
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2020) 17:1703–1714 
https://doi.org/10.1007/s11554-019-00931-5

ORIGINAL RESEARCH PAPER

A novel hardware‑oriented ultra‑high‑speed object detection 
algorithm based on convolutional neural network

Jianquan Li1,2 · Xianlei Long1,2 · Shenhua Hu1,2 · Yiming Hu1,2 · Qingyi Gu1,2 · De Xu1,2

Received: 28 January 2019 / Accepted: 23 November 2019 / Published online: 21 December 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
This paper describes a hardware-oriented two-stage algorithm that can be deployed in a resource-limited field-programmable 
gate array (FPGA) for fast-object detection and recognition with out external memory. The first stage is the bounding boxes 
proposal with a conventional object detection method, and the second is convolutional neural network (CNN)-based clas-
sification for accuracy improvement. Frequently accessing external memories significantly affects the execution efficiency 
of object classification. Unfortunately, the existing CNN models with a large number of parameters are difficult to deploy 
in FPGAs with limited on-chip memory resources. In this study, we designed a compact CNN model and performed the 
hardware-oriented quantization for parameters and intermediate results. As a result, CNN-based ultra-fast-object clas-
sification was realized with all parameters and intermediate results stored on chip. Several evaluations were performed to 
demonstrate the performance of the proposed algorithm. The object classification module consumes only 163.67 Kbits of 
on-chip memories for ten regions of interest (ROIs), this is suitable for low-end FPGA devices. In the aspect of accuracy, 
our method provides a correctness rate of 98.01% in open-source data set MNIST and over 96.5% in other three self-built 
data sets, which is distinctly better than conventional ultra-high-speed object detection algorithms.

Keywords FPGA implementation · High-speed vision · Fast-object detection · Convolutional neural network

1 Introduction

Object detection is a fundamental computer vision problem 
in which objects must be located and the category inside the 
regions of interest (ROIs) must be recognized. Various meth-
ods have been proposed for object detection and recognition; 
these methods are divided into two main categories. One is 
handcrafted feature-based methods, such as the Scale Invari-
ant Feature Transform (SIFT) and Histogram of Oriented 
Gradients (HOG). The other is convolutional neural network 
(CNN)-based methods such as Region with CNN feature 
(R-CNN) and You Only Look Once (YOLO). Most of these 
algorithms perform high-accuracy object detection. How-
ever, processing speed is limited to 100 frames per second 

(FPS) constrained by calculation power and algorithm com-
plexity. However, in the fields of robotics and bioengineer-
ing, high-speed objects should be detected and recognized 
by intelligent sensors at more than 1000 fps, which is dif-
ficult to achieve with 100 fps vision systems.

To address this problem, numerous hardware-oriented fast-
object detection algorithms have been proposed for FPGA-
based ultra-high-speed vision platforms [1–3]. Resource-
consuming iterative algorithms are constrained by on-chip 
memories and highly parallel pipeline operations; hence, they 
are difficult to implement in FPGAs. Thus, most hardware-
oriented algorithms use simple and stable image features 
for object location and classification, such as luminance and 
gradient information. Generally, clear background and tex-
tured objects are required in these conventional algorithms; 
this leads to poor generality. Researchers have attempted to 
deploy CNNs in FPGAs for a better accuracy and generality in 
object detection tasks [4–7]. Unfortunately, processing speed 
is limited to dozens of fps because of network complexity and 
frequent access to external memories.

A two-stage architecture is proposed to improve the accu-
racy of ultra-high-speed object detection. In the first stage, 

 * Qingyi Gu 
 qingyi.gu@ia.ac.cn

1 The Research Center of Precision Sensing and Control, 
Institute of Automation, Chinese Academy of Sciences, 
Beijing, China

2 The School of Computer and Control Engineering, 
University of Chinese Academy of Sciences, Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-019-00931-5&domain=pdf


1704 Journal of Real-Time Image Processing (2020) 17:1703–1714

1 3

a conventional object detection algorithm is employed to 
accelerate the bounding boxes proposal. In the second stage, 
a compact CNN is designed for the precise classification of 
the ROIs detected in the first stage. The major contributions 
of our work are as follows:

– We proposed a two-stage ultra-high-speed object detec-
tion algorithm, including the conventional-algorithm-
based bounding boxes proposal and CNN-based clas-
sification. The architecture is flexible for different 
applications by considering the trade-off between accu-
racy and resource consumption. More accurate algo-
rithms can be considered in the bounding boxes proposal 
and CNN-based classification stages when hardware 
resources are adequate.

– We constructed a compact network structure and quan-
tized parameters and intermediate results, which con-
sumed only 163.67 Kbits of memories with ten proposed 
bounding boxes. Extremely low-memory consumption 
allows parameters and intermediate to be stored in on-
chip memory, making it possible for ultra-high-speed 
objection detection and suitable for low-end FPGAs.

– To the best of our knowledge, we are the first to intro-
duce CNNs to improve the accuracy of object detection at 
thousand fps. The proposed method achieves low latency 
at the millisecond level and a high accuracy of more than 
96.5%, surpassing conventional feature-based ultra-fast-
object detection algorithms.

2  Related works

Researchers have made considerable efforts towards improv-
ing the speed and accuracy of object detection applications, 
and a large number of algorithms have been proposed in 
recent years. Handcrafted feature descriptors and CNN-
based methods are the two most commonly used object 
detection solutions. The SIFT descriptor [8] proposed by 
Lowe in 2004 is invariant to image scale and direction. 
Speeded Up Robust Features (SURF) [9] proposed by Bat 
et al. is an improved version of SIFT. It provides a better 
performance in terms of repeatability, distinctiveness, and 
robustness. HOG [10] was first proposed by Triggs. It is 
the most commonly used feature, particularly in pedestrian 
detection. Other classical descriptors, such as Binary Robust 
Independent Elementary Feature (BRIEF) [11] and Oriented 
FAST and Rotated BRIEF (ORB) [12] are also widely used 
and performed well in image stitching, and object detection 
with classifier such as Support Vector Machines (SVMs) 
[13].

A large number of CNNs with different structures for 
object detection have been proposed, since AlexNet [14] 
won the Image Large Scale Visual Recognition Competition 

(ILSVRC) in 2012 [15, 16]. R-CNN [17] is a two-stage 
object detection algorithm, in which bounding boxes were 
first proposed with the Selective Search (SS) [18] algorithm. 
A 4096-dimension vector was obtained for classification 
through CNNs after candidate regions were resized to the 
same size. This method is effective but time-consuming; the 
entire process requires approximately 6–7 s. Similar algo-
rithms, such as Fast R-CNN [19] and Faster R-CNN [20], 
improved the calculation speed rapidly; however, the speed 
still remains at several fps. One-stage object detection algo-
rithms such as YOLO [21–23] and Single Shot MultiBox 
Detector (SSD) [24] reduced computing time significantly 
and achieved speeds of more than 50 fps.

Ultra-high-speed object detection at more than 1000 fps 
is highly required in numerous situations [25]. To meet the 
growing demand in the fields of industrial automation and 
bionic tracking, high-speed object detection algorithms with 
speed of over 1000 fps based on high-speed-vision platforms 
have been proposed. Ishii et al. proposed a real-time track-
ing system [26] that worked with images of 512×512 pix-
els at 2000 fps on a high-speed-vision platform using color 
histogram features. The system performs well when there 
is evident difference between foreground and background 
colors. An FPGA-based object feature extraction algorithm 
[27] that could extract the locations and features of multiple 
objects in images at 2000 fps was proposed by Gu et al. in 
2013. It was successfully applied in fast cell analysis in Lab 
on a Chip (LOC) [28, 29] for recording the morphological 
information of cells. Brightness information was used for 
object detection, which limited the application to simple and 
customized scenarios. In recent years, Li et al. proposed an 
HOG-based algorithm [30] that could be implemented in 
the FPGA of a high-speed-vision platform. As a result, an 
ultra-fast-object detection system with a speed of 12,000 fps 
was realized. The system could detect multiple objects under 
complex backgrounds. However, the objects for recognition 
should have clear texture; otherwise, accuracy will reduce 
significantly. All above-mentioned methods work well in 
specific scenarios at extremely high speed; however, they 
lack generality.

A CNN is introduced into our system to improve the 
accuracy of ultra-high-speed object detection. Clearly, the 
direct application of existing object detection network mod-
els in FPGAs is unrealistic for a large number of parameters 
and intermediate results. Network compression and quanti-
zation algorithms [31–35] have been proposed to reduce the 
number of parameters. A classical quantitative model, i.e., 
XNOR-Network [36], constrains CNNs with binary weights 
by minimizing the Euclidean distance between full-precision 
parameters and quantized parameters. There is no noticeable 
difference from the original one. However, the first convolu-
tional layer and last fully connected layer are not quantized. 
Moreover, float-point format data still exist as a multiplier. 



1705Journal of Real-Time Image Processing (2020) 17:1703–1714 

1 3

Compared with fixed-point data, float-point data consume 
considerably more computational resources and have longer 
computing latencies. Most quantization strategies [37–39] 
have been designed for graphics processing unit (GPU) 
implementation and do not consider intermediate results. 
Detailed quantization should be conducted on parameters 
and feature maps, so that can be fully implemented in the on-
chip resources’ limited FPGAs for ultra-high-speed object 
detection.

In this paper, a modularized hardware-oriented ultra-
high-speed object detection algorithm based on CNNs is 
proposed. The bounding box coordinates of ROIs are stored 
during the cell-based connected component labeling pro-
cess of the raster scan from the top left to the bottom right 
of an image. The pixels in bounding boxes are pushed into 
block memories in the next frame. Finally, a classification 
operation with a quantized neural network is conducted on 
buffered images.

The rest of this paper is organized as follows: algorithms 
are introduced in Sect. 3. Hardware implementations are pre-
sented in Sect. 4. Section 5 describes resources and accuracy 
evaluation, and conclusions are provided in Sect. 6.

3  Algorithm

3.1  Modularized design

It is difficult to deploy an entire one-stage object detection 
network on FPGAs with only on-chip memories, because 
resources are limited. For existing one-stage CNN models 
in FPGAs, off-chip memory is required for parameters and 
intermediate results. However, frequent accessing of external 
memories reduces the frame rate significantly [5, 7]. Aiming 
at ultra-high-speed object detection, the idea of Fast R-CNN, 
a two-stage CNN-based object detection method, is used for 
reference and forming the hardware-oriented modularized 
algorithm. Bounding boxes are first proposed with conven-
tional object detection methods and classification operations 
are conducted with CNNs.

For a better implementation in FPGA, a normalization 
module is added after the bounding boxes proposal module. 
Our proposed modularized object detection method includes 
the bounding boxes proposal, bounding boxes normaliza-
tion, and object classification modules, which work in par-
allel with pipeline architecture, as shown in Fig. 1. While 
for a certain frame, the processing is sequential within the 
FPGA. The process flow of modularized design is shown 
in Fig. 2. First, coordinates of ROIs are extracted through 
conventional object detection algorithms and recorded in 
on-chip memories. Here, B(Ol, t) is the lth bounding box in 
the frame of time t, while B�(O�

l
, t + �) is the normalized one 

in time t + � , and � is the frame interval. Various kinds of 

feature-based object detection algorithms can be deployed 
in this step, such as HOG-based, ORB-based, and connected 
component-labeling-based algorithms. The pixels in the 
ROIs of the next frame are buffered into block memories 
according to the maintained location information. The posi-
tions of bounding boxes are updated with given or calculated 
moving speed of targets for more precise location of ROIs. 

Fig. 1  Time sequence of modularized design

Fig. 2  Processing flow of modularized design



1706 Journal of Real-Time Image Processing (2020) 17:1703–1714

1 3

In the last step, the classification module with the CNN is 
applied for determining object categories.

3.2  Bounding boxes proposal

The coordinates of the minimum enclosing rectangle 
around the object to be detected are recorded in this mod-
ule. Various bounding boxes proposal algorithms [18, 27, 
30] are suitable for this step, and the cell-based connected 
components labeling method [27] is selected for our imple-
mentation. This hardware-friendly resource-saving algo-
rithm is proposed by Gu et al. and the features of multi 
objects can be output with raster scan. In this algorithm, 
first, an input image (I(x, y)) is converted into binary for-
mat (B(x, y)) by a preset threshold ( � ). After a single-pass 
raster scan of the binarized image (B(x, y)), the features 
of L labeled regions ( Ol(l = 0,… , L − 1) ) are extracted 
immediately, including moments ( Mpq(Ol) ) and bounding 
boxes ( B(Ol) ). The p-th moment of x and q-th moment of y 
( (p, q) = (0, 0), (0, 1), (1, 0) ) for an object ( Ol ) are calculated 
as:

Four boundary coordinate values of objects ( Ol ) are 
updated during the labeling process, as bounding boxes 
( B(Ol) = (yu, yd, xl, xr)).

where pixel p(x, y) ∈ Ol . The detailed calculation steps 
are shown in [27], in which the evaluation of accuracy and 
resource consumption is also presented.

3.3  Bounding boxes normalization

A normalization operation is required for the extracted 
objects to realize scale invariant classification. In our design, 
the bounding boxes ( B(Ol, t) ) of Ol extracted at time t should 
be normalized to the same size of S × S at time t + � for the 
object classification module, where � is a frame interval. 
The width and height of Ol are defined by Eq. 3, and the side 
length ( = S� ) of the cropped squared bounding box is calcu-
lated using Eq. 4. Then, the coordinates of bounding boxes 
are updated to B�(Ol) = (y�

u
, y�

d
, x�

l
, x�

d
) according to Eq. 5:

(1)Mpq(Ol) =
∑

(x,y)∈Ol

xpyqB(x, y)

(2)

xl = argmin (x)

yu = argmin (y)

xr = argmax (x)

yd = argmax (y)

(3)
Ow

l
=xr − xl

Oh
l
=yd − yu

The moving displacement, (dx(Ol, t), dy(Ol, t)) , of object Ol at 
time t is considered for precise bounding boxes normaliza-
tion at time t + �.

where ( Cx,Cy ) is the center of bounding boxes. Then, 
the coordinates of bounding boxes are finally updated to 
B��(Ol, t + �) = (y��

u
, y��

d
, x��

l
, x��

d
) by considering moving dis-

placement, according to Eq. 7.

Finally, a down-sampling operation is conducted according 
to the updated bounding boxes B��(Ol) with a size of S� × S� 
to generate a normalized object, O′

l
 , with a size of S × S for 

pixel caching, as shown in Eq. 8.

If x′′
l
 , x′′

r
 , y′′

u
 , or y′′

d
 exceed the boundaries of input images, 

the texture values around objects are padded around exceed-
ing areas. In our design, S is fixed as 32 pixels. Figure 3 
shows the strategy of bounding box normalization with dif-
ferent sizes.

3.4  Convolutional neural network

CNNs have led to major breakthroughs in numerous com-
puter vision tasks. Classical CNN models with high clas-
sification or detection accuracy contain a large number 
of parameters; this is not suitable for FPGA implementa-
tion. Aiming at ultra-high-speed drogues detection, an 

(4)S� =

⌈
max(Ow

l
,Oh

l
)

S

⌉
× S

(5)

x�
l
=xl −

⌈
S� − Ow

l

2

⌉

x�
r
=xr +

⌊
S� − Ow

l

2

⌋

y�
u
=yu −

⌈
S� − Oh

l

2

⌉

y�
d
=yd +

⌊
S� − Oh

l

2

⌋

(6)

dx(Ol, t) = Cx(Ol, t) − Cx(Ol, t − �)

dy(Ol, t) = Cy(Ol, t) − Cy(Ol, t − �)

(Cx,Cy) =
(

xl+xr

2
,
yu+yd

2

)

(7)

x��
l
= x�

l
+ dx(Ol, t)

x��
r
= x�

r
+ dx(Ol, t)

y��
u
= y�

u
+ dy(Ol, t)

y��
d
= y�

d
+ dy(Ol, t)

(8)
p�(x�, y�) = p

(
x��
l
+

x�×S�

S
, y��

u
+

y�×S�

S

)
, x�, y� ∈ [0, S − 1].



1707Journal of Real-Time Image Processing (2020) 17:1703–1714 

1 3

hardware-friendly convolutional neural network architec-
ture is proposed, as shown in Fig. 4. All the parameters and 
intermediate results can be stored within on-chip memories, 
avoiding the need to access external memories.

A typical CNN, including the one used in this study, con-
tains multiple computation layers that are concatenated. The 
four most commonly used layers in CNN architectures are 
convolution layer (CONV), nonlinear activation layer, pool-
ing layer, and fully connected (FC) layer. The key terminolo-
gies are introduced in the following.

3.4.1  Convolution layer

This computing intensive layer mainly conducts the convolu-
tion operation on input images or intermediate results with 
convolutional kernels as shown in Fig. 5. The number of 
parameters is significantly reduced through a weight-sharing 
strategy while maintaining network connections:

Here, O is the convolution result, {wn} are the weights of 
the kernel, {In} are the values of the input images or feature 
maps, b is the bias, and k × k represents the kernel size. 
Weights with a size 3 × 3 are the most widely used in neural 
networks.

(9)O =

k∗k∑
n=1

wn × In + b.

3.4.2  Nonlinear activation layer

Results are still linear if neurons are connected simply with 
only linear operations. Nonlinear activation functions are 
used to describe all kinds of complex computations (Fig. 5). 
The most commonly used functions are Rectified Linear 
Unit (ReLU), LeakyReLU, sigmoid, and tanh described in 
Eqs.10–13.

3.4.3  Fully connected layer

The fully connected layer conducts an affine transformation 
operations on intermediate feature maps. It is a parameter 
intensive layer and always appears at the end of networks. 
The output of this layer indicates the possibility for each 
category.

3.4.4  Pooling layer

The purpose of the pooling layer is to aggregate image fea-
tures and to reduce image sizes. Max pooling and average 
pooling are two common methods. This layer requires low 
resources and computations.

(10)ReLU(x) =max(0, x)

(11)leakyReLU(x) =max(𝜆x, x)(0 < 𝜆 < 1)

(12)sigmoid(x) =1∕(1 + e−x)

(13)tanh(x) =
ex − e−x

ex + e−x
.

Fig. 3  Bounding box normalization strategy with different sizes

Fig. 4  Network structure used in our implementation

Fig. 5  Convolutional layer



1708 Journal of Real-Time Image Processing (2020) 17:1703–1714

1 3

3.4.5  Feature maps

Feature maps are the intermediate results of CNNs. They 
can be regarded as superimposed two-dimensional images. 
In the proposed algorithm, the feature map numbers are 2, 
4, 8, 16 for each layer, respectively, and the feature map size 
of each layer is one-fourthof the former one.

3.5  Parameter quantization

The large number of parameters and intermediate feature 
maps are the major difficulties in the implementation of 
CNNs to resource-limited FPGAs. Even though numerous 
efficient parameter quantization methods have been proposed 
[37–39], the following shortcomings limit the implementa-
tion of these methods in FPGAs. First, quantization is not 
applied to the first convolutional layer and the last fully con-
nected layer for maintaining accuracy. Second, propositions 
are mainly designed for GPU implementation and contain 
float-point format multipliers. This is not suitable for FPGA 
implementation. Third, only weights and biases are quan-
tized and intermediate results are not considered in most 
methods.

Considering the above shortcomings and the feature of 
FPGAs into consideration, we propose an appropriate quan-
tization method combined with other algorithms. Different 
strategies are applied for weights, biases, and intermediate 
results according to their characteristics, and quantization is 
performed in the network training process.

In the quantization process of weights and biases, param-
eters are first clamped to [−1, (2n − 1)∕2n] , as shown in 
Eq. 14. The cut-off values for updating weights are stored in 
the parameter back propagation stage. Then, discretization 
is conducted according to Eq. 15:

Here, w is the full-precision weight and wq is the quantized 
weight. n is related to quantization accuracy, and n = 4 is 
selected in our system.

For the wide range of intermediate results, clamping to 
fixed values is inappropriate for feature map quantization. 
First, different clamp ranges are selected according to the 
parameter scope of the full-precision model in each layer. 
Then, quantization operation is conducted according to 
Eqs. 16 and 17:

(14)w
l
=

⎧
⎪⎨⎪⎩

−1w ≤ −1

w − 1 < w < (2n − 1)∕2n

(2n − 1)∕2nw ≥ (2n − 1)∕2n

(15)wq =
⌊2n × wl⌋

2n
.

After quantization, original continuous intermediate result 
fi becomes discrete values fq . Here, m indicates the range of 
the intermediate result, which is different among layers, and 
n is set to be 8 in our design.

4  Hardware implementation

4.1  Platform introduction

The platform used in our implementation is Xilinx Zynq-
7000 SoC ZC706 Evaluation Kit.1 The processor in this 
development kit is ZYNQ7045, which is composed of two 
parts, programming logic (PL) and the programming sys-
tem (PS). The proposed algorithm is implemented in the 
PL part; in others’ words, our method can be achieved in 
pure logic. The quantization and evaluation of the network 
are conducted on a workstation with an NVIDIA GeForce 
GTX 1080 Ti GPU, in which Python-based open-source 
deep learning framework PyTorch2 is deployed.

4.2  FPGA implementation

Our algorithm can be divided into three major submodules, 
i.e., bounding boxes proposal, bounding boxes normaliza-
tion, and object classification modules. These modules are 
applied to three consecutive frames of images and the entire 
flowchart of FPGA implementation is displayed as in Fig. 6.

4.2.1  Bounding boxes proposal module

The cell-based connected component labeling method [27] 
is used for the bounding boxes proposal in our design. In 
this module, input image pixel I(x, y) is first converted into 
binary format B(x, y) with preset threshold � . A reverse rela-
beling operation is conducted in every row after forward 
labeling to confirm the label number of each pixel. ROI loca-
tion and the corresponding identifier are updated with the 
labeling result. After processing in this module, the locations 
of ROIs are recorded with the up-left ( xl, yu ) and bottom-
right ( xr, yd ) coordinates. The data flow is shown in Fig. 7.

(16)f
� =

⎧
⎪⎨⎪⎩

−2mf
i
≤ −2m

f
i
− 2

m
< f

i
< 2

m − 2
m−n

2
m − 2

m−nf
i
≥ 2

m − 2
m−n

.

(17)fq =⌊f � ∗ 2n−m⌋ f � ∈ [ − 2m, 2m − 2m−n].

1 https ://www.xilin x.com/produ cts/board s-and-kits/ek-z7-zc706 
-g.html
2 https ://pytor ch.org/

https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://pytorch.org/


1709Journal of Real-Time Image Processing (2020) 17:1703–1714 

1 3

4.2.2  ROI normalization module

The pixels with ROIs ( O′
l
 ) after normalization are collected 

and pushed into block memories for object classification in 
this module. As shown in Fig. 8, the methods described in 
3.3 for the accurate positioning of ROI are used for a better 
recognition of objects. First, ROIs are extended to S� × S� . 
Second, the moving displacement ( dx(Ol, t), dy(Ol, t) ) is con-
sidered with the given or calculated speed of objects. Then, 

a sampling operation is deployed if necessary to make ROIs 
consistent with the input of the CNN-based object classifica-
tion module. A finite-state machine (FSM) is implemented 
after ROI normalization. Write address and enable signals 
are output with pixel values, which indicate whether and 
where to store image data. In our design, the output address 
is in a range of (0, 1023) when S is set as 32 and the block 
memories are initialized to the mean value of the image. 
ROI normalization is delayed by one frame with respect to 
the bounding boxes proposal, and this delay is 0.5 ms for an 
object detection speed of 2000 fps.

4.2.3  Object classification module with CNN

This is the most important module in this algorithm. The 
data flow of the module is shown in Fig. 9. In this module, 
the pixels stored in block memories ( Bn ) are read out and 
the classification operation is conducted. Synchronization 

Fig. 6  Entire flow chart of 
FPGA implementation

Fig. 7  Data flow of bounding boxes proposal module

Fig. 8  Data flow of pixel caching module

Fig. 9  Data flow of CNN classification module



1710 Journal of Real-Time Image Processing (2020) 17:1703–1714

1 3

signals indicate that image rows are generated in the process. 
The first two steps of image normalization are subtracting 
the mean value ( md ) of the data set and dividing the variance 
( vd ). These simple steps improve the accuracy of classifica-
tion significantly. Take advantage of the feature that md and 
vd are both constant values for a certain data set; therefore, 
the division operation is converted into multiplication to 
reduce resource consumption and computation latency.

Three lines are buffered with two shift-register-based 
FIFOs. Adder trees are used after multiplying nine pixels 
with the corresponding weights in parallel. The result of 
convolution can be obtained through the accumulation of 
the adder result and biases. This is followed by max pool-
ing for converging features, which consumes extremely less 
resources. There are four consecutive convolutional mod-
ules before the fully connected module. Sixteen feature maps 
with a size 2 × 2 appear after the last convolutional layer, 
and then, fully connected operations are performed upon 
this intermediate result. n values indicate the possibility of 
each class to be output for result judgment in the category-
determining submodule. An index of the maximum value 
ranging from 0 to n − 1 is output in this CNN module.

5  Evaluation

Several evaluations related to CNN-based object classifica-
tion are conducted to show the performance of our highlight 
works in this section. The detailed evaluation of the cell-
based connected component labeling algorithm is presented 
in [27].

5.1  Execution time

The execution time of the proposed quantized convolutional 
networks was evaluated on the NVIDIA GeForce GTX 1080 
Ti GPU mentioned in Sect. 4.1. 5000 images were collected 
from the image database at the University of Southern 
California.3 They were first converted to grayscale and then 
resized to 32× 32 pixels to make them consistent with the 
input format of our classification module. The execution 
time of the proposed classification module was recorded 
for evaluation. The results indicate that the execution time 
of each image follows a normal distribution with an aver-
age of 1.437 ms. The maximum and minimum execution 
times are 3.752 ms and 0.876 ms, respectively. The clock 
frequency is 151.2 MHz in FPGA, and the input parallelism 
is 4 pixels represented with 32 bits. For image size of 512×
512 pixels, considering the black time between frames and 
lines, the maximum frame rate is fixed at 2000 fps. Figure 10 

illustrates the execution times of 1000 runs on the GPU and 
FPGA platforms. The major difference between the GPU 
and FPGA implementations is that the execution time on 
the FPGA is fixed at 0.5 ms, while it is variable on the GPU. 
Execution time varies in a considerably wide range; this lim-
its the application of the GPU implementation to real-time 
systems. An average acceleration rate of 2.87× is achieved 
by implementing our proposed network on the FPGA.

5.2  Resource consumption

The resource consumption of the bounding boxes normaliza-
tion and CNN based modules is described in this subsection, 
including memory and computing resources.

5.2.1  Memory resource

A convolutional layer with Ci input and Co output channels 
contains Ci × m × m × Co weights and Co biases when ker-
nel size is m × m . Table 1 provides the parameter quantity 
in each layer for the proposed network, as shown in Fig. 4. 
There are 1530 weights and 30 biases in convolutional 
layers. 6.09 Kbits are occupied according to 4 bits per 
parameter.

A fully connected layer with P output categories and N 
intermediate feature maps with a size of k × k consists of 

Fig. 10  Execution-time comparison of GPU and FPGA

Table 1  Number of parameters

C
i
 is the channel number of input and C

o
 is that of output

m × m is the convolutional kernel size
Ten categories are considered in our design

C
i

C
o

m Weights Biases

Conv_1 1 2 3 18 2
Conv_2 2 4 72 4
Conv_3 4 8 288 8
Conv_4 8 16 1152 16
FC 640 10
Total 2170 40

3 http://sipi.usc.edu/datab ase/.

http://sipi.usc.edu/database/


1711Journal of Real-Time Image Processing (2020) 17:1703–1714 

1 3

N × k × k × P weights and P biases. The number of param-
eters is related to the number of categories. 650 parameters 
are required for ten-class classification algorithms and 130 
for binary. 0.51 or 2.54 Kbits are used for the weights stor-
age of the last fully connected layer if four-bit parameters 
are used. Thus, for a ten-category classification task, less 
than 8.67 Kbits on-chip memories are required for weights 
parameters, which are not related to the number of ROIs.

In addition to weight parameters, original bounding boxes 
and intermediate results consume the other parts of memo-
ries. In our design, the bit width of original image and inter-
mediate results is set as 8 bits. Thus, 15.5 Kbits are required 
for one ROI. The detailed memory consumption information 
is shown in Table 2.

In general, approximately 8.67 + 15.5n Kbits of memo-
ries are required for storing parameters and intermediate 
results, where n is the number of proposed ROIs. 163.67 
Kbits of memories are required for ten proposed bounding 
boxes, which is suitable for low-end FPGA devices.

5.2.2  Computing resource

The characteristics within the convolutional and fully 
connected layers determine the difference in comput-
ing resource evaluation. A convolutional layer with 
Ci ×M ×M input feature maps, Co output channels, and 
a kernel size of m × m requires Ci ×M ×M × m × m × Co 
multiplication and Co × ⌈log2(m × m × Ci) + 1⌉ ×M ×M 
addition operations before obtaining results if stride is 
set to be 1. Here, adder trees are used and an addition 

operation represents the summation of two fixed-point 
numbers. In our design, multiplication operations are 
the same for all convolutional layers and are suitable for 
FPGA pipelining implementation. N × k × k × P multipli-
cation and P × ⌈log2(k × k × N + P)⌉ addition are required 
to obtain the classification of P categories for fully con-
nected layers with N × k × k input feature maps. The 
detailed computing resource requirements of each layer 
in our design are shown in Table 3. Assuming that there 
are n bounding boxes, 74,368n multiplication and 18,246n 
addition are required. 512×512/4 clocks are required for 
the raster scan of an image in our system. Thus, approxi-
mately 1.135n multiplication and 0.278n addition opera-
tions are conducted per clock. In our system, a multipli-
cation operation is conducted on 8-bit fixed-point data 
and 4-bit data. This can be implemented by a dedicated 
multiplier or Look-Up Table (LUT) with a latency of two 
or three clocks.

5.2.3  Device utilization

The FPGA used in our system is Xilinx XC7Z045-2 
FFG900, in which 19.1 Mbits Embedded Memories and 
900 DSP48E1s are integrated. The resource consumption 
shown in Table 4 is the result of device utilization esti-
mated by the compiler. It is clear that the resource embed-
ded in the FPGA is adequate for the proposed algorithm.

Table 2  Memory consumption

bboxes bounding boxes, k × k the size of feature maps, N the number 
of intermediate feature maps

k × k N Storage (Kbits)

Bboxes 32×32 1 8
Conv_1 16×16 2 4
Conv_2 8×8 4 2
Conv_3 4×4 8 1
Conv_4 2×2 16 0.5
Total 15.5 Kbits

Table 3  Computing resource M m C
i

C
o

Multiplication Addition

Conv_1 32 3 1 2 18,432 8192
Conv_2 16 2 4 5120
Conv_3 8 4 8 3072
Conv_4 4 8 16 1792
FC 640 70
Total 74,368 18,246

Table 4  Device utilization summary

Device type Resource 
consumption

Total resource Per-
centage 
(%)

Slice registers 122,201 437,200 27
Slice LUTs 114,844 218,600 52
Fully used LUT-FF pairs 32,194 204,851 15
Block RAMs (36Kb) 15 545 2
BUFG/BUFGCTRLs 3 32 9
DSP48E1s 539 900 59



1712 Journal of Real-Time Image Processing (2020) 17:1703–1714

1 3

5.3  Accuracy evaluation

To evaluate the accuracy of the proposed quantized object 
classification algorithm, we selected the MNIST4 open-
source data set and three self-built data sets, which are the 
same as those used in [30]. MNIST is a classical handwritten 
digit database with a training set of 60,000 examples and a 
test set of 10,000 examples. The other three data sets include 
drogues, which are used for autonomous aerial refueling, 
human faces, and butterflies. A few examples are shown in 
Fig. 11. All images are resized to 32× 32 pixels to be consist-
ent with our design.

The original LetNet-5 full-precision network is used for 
comparison with the proposed method on the MNIST data 
set. There are 60,170 32-bit format parameters inside the 
network, occupying approximately 1.84 Mbits of storage. 
Regarding intermediate results, about 85 Kbits of storage is 
required for one bounding box. Thus, 1.92 Mbits of storage 
is required for a single ROI, which is 106× of that required 
by the proposed network. There is a slight decrease in accu-
racy from 99.05% for LeNet-5 to 98.01% for our FPGA-
optimized network structure, which is the cost of significant 
reduction in the number of parameters.

Table 5 shows a comparison of accuracy among different 
data sets, including open-source data set MNIST and the three 
self-built data sets. It is evident that our method provides bet-
ter classification accuracy in all self-built data sets compared 
with the conventional method of [30]. The simplified HOG 
descriptor and our optimized network have high accuracy for 
drogues recognition, but our method performs considerably 
better for the data sets of human faces and butterflies. More 
than 96.5% objects are correctly classified with our quantized 
network, whereas the method in [30] can only achieve a cor-
rectness of 79.55% and 91.18%. The evaluation results show 
that the low-bit quantization of network does not reduce, but 
improve the classification accuracy. This indicates that the 
quantization operation could reduce the redundancy and gen-
eralization error in the network.

6  Conclusion

In this paper, a two-stage hardware-oriented algorithm com-
bined with the bounding boxes proposal and classification 
is proposed for object detection at 2000 fps. The cell-based 
labeling algorithm is used to search for potential objects, 
CNNs are used for precise classification. The proposed 
algorithm is specially optimized for hardware implemen-
tation with extremely low-memory consumption, so that it 
can be deployed in low-end FPGA devices without off-chip 
resources, making ultra-high-speed object detection possi-
ble under complex backgrounds. Execution-time evaluation 
shows that the proposed algorithm can work stably at 2000 
fps. Only 163.67 Kbits of on-chip memories are required 
for the CNN module. For better evaluate the accuracy of the 
proposed method, four different data sets are used, includ-
ing an open-source data set MNIST and three self-built data 
sets, drogues, human faces, and butterflies. The accuracy is 
98.01% with the quantized network for data set of MNIST, 
while for other three self-built data sets, the accuracies are 
100.00%, 97.90%, and 96.55%, respectively. Compared with 
the handcraft feature based method, our hardware-optimized 
algorithm outperforms by 0.01%, 18.35% and 5.37% for the 
three self-built data sets. Aiming at different targets, accu-
racy requirements or FPGA models, appropriate bounding 

Fig. 11  Data samples for accuracy evaluation

Table 5  Accuracy comparison for different data sets

*Open-source data set, #Self-built data set

LeNet-5 Full-precision Quantized

MNIST∗ 99.05% 98.23% 98.01%
Ref. [30] Full-precision Quantized

Drogues# 99.99% 100.00% 100.00%
Human faces# 79.55% 97.10% 97.90%
Butterflies# 91.18% 96.36% 96.55%

4 http://yann.lecun .com/exdb/mnist /

http://yann.lecun.com/exdb/mnist/


1713Journal of Real-Time Image Processing (2020) 17:1703–1714 

1 3

boxes proposal methods and convolutional neural network 
architectures can be changed without changing the entire 
two-stage framework. After determination of bounding 
boxes proposal method and CNN architecture, the param-
eters and bit width of quantization are also adjustable. In 
future, optimized HOG descriptors with higher memory con-
sumption can be implemented for a more accurate bound-
ing boxes proposal. Networks with different structures and 
quantization strategies can be constructed aiming for specific 
objects, making the system more robust.

Acknowledgements This work was partly supported by the National 
Natural Science Foundation of China (Grant No. 61673376).

References

 1. Sharma, A., Shimasaki, K., Gu, Q., Chen, J., Aoyama, T., Takaki, 
T., Ishii, I., Tamura, K., Tajima, K.: Super high-speed vision plat-
form for processing 1024× 1024 images in real time at 12500 fps. 
IEEE/SICE International Symposium on system integration (SII), 
544–549 (2016)

 2. Ishii, I., Tatebe, T., Gu, Q., Takaki, T.: Color-histogram-based 
Tracking at 2000 fps. J. Electron. Imaging 21(1), 13010 (2012)

 3. Ishii, I., Ichida, T., Gu, Q., Takaki, T.: 500-fps face tracking sys-
tem. J. Real-Time Image Process. 8(4), 379–388 (2013)

 4. Ma, X., Najjar, W.A., Roy-Chowdhury, A.K.: Evaluation and accelera-
tion of high-throughput fixed-point object detection on FPGAs. IEEE 
Trans. Circuits Syst. Video Technol. 25(6), 1051–1062 (2015)

 5. Nakahara, H., Yonekawa, H., Fujii, T., Sato, S.: A lightweight 
YOLOv2: A binarized CNN with a parallel support vector regres-
sion for an FPGA. Proceedings of the 2018 ACM/SIGDA Inter-
national Symposium on field-programmable gate arrays, 31–40 
(2018)

 6. Chen, Y.-H., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural 
networks. IEEE J. Solid-State Circuits 52(1), 127–138 (2017)

 7. Shen, J., Huang, Y., Wang, Z., Qiao, Y., Wen, M., Zhang, C.: 
Proceedings of the 2018 ACM/SIGDA International Symposium 
on field-programmable gate arrays, 97–106 (2018)

 8. Lowe, D.G.: Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vis. 60(2), 91–110 (2004)

 9. Bay, H., Tuytelaars, T., Van Gool L.: Surf: Speeded up robust 
features. Eur. Conf. Comput. Vis. 404–417 (2006)

 10. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for 
Human Detection, Computer Vision and Pattern Recognition, 
2005, IEEE Computer Society Conference on, 886–893 (2005)

 11. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: Binary robust 
independent elementary features. Eur. Conf. Comput. Vis. 778–
792 (2010)

 12. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An effi-
cient alternative to SIFT or SURF. IEEE international conference 
on Computer Vision (ICCV), 2564–2571 (2011)

 13. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 
20(3), 273–297 (1995)

 14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural 
information processing systems, 1097–1105 (2012)

 15. Simonyan, K., Zisserman, A.: Very deep convolutional networks 
for large-scale image recognition. arXiv preprint arXiv :1409.1556 
(2014)

 16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for 
image recognition. Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 770–778 (2016)

 17. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hier-
archies for accurate object detection and semantic segmentation. 
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, 580–587 (2014)

 18. Uijlings, J.R.R., Van De Sande, K.E.A., Gevers, T., Smeulders, 
A.W.M.: Selective search for object recognition. Int. J. Comput. 
Vis. 104(2), 154–171 (2013)

 19. Girshick, R.: Fast r-cnn. Proceedings of the IEEE international con-
ference on computer vision 1440–1448, (2015)

 20. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in 
neural information processing systems, 91–99 (2015)

 21. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look 
once: unified, real-time object detection. Proceedings of the IEEE 
conference on computer vision and pattern recognition, 779–788 
(2016)

 22. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. arXiv 
preprint (2017)

 23. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. 
arXiv preprint arXiv :1804.02767  (2018)

 24. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., 
Berg, A.C.: Ssd: Single shot multibox detector. European confer-
ence on computer vision, 21–37 (2016)

 25. Gu, Q., Ishii, I.: Review of some advances and applications in 
real-time high-speed vision: Our views and experiences. Int. J. 
Autom. Comput. 13(4), 305–318 (2016)

 26. Ishii, I., Tatebe, T., Gu, Q., Takaki, T.: Color-histogram-based 
tracking at 2000 fps. J. Electron. Imaging 21(1), 013010 (2012)

 27. Gu, Q., Takaki, T., Ishii, I.: Fast FPGA-based multiobject fea-
ture extraction. IEEE Trans. Circuits Syst. Video Technol. 23(1), 
30–45 (2013)

 28. Gu, Q., Kawahara, T., Aoyama, T., Takaki, T., Ishii, I., Takemoto, 
A., Sakamoto, N.: LOC-based high-throughput cell morphology 
analysis system. IEEE Trans. Autom. Sci. Eng. 12(4), 1346–1356 
(2015)

 29. Gu, Q., Aoyama, T., Takaki, T., Ishii, I.: Simultaneous vision-
based shape and motion analysis of cells fast-flowing in a micro-
channel. IEEE Trans. Autom. Sci. Eng. 12(1), 204–215 (2015)

 30. Li, J., Yin, Y., Liu, X., Xu, D., Gu, Q.: 12,000-fps Multi-object 
detection using HOG descriptor and SVM classifier. IEEE/
RSJ International Conference on intelligent robots and systems 
(IROS), 5928–5933 (2017)

 31. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and 
connections for efficient neural network. Adv. Neural Inf. Process. 
Syst., pp. 1135–1143 (2015)

 32. Luo, J., Wu, J., Lin, W.: Thinet: A filter level pruning method for 
deep neural network compression. arXiv preprint arXiv :1707.06342  
(2017)

 33. Wang, W., Sun, Y., Eriksson, B., Wang, W., Aggarwal, V.: Wide 
compression: Tensor ring nets. IEEE Conference on computer 
vision and pattern recognition, 9329–9338 (2018)

 34. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., 
Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. arXiv 
preprint arXiv :1704.04861  (2017)

 35. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated resid-
ual transformations for deep neural networks. IEEE Conference 
on computer vision and pattern recognition (CVPR), 5987–5995 
(2017)

 36. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: 
Imagenet classification using binary convolutional neural net-
works. European Conference on computer vision, 525–542 (2016)

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1707.06342
http://arxiv.org/abs/1704.04861


1714 Journal of Real-Time Image Processing (2020) 17:1703–1714

1 3

 37. Wang, P., Hu, Q., Zhang, Y., Zhang, C., Liu, Y., Cheng, J.: Others, 
two-step quantization for low-bit neural networks. Proceedings of 
the IEEE Conference on computer vision and pattern recognition, 
4376–4384 (2018)

 38. Park, E., Ahn, J., Yoo, S.: Weighted-entropy-based quantization 
for deep neural networks. IEEE Conference on computer vision 
and pattern recognition (CVPR) (2017)

 39. Leng, C., Li, H., Zhu, S., Jin, R.: Extremely low bit neural net-
work: Squeeze the last bit out with admm. arXiv preprint arXiv 
:1707.09870  (2017)

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Jianquan Li received the B.Sc. 
degree from Central South Uni-
versity, Changsha, China, in 
2015. He is currently pursuing 
the Ph.D. degree in control sci-
ence and engineering at the 
Research Center of Precision 
Sensing and Control, Institute of 
Automation, Chinese Academy 
of Sciences, Beijing, China, and 
the University of Chinese Acad-
emy of Sciences, Beijing. His 
current research interests include 
image processing and high-speed 
robot vision.

Xianlei Long received the B.Sc. 
degree in electrical engineering 
from China University of Mining 
and Technology, Jiangsu, China, 
in 2017. He is currently a Ph.D. 
candidate at the Research Center 
of Precision Sensing and Con-
trol, Institute of Automation, 
Chinese Academy of Sciences, 
Beijing, China. His research 
interests include high-speed 
image processing and computer 
vision.

Shenhua Hu received the B.Sc. 
degree from Nanjing University 
of Science and Technology, 
China, in 2017. He is currently 
pursuing the graduate degree in 
control science and engineering 
at the Research Center of Preci-
sion Sensing and Control, Insti-
tute of Automation, Chinese 
Academy of Sciences, Beijing, 
China, and the University of Chi-
nese Academy of Sciences, Bei-
jing. His current research inter-
ests include image processing 
and high-speed robot vision.

Yiming Hu received his B.Sc. 
degree from China University of 
Geosciences, Wuhan, China, in 
2016. He is currently pursuing 
the Ph.D. degree in the Research 
Center of Precision Sensing and 
Control, Institute of Automation, 
Chinese Academy of Sciences, 
Beijing, China. His current 
research interests include deep 
learning and computer vision.

Qingyi Gu (M’13) received the 
B.E. degree in Electronic and 
Information Engineering from 
Xi’an Jiaotong University, 
China, in 2005. He received the 
M.E. degree and Ph.D. degree in 
Engineering, Hiroshima Univer-
sity, Japan, in 2010 and 2013, 
respectively. He is currently a 
professor in Institute of Automa-
tion, Chinese Academy of Sci-
ences, China. His primary 
research interest is high-speed 
image processing, and applica-
t i o n s  i n  i n d u s t r y  a n d 
biomedicine.

De Xu (M’05 – SM’09) received 
the B.Sc. and M.Sc. degrees 
from Shandong University of 
Technology, Jinan, China, in 
1985 and 1990, respectively, and 
the Ph.D. degree from Zhejiang 
University, Hangzhou, China, in 
2001, all in control science and 
engineering. Since 2001, he has 
been with the Institute of Auto-
mation, Chinese Academy of 
Sciences (IACAS), Beijing, 
China, where he is currently a 
Professor in the Research Center 
of Precision Sensing and Con-
trol. His current research inter-

ests include robotics and automation such as visual measurement, 
visual control, intelligent control, visual positioning, microscopic 
vision, and micro-assembly.

http://arxiv.org/abs/1707.09870
http://arxiv.org/abs/1707.09870

	A novel hardware-oriented ultra-high-speed object detection algorithm based on convolutional neural network
	Abstract
	1 Introduction
	2 Related works
	3 Algorithm
	3.1 Modularized design
	3.2 Bounding boxes proposal
	3.3 Bounding boxes normalization
	3.4 Convolutional neural network
	3.4.1 Convolution layer
	3.4.2 Nonlinear activation layer
	3.4.3 Fully connected layer
	3.4.4 Pooling layer
	3.4.5 Feature maps

	3.5 Parameter quantization

	4 Hardware implementation
	4.1 Platform introduction
	4.2 FPGA implementation
	4.2.1 Bounding boxes proposal module
	4.2.2 ROI normalization module
	4.2.3 Object classification module with CNN


	5 Evaluation
	5.1 Execution time
	5.2 Resource consumption
	5.2.1 Memory resource
	5.2.2 Computing resource
	5.2.3 Device utilization

	5.3 Accuracy evaluation

	6 Conclusion
	Acknowledgements 
	References




