG pattern and so on. For our proposed net-

ork, these templates and SSVEP samples are the two kinds of

nputs. Compared with [37] , we use the frequency domain signal

s the SSVEP input of the network. The feature extraction process

egins with the frequency domain signal, so that our network can

xtract deeper feature of SSVEPs than the frequency domain fea-

ures. Moreover, the network can learn the relationship between
he SSVEP sample and template designed according to the prior in-

ormation. Then, it solves the classification task of SSVEPs accord-

ng to the relationship. Compared with other CNN methods [36 –

9] , that the comparing network learns is the relationship between

SVEP sample and templates rather than the frequency feature of

SVEP. 

Furthermore, we developed three different kinds of templates

o build the comparing network. Each kind of template has four

lasses corresponding to each class of SSVEP. The effectiveness

f the proposed comparing network was validated by compar-

ng it with the traditional method CCA and a CNN-based method

39] . We proposed three kinds of templates, sinusoidal signal tem-

late, individual average template and TRCA (task-related compo-

ent analysis) template, for the comparing networks. And compar-

son among three kinds of templates was taken to evaluate the

erformance of different kinds of templates. The performance was

valuated using a four-target SSVEP dataset recorded from twenty-

hree subjects. 

. Experiment 

.1. Subjects 

Twenty-three healthy subjects (5 females, aged 20–28 years)

ith normal or corrected-to-normal vision participated in the ex-

eriment. Each subject was asked to read and signed an informed

onsent in advance. This study was approved by Research Ethics

ommittee of Institute of Automation, Chinese Academy of Science.

.2. Stimulus design 

This study used a sampled sinusoidal stimulation method

44 , 46] to present the visual flicks on a 24-inch LED monitor with

esolution 1920 × 1080 pixels and a refresh rate of 60 Hz. The user

nterface is shown in the stimulus part of Fig. 1 . There are 4 stim-

lus (4 cm × 4 cm), denoted by label 1, 2, 3 and 4. In order to

roduce the visual stimulus for the SSVEP, the squares are blinking

t frequencies 7 Hz, 8 Hz, 9 Hz and 10 Hz. The stimulus sequence

 ( f, i ) can be generated by modulating the luminance of the screen,

here 0 represents dark and 1 represents the highest luminance.

he formula of s ( f,i ) is shown as follow: 

 ( f, i ) = 

1 

2 

{ 1 + sin [ 2 π f ( i/ RefreshRate ) ] } (1) 

here sin () generates a sine wave, and i indicates the frame index

n the sequence. The stimulus program was developed using Psy-
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Fig. 2. Trial structure for collecting the SSVEPs data. 

Fig. 3. The shift window and shift size for splitting SSVEP. 
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chophysics Toolbox Ver. 3 (PTB-3) [45] under Matlab (MathWorks,

Inc.) 

2.3. Data Acquisition 

The EEG data were acquired by using a Synamp2 system (Neu-

roscan, Inc.) at a sampling rate of 10 0 0Hz. The usable bandwidth

of the system was 0.1–100 Hz. Nine electrodes (Pz, PO5, PO3, POz,

PO4, PO6, O1, Oz, and O2) were placed over parietal and occipital

areas according to the international 10–20 system (in the Data Ac-

quisition part of Fig. 1 ). The reference electrode was M1 located in

left ear mastoid. During the recording, impedances of all the elec-

trodes were maintained below 10K � . A notch filter at 50 Hz was

applied to remove power-line noise during recoding. 

The experiment contains 20 blocks, and each block contains 20

trials (4 targets × 5) in a random order. As shown in Fig. 2 , each

trial lasted for 7 s. Each trial begins with a cue for 2 s, which is a

red square at the target location with the same size as the stim-

ulus. Subjects were asked to shift their gaze to the target as soon

as possible. After the cue, visual stimulus starts to flicker for 5 s.

There is no break between trials. After each block, there is a break

for several minutes to avoid fatigue. 

3. Method 

3.1. Data preprocessing and input data organization 

Data epochs comprising nine-channel SSVEPs were first ex-

tracted according to the event triggers. The frequency used is 7,

8, 9 and 10 Hz, so the data were filtered by a Butterworth band-

pass filter from 5 to 70 Hz. This ensures that all harmonics are in

the frequency band while removing noise. For easier analysis, all

data were down-sampled to 250 Hz. And then, the data were seg-

mented using a sliding window with a 40 ms shift size ( Fig. 3 ). 

The fast Fourier transform was adopted to transform the seg-

mented data to frequency domain. In the frequency domain, 128

points (5–68 Hz frequency band) were selected and standardized

by removing the mean and scaling to unit variance as the input

data for CNN and compare methods. 

x ∗ = 

x − μ

σ
(2)

3.2. Comparing network 

In our study, we designed a comparing network, inspired by

the CCA method. For the comparing network, the input layer has

two different input data I EEG and I template . The network was used to
earn the relationship between EEG signals and the template cor-

esponding to one of four frequencies (7 Hz, 8 Hz, 9 Hz, 10 Hz). 

.2.1. Template design 

As for I template , we proposed three kinds of templates for the

omparing network. 

a) Sinusoidal signal template. (Corresponding to COM-SIN) 

For frequency f , we design the sinusoidal signal s ( f, t ) ∈ R 

N s ×1 

s sinusoidal signal template by the following equation: 

 ( f, t) = 

N h ∑ 

n =1 

sin (2 nπ f t) + cos (2 nπ f t) (3)

here N h is the number of harmonics ( N h = 3 ) Then, the sinu-

oidal signal above was processed using FFT and frequency band

election to form the sinusoidal signal template ˜ x f (size 128 × 1). 

b) Individual average template. (Corresponding to COM-IT) 

This template was obtained by averaging multiple trials. Then,

he averaged data was transformed to frequency domain. 

¯
 IT,i = F F T 

( 

1 

N T 

N T ∑ 

n =1 

x i,n 

) 

(4)

here N T is the number of training trials; x i is the EEG number of

ifferent trials. The size of x̄ IT,i is 128 × 9. 

c) TRCA (task-related component analysis) template. (Correspond-

ing to COM-TRCA) 

TRCA is the method that extracts task-related components ef-

ciently by maximizing the reproducibility during the task period

32 , 42] . In previous study, Nakanishi et.al. used TRCA as a spatial

ltering to improve the SNR of SSVEP[35]. We assume that EEG

ata consist of two parts: 1) task-related component s(t) ; 2) task-

nrelated component n ( t ). The observed EEG signal x ( t ) can be de-

cribed as: 

 j (t) = a 1 , j s (t) + a 2 , j n (t) , j = 1 , 2 , . . . , N c (5)

here j is the index of channels, and a 1, j and a 2, j are mixing coef-

cients. The problem is to recover the task-related component s(t)

rom a linear sum of observed signals x(t) as: 

 (t) = 

N c ∑ 

j=1 

w j x j (t) = 

N c ∑ 

j=1 

( w j a 1 , j s (t) + w j a 2 , j n (t)) (6)

The task is to recover the task-related signal s ( t ) from the ob-

erved signal x ( t ). In reality, the correlation of the task-related

ignals between different periods is very large, while the task-

ndependent signals are irrelevant. It is assumed that the corre-

ation coefficient of the task-related data in different periods is a

onstant, while the correlation coefficient between the unrelated

ignals and between the task-independent signal and the task-

elated signal is 0. Then the solution to this problem is to maxi-

ize the covariance of the data between the trials. 

x ( h ) ( t ) is the EEG data of h -th trial. And the estimated task-

elated signal is y ( h ) ( t ) . T is the duration of trial. The covariance

etween h 1 , h 2 trials is : 

 h 1 , h 2 = Cov 
(
y ( h 1 ) (t) , y ( h 2 ) (t) 

)
= 

N c ∑ 

j 1 , j 2 

w j 1 w j 2 Cov 
(
x ( h 1 ) (t) , x ( h 2 ) (t) 

)
(7)
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Fig. 4. The architecture of CNN in compare network. 
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All the possible combinations of trials are summed as: 

N c ∑ 

h 1 , h 2 =1 
h 1 � = h 2 

C h 1 , h 2 = 

N t ∑ 

h 1 , h 2 =1 
h 1 � = h 2 

N c ∑ 

j 1 , j 2 =1 

w j 1 w j 2 

Cov (x h 1 
j 1 
(t) , x h 2 

j 2 
(t)) 

= w 

T Sw 

(8) 

To obtain a finite solution, the variance of y(t) is constrained

s: 

 ar(y (t)) = 

N t ∑ 

j 1 , j 2 =1 

w j 1 w j 2 Cov ( x j 1 (t) , x j 2 (t)) 

= w 

T Qw = 1 (9) 

The problem can be solved by : 

� 

 = arg max 
w 

w 

T Sw 

w 

T Qw 

(10) 

The optimal coefficient vector is obtained as the eigenvector of

he matrix Q 

−1 S . 

The TRCA template has a spatial filter before FFT. For each tem-

late, N T trials were used to train the template. Firstly, the pre-

rocessed data was filtered by TRCA; secondly, we averaged the

ltered data; at last, FFT and frequency band selection were used

o form the TRCA template. 

¯
 T RCA,i = F F T 

{ 

1 

N t 

N T ∑ 

n =1 

[ T RCA ( x n,i ) ] 

} 

(11) 

The size of x̄ T RCA,i is same as that of x̄ IT,i (128 × 9). 

.2.2. Architecture of the CNN 

There are two CNN architectures used in the comparing net-

ork, named CNN-1 and CNN-2. The CNN-1 is shown in Fig. 4 . Two

onvolutional layers are used to extract feature. The first convolu-

ional kernel (size 1 × 9) extracts 9 feature maps (C1), and each

ap has 128 units. Then, the second convolutional kernel (size
Fig. 5. The architecture of 
1 × 1) is used and the feature map (C2) which has the same size

s C1 is obtained. 

In the first CNN layer, we convolute the data cross different

hannels to focus on the spatial feature. The second CNN layer is

sed to learn the frequency feature in the channel. After the ex-

raction of two CNN layers, a full connected layer is used. 

The structure of CNN-2 is simpler, which is adopted to sinu-

oidal signal template. The size of sinusoidal signal template is dif-

erent from the others (size 128 × 1). So just a convolutional layer

hich convolutional kernel size is 11 × 1, and each map has 128

nits. 

.2.3. The architecture of comparing networks 

The architecture for different template is a little different from

thers. As for COM-SIN and COM-IT, the comparing networks are

imilar. As shown in Fig. 5 (a), there are two kinds input data:

ne SSVEP data and four templates. After the feature extracting by

NN, the data is fully connected. The output layer has four nodes

orresponding to four class. However, the CNN used for template is

ifferent. For COM-SIN, we adopt CNN-2, but for COM-IT, we adopt

NN-1. 

The architecture for COM-TRCA is shown in Fig. 5 (b). The branch

 template has the same architecture. But for branch I EEG , there are
comparing networks. 
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Fig. 6. The architecture of convolutional layer. 
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four inputs that are filtered by TRCA. After CNN, the data is fully

connected and has four output nodes. 

The gradient descent algorithm uses standard error backpropa-

gation to update the network parameters. Except the output layer,

the activation functions are ReLu. The output activation function is

Softmax. The dropout rate is 0.5, and L2 regularization (coefficient

is 0.5) is used. 

3.3. Related method 

3.3.1. Standard CCA 

In SSVEP-based BCIs, CCA has been widely used to detect the

frequency of SSVEPs [26] . CCA is a statistical way used to measure

the underlying correlation between two multi-dimensional vari-

ables. Considering two multi-dimensional variables X, Y and their

linear combinations x = X 

T W X and y = Y T W Y , CCA finds the weight

vectors, W X and W Y , which maximize the correlation between x

and y by solving the following problem: 

max 
 X , W Y 

r(x, y ) = 

E 
[
W 

T 
X X Y T W Y 

]
E 
[
W 

T 
X 

X X 

T W Y 

]
E 
[
W 

T 
X 

Y Y T W Y 

] (12)

The maximum of r with respect to W X and W Y is the maximum

canonical correction vector. In SSVEP detection, X refers to multi-

channel SSVEP signals and Y refers to reference signals that have

the same length as X . To detect the frequency of SSVEPs in an un-

supervised way, sinusoidal signals for frequency f i can be used as

the reference signals Y fi: 

 f i 
= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

sin (2 π f i n ) 
cos (2 π f i n ) 

. . . 
sin (2 πN h f i n ) 
cos (2 πN h f i n ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, n = 

1 

f s 
, 

2 

f s 
, · · · N 

f s 
(13)

where N h is the number of harmonics; N is the number of sam-

pling points. 

To recognize the frequency of SSVEPs, CCA calculates the canon-

ical correlation vector r f i between multi-channel SSVEP signals and

the reference signals Y f i at each stimulus frequency. And then, we

select the maximal correlation r max, f i 
from the canonical correla-

tion vector. The class of the SSVEP is the class of the maximal cor-

relation value r max which is selected from all r max, f i 
: 

˜ f = class { max r f i ,max } , i = 1 , 2 , . . . , N f (14)

In a recent study, Nakanishi et al. applied task-related compo-

nent analysis as a spatial filter to improve the signal-to-noise ratio

of SSVEP [35] . After TRCA processing, CCA can be used for classifi-

cation. 
.3.2. CNN 

In 2017, Kwak et al proposed a CNN-based classifier to de-

ect the dominant frequency of the EEG signal [39] . As shown

n Fig. 6 , the CNN network has three layers, and each channel

as one or several maps containing frequency information for the

ifferent channels (similar to [41] ). The input data is defined as

 p, j ∈ R N f s ×N ch , where, N fs = 128 is the number of frequency samples

nd N ch = 9 is the number of channels. A one-dimensional (1D) ker-

el of 1 × N ch is applied along the row. The first and second hid-

en layers are composed of N ch feature maps, and each map in the

rst layer has a size of N fs . Each map in the second layer is com-

osed of 128 units. The output of the second layer is connected to

 dense layer with 4 units, which represent the four classes of the

SVEP signals. 

.4. Voting for result 

In order to increase the training data, sliding window method

as used. Thus, we would get one output every 40 ms. It means

hat we have a result every 40 ms. In order to apply in real-word

SVEP-BCI, we consider to get one output every 1 s using two

ethod. One method is to get a final result every interval 1 s. The

ther is that we integrated 25 continuous results and voted for the

nal result. So that, the interval between two results was 1s. 

.5. Experimental evaluation 

Based on the dataset, we evaluated the performance of our pro-

osed methods under different data length. In this work, the data

ere segment using 7 lengths of sliding window separately (1 s,

.5 s, 2 s, 2.5s , 3 s, 3.5 s, 4 s). The shift size was set to 40ms

or both time windows. It means that the overlaps are 0.96s and

.96s respectively. Our data consists of 100 trials for each target.

ach accuracy is obtained by averaging the accuracies of three ran-

om samplings. For example, if training set has 80 trials, we select

0 trials three times randomly, and the remaining 20 trials made

p testing set. We compared our result with CCA, TRCA and CNN

ethod proposed in [39] . The difference between different meth-

ds were tested with paired t-tests. The statistical significance was

et at p < 0.05. 

. Result 

The experiments were taken under the data length range from

 s to 4 s with an interval 0.5 s. Table 1 shows the classification

ccuracy with various length of data. As for the result, we take a

wo-way repeated measures ANOVA to measure the effects of dif-

erent factors. This result showed significant main effects of differ-

nt data length ( F (6, 132) = 61.11, p < 0.0 0 01), different classification
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Table 1 

SSVEP classification accuracy by the data length. 

Data length(s) 1 1.5 2 2.5 3 3.5 4 

CCA 73.12 ±18.15 ∗∗∗ 80.88 ±16.78 ∗∗∗ 85.32 ±15.29 ∗∗ 88.06 ±13.92 ∗ 89.86 ±12.97 ∗ 91.15 ±12.02 92.13 ±11.22 

TRCA 73.30 ±17.96 ∗∗∗ 81.07 ±16.74 ∗∗∗ 85.40 ±15.41 ∗∗ 88.29 ±13.58 ∗ 89.87 ±13.02 ∗ 91.39 ±11.73 91.98 ±11.33 

CNN 74.06 ±19.62 ∗∗∗ 76.90 ±18.70 ∗∗∗ 81.57 ±17.01 ∗∗∗ 76.90 ±19.39 ∗∗∗ 78.64 ±18.01 ∗∗∗ 77.90 ±18.22 ∗∗∗ 81.54 ±17.29 ∗∗∗

COM-SIN 81.63 ±15.79 ∗∗∗ 84.31 ±15.28 ∗∗∗ 88.18 ±13.40 ∗ 87.94 ±13.32 ∗ 89.59 ±11.97 ∗ 89.23 ±12.45 ∗ 89.53 ±12.96 ∗

COM-IT 81.69 ±15.79 ∗∗ 84.33 ±15.29 ∗∗∗ 88.09 ±13.45 ∗ 87.87 ±12.96 ∗ 89.98 ±11.80 ∗ 89.14 ±12.73 ∗∗ 89.85 ±12.56 ∗

COM-TRCA 86.15 ±14.81 89.39 ±12.66 91.24 ±11.79 91.87 ±11.01 93.36 ±9.67 93.09 ±10.68 94.31 ±8.27 

The asterisks indicate significant difference between COM-TRCA and other methods by paired t-tests ( ∗ p < 0.01, ∗∗ p < 0.001, ∗∗∗ p < 0.001). 
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measures ANOVA as used to measure the effect of different factor. 
ethods ( F (5, 110) = 27.7, p < 0.0 0 01), and interaction effect between

actors ( F (30, 660) = 22.76, p < 0.0 0 01). 

For each kind of data length, a one-way ANOVA is taken to

easure the effects of method. The results show that there is a

ignificant effect of different method (1s: F = 33.22 p < 0.0 0 01, 1.5s:

 = 27.05 p < 0.0 0 01, 2s: F = 17.03 p < 0.0 0 01, 2.5s: F = 26.91 p < 0.0 0 01,

s: F = 26.91 p < 0.0 0 01, 3.5s: F = 30.96, 4s: F = 21.04, p < 0.0 0 01) on

lassification accuracy in each kind of data length. For each kind

f data length, we compared COM-TRCA and the other methods.

os hos analysis shows COM-TRCA has better performance for each

ata length. Therefore, the COM-TRCA has the best performance no

atter how long the data is. The performance of TRCA has im-

rovement than that of CCA, while the increase of accuracy was

ess than 1%. In one previous study, Kwak et al reported that the

ccuracy of CNN was much higher than that of CCA by 16%. How-

ver, in our study, CNN did not perform better than CCA based on

ur recorded SSVEPs. It may not only due to the subject variance,

ut also due to a “trial-dependent” issue which was caused by the

raining and the testing data were from the same trial in Kwak

t al.’s study [39] . 

For each kind of data length, every method based on compar-

ng network (COM-SIN, COM-IT, COM-TRCA) significantly increased

he classification accuracy of SSVEPs compared with CCA, TRCA and

NN ( p < 0.001). Therefore, our comparing network showed bet-

er performance in classification of SSVEPs. Based on comparing

etwork, three kinds of templates were applied to generalize the

haracteristics of SSVEPs, and then, to learn the deep relationship

etween templates and EEG input data. It indicates that combining

eep learning and prior information derived from SSVEP paradigm

ould enhance target detections in SSVEP-based BCIs. In addition,

he comparison of accuracy among three methods based on com-

aring network showed that the comparing network with TRCA

emplate (COM-TRCA) performed best in each case. Since data pro-

essed by TRCA removed the task-unrelated EEG activities and in-

reased the ratio of task-related EEG activities, it could increase

he distance between target and not-target template feature values

nd decrease the distance between target and target temple fea-

ure values. Therefore, Compared with COM-SIN and COM-IT, COM-

RCA improved performance in target identification. 

Furthermore, a one-way ANOVA to measure the effects of data

engths for COM-TRCA. There is a significant effect of data length

 F = 21.48, p < 0.0 0 01) on classification results. As the length of the

ata grows, the averaged classification accuracy increases. When

ata length shorter than 2 s, classification accuracy increases faster

about 5% improvement just with 1 s change). This is in consis-

ence with the finding in previous studies that the accuracy of

SVEP detection increased as the data length increased [15 , 31 , 35] .

ore information is included in the samples with data length 2 s

han those with data length 1 s. So, the accuracies of 2 s were

igher than those of 1 s. But the accuracy rate does not increase

uch when the data length is more than 2 s (increase 3% from 2 s

o 4 s). 

For other methods, a one-way ANOVA is taken to measure the

ffects of data lengths. The results show that the data length has

 significant influence on classification accuracy (CCA: F = 66.99,
 < 0.0 0 01, TRCA: F = 59.65, p < 0.0 0 01, CNN: F = 15.20, p < 0.0 0 01,

OM-SIN: F = 57.72, p < 0.0 0 01, COM-IT: F = 39.46, p < 0.0 0 01).When

he data length growing, except CNN, the classification effect of

ther methods is gradually improved. But CNN cannot maintain

his trend when data length is longer than 2 s. CCA and TRCA have

lmost the same trend of change. When data length is 1 s, their

ccuracies is the lowest. But the accuracy will increase rapidly. As

or COM-SIN and COM-IT, their changes are similar. When data

ength shorter than 2 s, their classification accuracy has increased

apidly, but when longer than 2 s, the accuracy increasing trend

lows down. 

As the data length becomes longer, a single sample contains

ore information. This is very beneficial to feature extraction and

lassification, resulting in the increasing accuracy for the 5 meth-

ds. However, as for deep learning method, CNN, COM-SIN, COM-IT

nd COM-TRCA, their performance can be affected by training set

ize. If fewer samples are trained for the deep learning method,

hey will not be trained appropriately. Under the influence of the

bove two factors, the four deep learning methods cannot get the

ame increase as CCA and TRCA, and the CNN even cannot keep

ncrease. 

While the longer data length, the higher classification accuracy,

ong data length is not suitable for BCI system to control other de-

ice. At present, many researches focus on the data length 2s and

horter [26 –30] . 

The performance of different methods is shown in Fig. 7 , where

he classification confusion matrices of subject 3 is shown. The ac-

uracy of CCA is based on all data, and the others are based on

0 trials training in 3 random sampling. The data length is 2 s.

he values in diagonal of every matrix are the correct classification

ate and the others are the misclassification rate. Fig. 7 (a), (b) and

c) are the result from CCA, TRCA and CNN, respectively. Although

he correct classification is majority, there are many misclassifica-

ions. Fig. 7 (d), (e) and (f) are the result from COM-SIN, COM-IT

nd COM-TRCA, respectively. The misclassification is less than the

ther three methods. Evidently, the proposed methods significantly

educed the misclassifications, especially for COM-TRCA. 

T-distributed Stochastic Neighbor Embedding (t-SNE) [47] was

sed to embed the data into two dimensions for drawing a scatter

lot. Fig. 8 shows an example of visualization from one subject. As

evealed in Fig. 8 (a), we can see maximum overlap in t-SNE visu-

lization for raw data. After extracting frequency feature, the sam-

les of each class clustered into multiple block mass obviously but

till cannot be linearly separated, which can be seen in Fig. 8 (b). As

he Frequency features are processed over the convolutional layers,

he separation between four classes after the first convolutional

ayer is clearly visible in Fig. 8 (c), and after the second convolu-

ional layer, separation becomes bigger in Fig. 9 (d). The output of

he third layer is linearly separable in Fig. 8 (e). Thus, the visibility

f separation increases from raw data to the output of the compar-

ng network. 

Fig. 9 shows the averaged SSVEP classification accuracy across

ll subjects obtained by CCA, TRCA, CNN, COM-SIN, COM-IT, COM-

RCA in three kinds of result output mode. A two-way repeated
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Fig. 7. The classification confusion matrices. (a) CCA method; (b) TRCA method; (c) CNN method; (d) COM-SIN method; (e) COM-IT method; (f) COM-TRCA method. 

Fig. 8. An example of t-SNE Visualization for COM-TRCA: (a) raw data, (b) Frequency feature, (c) the output of first layer, (f) the output of second layer, (e) the output of 

third layer from one subject. Every point represents a sample and every color represents one class of SSVEP. 

 

 

 

 

 

 

 

 

Table 2 

Different depth models Accuracy 

Model 1 91.27 ±12.06 

Model 2 91.06 ±11.78 

Model 3 90.60 ±12.02 

Model 0 91.24 ±11.79 
For data length 1 s, the result showed significant main effects of

statistical ways ( F (2, 44) = 46.01, p < 0.0 0 01), classification method

( F (5, 110) = 15.78, p < 0.0 0 01) and interaction effect between fac-

tors ( F (10, 220) = 9.305, p < 0.0 0 01). For data length 1 s, the result

showed significant effects of statistical ways ( F (2, 44) = 67.38, p <

0.0 0 01) and classification method ( F (5, 110) = 22.5, p < 0.0 0 01). Post

hoc pairwise comparisons reveal that vote method performed best

among three result output ways. Therefore, voting is an effective

method to increase the classification accuracy for SSVEPs. 
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Fig. 9. Averaged accuracy comparison of six methods in three kinds of result output mode. (a) data length 1s; (b) data length 2s. Vote represents the final result voted 

among every 25 intermediate results; No Vote represents the intermediate results; Interval 1S represents the results got every 1S. 

Table 3 

SSVEP classification accuracy by the quantity of training data. 

Trials quantity 30 40 50 60 70 80 

TRCA 85.26 ±15.27 85.56 ±15.11 85.36 ±15.17 85.42 ±15.30 85.39 ±15.35 85.40 ±15.41 

CNN 76.09 ±19.15 77.81 ±18.45 78.59 ±18.62 78.88 ±18.39 80.00 ±17.95 81.57 ±17.01 

COM-SIN 84.51 ±15.78 85.65 ±15.04 86.14 ±14.52 86.72 ±14.19 86.86 ±14.46 88.18 ±13.40 

COM-IT 84.65 ±15.58 85.63 ±14.98 86.41 ±14.29 86.87 ±14.18 86.92 ±14.43 88.09 ±13.45 

COM-TRCA 89.93 ±12.91 90.51 ±12.33 91.01 ±11.87 90.69 ±12.41 91.58 ±11.29 81.24 ±11.78 

CCA 85.32 ±15.29 
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Based on the COM-TRCA, we have further studied the mod-

ls with different depths under the condition of 80 training trails

nd 2-s data length. Three different changes are taken based on

he COM-TRCA(marked as Model 0): 1) add a convolution layer for

hannels after the C1 layer (convolutional kernel is 1 × 9), marked

s Model 1; 2) add a convolution layer for frequency after the C2

ayer (convolutional kernel is 11 × 1), marked as Model 2; 3) Add

 convolution layer after the C1 and C2 layers respectively, marked

s Model 3. 

Table 2 shows the classification accuracy of these four mod-

ls. The differences between COM-TRCA (Model 0) and each other

odels are not significant. Although Model 1 has 0.03% higher

ean accuracy than Model 0, the SD value of Model1 is higher

han that of Model0. The accuracies of Model 2 and 3 are lower

han that of Model 0. Since, Model 1, Model2, and Model 3 have

ore convolutional layers than model 0, which result in that more

alculate costs. However, there is no significate improvement of

lassification accuracy. Therefore, Model 0 is optimal model to clas-

ify SSVEPs based on COM-TRCA. 

Table 3 shows the classification accuracy of different quantity

f training data with data length 2s. We conduct our experiment

n the situation that training data ranged from 40 to 80 trials and

he remaining data were used as testing data. Note that the CCA

ethod stay constant, since no training phase is required. In CCA,

he canonical correlations and synchronization index with refer-

nce signals are simply computed in order to find the maximum

alue. 

A two-way ANOVA showed significant main effects of classifica-

ion methods ( F (5,110) = 20.81, p < 0.0 0 01), and quantity of training

ata ( F (4,88) = 27.19, p < 0.0 0 01), and a significant interaction ef-

ect between factors (classification methods and quantity of train-

ng data), F (20, 440) = 6.338, p < 0.0 0 01. The data in Table 1 shows

hat as the amount of training data decreases, the accuracy of CNN,
OM-SIN, COM-IT, and COM-TRCA results will decrease, which is

xpected. The smaller the amount of data, the less representa-

ive of the data, the lower the generalization ability of the trained

odel, and the lower the accuracy of the corresponding test. The

esults obtained by the TRCA method are almost unchanged and

re very close to the CCA results. CNN shows the worst perfor-

ance in either case. COM-SIN and COM-IT are similar in perfor-

ance. When the training amount is greater than 50, the classifi-

ation accuracies are signification higher than that of CCA. At 40

nd 50, the result is higher than CCA, but the significance disap-

ears. For any amount of training data, COM-TRCA maintains the

est performance compared to other methods. When the amount

f training data decreases, the accuracy of COM-TRCA decreases,

ut the change is small. Even at 30 training amount, COM-TRCA

an significantly improve the classification accuracy compared to

CA. In summary, COM-TRCA has excellent performance in the case

f less training data. Therefore, it is feasible in practical BCI system

pplications. 

. Conclusion and future work 

In the present work, we proposed a novel architecture for

SVEP signal classification, where the prior knowledge of SSVEPs

as taken into account. The results of this study indicate that com-

aring networks have better performance compared with standard

CA, TRCA and CNN. Furthermore, the comparing network with

RCA template had the largest improvement in SSVEPs classifica-

ion. This research has thus made certain encouraging attempts for

he application of deep learning in SSVEPs classification, and our

esults will be of significant interest to the BCI community. 

In this work, the CNN used to build comparing network is a

wo-layer CNN structure. In the future, we will develop different

etworks from the perspective of the architecture. 
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