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1 | INTRODUCTION

Liver diseases, a wide spectrum of pathologies from inflammation
to neoplasm, have become a major health problem worldwide.
Noninvasive imaging plays a critical role in the characterization and
monitoring of liver diseases. Conventional ultrasound, computed
tomography (CT) and magnetic resonance imaging (MRI) are widely
used for qualitative evaluation of liver morphology and blood sup-
ply.}® Tremendous progress is still being made in liver imaging with
introduction of advanced techniques, including metabolic imaging,
molecular imaging, and multi-parametric functional MRI, etc, allow-
ing improved evaluation of liver diseases and assisting personalized
medical decision making.*¢

With accumulation of scalable liver imaging data, radiomics
emerges as a novel radiological technique that comprehensively
utilizes large-scale medical imaging into the process of liver disease
management via artificial intelligence techniques.”® It enables ex-
traction of high-throughput quantitative imaging features beyond
inspections of naked human eyes and converting encrypted medical
imaging into minable numerical data.® Combined with clinical, patho-
logical, or genetic information, radiomics would assist in lesion char-
acterization, preoperative diagnosis, treatment efficacy evaluation,
as well as prognosis prediction in various clinical settings.” !

Quantitative imaging traits were proved to be associated with
global gene expression programmes, and could reconstruct 78% of
the global gene expression profiles in liver cancer.}? This ground-
breaking result laid a foundation and greatly encouraged researchers
to explore the potential of quantitative imaging tool in preopera-
tive genetic/pathological outcome prediction. Hence, a great deal
of radiomics studies have been conducted using multi-parametric
and multi-modality imaging in terms of liver disease diagnosis and
treatment decision making.***® In certain scenarios, this artificial
intelligence-based technique could even compete pathological
gold standard, providing new ways for unsolved clinical problems
in the paradigm of liver disease management.’® Nevertheless, it
still requires further multi-centre and prospective validation for the
validity of radiomics. The interpretability and the correlation with
biological/pathological underpinnings also represent substantial ob-
stacles for the translation of artificial intelligence into real clinical
practice.

Here, we review the basic concepts of radiomics methodologies
specific for liver studies from data acquisition, liver/lesion segmen-
tation, feature design, to model construction (Figure 1). Meanwhile,
representative clinical applications of radiomics in liver diseases
regarding diagnosis, staging, evaluation of liver tumour biological
behaviours, and prognosis are also within the scope of this study.
Finally, we summarize the current challenges and limitation of radio-

mics, and explore its future directions in liver diseases.

Key points

e Radiomics as an emerging technique based on medical
imaging analysis is more commonly used in liver disease
studies.

e Inter-personal heterogeneity could be revealed via ex-
tracting high-dimensional quantitative imaging features
and analysed by artificial intelligence algorithms.

e Radiomics can be applied in the diagnosis, treatment
effect evaluation and prognosis prediction in liver

diseases.

2 | METHODOLOGY OF RADIOMICS IN
LIVER DISEASES

2.1 | Data acquisition and curation

Data used in radiomics studies can be single-centre or multi-centre,
and retrospective or prospective. Here, we searched PubMed (8
October 2019) for radiomics studies on liver diseases using terms
(liver diseases AND radiomics), and found 36 clinical target-oriented
published work. 238 Most (33 out of 36) studies were performed on
single-centre with retrospective cohort, while only two studies were
performed on multi-centre and prospective cohort (Table 1). And the
most commonly used imaging modality was CT (18 studies), followed
by MRI (12 studies), positron emission tomography (PET) (two stud-
ies) and ultrasonography (US) (four studies) (Table 1).

Considering the effect of inconsistent imaging acquisition pro-
tocol and reconstruction procedure in multi-centres via multi brand
manufactories, preprocessing of the collected imaging data is re-
quired. Currently, the most commonly used methods conclude re-
sampling and intensity normalization. Image resampling is used to
improve image quality and eliminate bias introduced by non-uni-
form imaging resolution.*”*° Image intensity normalization is uti-
lized to correct inter-subject intensity variation by transforming all
images from original greyscale into a standard greyscale.’>>? Park
et al normalized liver signal intensity according to the spleen signal
on hepatobiliary phase (HBP) images to extract high-order textural
features and revealed the improved diagnostic value as compared
with non-normalized data.?’

In addition to imaging data, clinical factors were also involved in ra-
diomics analysis, including patient age, gender, Child-Pugh stage, histo-
logic grading, BCLC stage, cirrhosis and its cause, etc.**® Laboratory
examination indexes comprise serum o-fetoprotein (AFP) level, pro-

thrombin induced by vitamin K absence-1l (PIVKA-II) level, carbohydrate
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FIGURE 1 Workflow of radiomics methodological process

antigen 19-9 (CA 19-9) level, hepatitis B virus surface antigen (HBsAg),
serum alanine aminotransferase (ALT), aspartate aminotransferase
(AST), serum total bilirubin (TB), conjugated bilirubin (CB), serum albu-
min (ALB), prothrombin time (PT), platelet count (PLT), etc 1348

2.2 | Region of interest segmentation

Segmentation of region of interest (ROI) could be divided into
manual segmentation and semiautomatic/automatic segmenta-
tion. Most radiomics studies on liver disease applied manual seg-
mentation. Only six studies performed semiautomatic/automatic
segmentation,7:303946.53.54
Manual segmentation is performed by radiologists to annotate the
location and precise boundary of the lesion. Another way of manual
segmentation is realized by placing a rectangular/circle box via deep
learning analysis. Wang et al conducted a squared ROl segmentation
as the input of convolution neural network (CNN) and achieved sat-
isfying performance in liver fibrosis stage prediction.’® Naganawa
et al applied similar segmentation approach with a 2-cm diameter cir-
cular ROI covering the lesion while excluding intrahepatic vessels.'®
Considering the discrepancy of subjective judgement in manual seg-
mentation, segmentations by multi-clinicians, of multi-time point, and
using computer perturbation are required to decrease the intra- and
inter-reader variability.32 Feature reproducibility and robustness are
generally evaluated through calculation of intra-class correlation co-
efficient and concordance correlation coefficient.36-5%:7
Automatic segmentation aims to annotate ROIs by computer

automatically, whereas semiautomatic segmentation still needs

partial manual intervention to mark the centre of the lesion before
automatic segmentation. Several classic segmentation algorithms
showed good performance in liver lesion annotation.’®%! These
methods can be generally divided into three categories: (a) algo-
rithms based on intensity thresholds and region (global thresholding,
local thresholding, region growing, and region splitting and merg-
ing methods), (b) algorithms based on statistical approach (statisti-
cal parametric mapping and maximization segmentation algorithm),
clustering (k-means clustering and fuzzy clustering) and deformable
model approach (Snake model and geometric active contour model),
(c) algorithms incorporating empirical knowledge into the segmenta-
tion process (Atlas Guided Approach and Artificial Neural Network).

2.3 | Feature extraction

Radiomic features are divided into manual engineered features and
deep learning (DL) features. Manual engineered features include
shape/histogram/texture-based features. Shape-based features de-
scribe the geometric attributes of the ROIs. Histogram features cap-
ture the first-order statistic characteristics of liver parenchyma or
liver lesion. Textural features, extracted from a series of high-order
textural matrixes, describe the granular textural pattern of the ROls.
In addition, filtered features are extracted from ROI preprocessed by
wavelet, Laplacian and Gaussian filters from multiple dimensions.®?
Commonly used manual engineered features are shown in Table 2.
Another type of engineered features is defined as empirical features or
semantic features that are designed by experience and knowledge of

radiologists. Fu et al designed “peer-off” features with hypothesis that
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tumour grows from inside to outside.®® By splitting the tumour into 10
peel-off layers and extracting corresponding statistical features and
its ratio, it can reflect tumour growth pattern and spatial heterogene-
ity. They found the feature - POF_entropy showed satisfactory value
for predicting the progress-free survival following liver resection and
transarterial chemoembolization. This feature exactly represented the
texture randomness or irregularity of the innermost layer.

Compared with manual engineered features, DL network could
extract supplementary high-dimensional features that are hard to
depict by observers.>>%*% The DL network encodes medical image
into shape information and abstract textural information via shallow
and deep layers respectively. Wang et al proposed a novel method
to automatically extract DL features from MR imaging using CNN.%*
They found that DL features outperformed textural features in pre-
dicting the malignancy of HCC. Chaudhary et al used unsupervised
auto-encoder framework to extract DL features.®® Features ex-
tracted from the bottleneck layer showed predictive ability for the

survival risk of liver cancer.

2.4 | Task-oriented modelling

Generally, the methods for feature selection conclude filter-based,
wrapper-based, and model-embedded methods.®” Filter-based
methods produce a selected feature set according to the correlation
between features and the classifying labels. Commonly used filter-
based methods include calculation of mutual information, correla-
tion coefficient and uni-variable analysis (ie Mann-Whitney U test
and Chi-squared test), etc.®®7° Wrapper-based methods take into
account the weighing of feature subsets, and are combined with an
appointed classifier. It selects features that could improve the ac-
curacy of the prediction to the maximum extend and removes the
features that contribute less to the prediction until the specified
feature number is reached. Model-embedded methods perform
feature selection in the process of model construction. An exam-
ple of this method is the least absolute shrinkage and selection op-
erator (LASSO) algorithm.”* LASSO aims to minimize the residual
sum of squares, subjected to the sum of the absolute value of the
coefficients being less than a tuning parameter. It forces specified
coefficients to zero and thus effectively produce a simpler model.
Among the aforementioned methods, filter-based methods require
less computation time than the other two methods but with lower
prediction accuracy. Thus, they are most commonly used as a pri-
mary selection method to initially reduce features.?®>°

Regarding modelling strategy, radiomics studies on liver disease
mostly utilized supervised learning modelling. LASSO logistic re-
gressing modelling was commonly used, demonstrating satisfying
performance particularly in small sample size based studies.?23172
Support vector machine and random forest were also used in pub-
lished liver disease radiomics studies.’”?32732 Notably, Li et al com-
pared six types of machine-learning algorithms in predicting liver
fibrosis, including adaptive boosting, decision tree, logistic regres-

sion, neural network, random forest and support vector machine.?°

i 2055
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Their result indicated that adaptive boosting, random forest and
support vector machine stood out as superior modelling methods
with improved accuracy for fibrosis prediction.

3 | RADIOMICS IN THE DIAGNOSIS AND
STAGING OF LIVER DISEASES

For clinical application, radiomics plays a pivotal role in the diagnosis,
staging and grading of several liver diseases, of which most efforts

focused on hepatic malignancies and liver diffuse diseases (Figure 2).

3.1 | Hepatic malignancies

Hepatocellular carcinoma (HCC) is currently the most common
primary liver cancer.”® However, many non-HCC malignancies (eg
small duct type intrahepatic cholangiocarcinoma [ICC] and com-
bined hepatocellular-cholangiocarcinoma) and other atypical be-
nign focal liver lesions (eg haemangioma and hepatic adenoma) can
mimic HCC, making the diagnosis challenging via current imaging
techniques.”*”>

Radiomics demonstrated great potential in differentiating focal
liver lesions.?>7%77 Lj et al primarily investigated texture features of
focal hepatic lesions on spectral attenuated inversion-recovery T2
weighted MRI, and found that the radiomics signatures can help clas-
sify hepatic haemangioma, hepatic metastases and HCC with satisfy-
ing diagnostic performances (area under the curve [AUC]: 0.83-0.91).7
Trivizakis et al reported that the three-dimensional convolutional neu-
ral network features on diffusion-weighted MR images achieved an
accuracy of 83% for discriminating primary and metastatic liver tu-
mours.”” In addition to MR imaging, radiomics analysis on multi-modal
ultrasound images also demonstrated diagnostic ability for benign and
malignant focal liver lesion classification (AUC: 0.94, 95%Cl: 0.88-
0.98) and malignant subtyping (AUC: 0.97, 95%Cl: 0.93-0.99).2°

3.2 | Liver diffuse diseases

Besides hepatic malignancies, radiomics also showed potential in
characterization of liver diffuse diseases including fatty liver dis-
eases and liver fibrosis. The first study evaluating the performance
of CT-based texture features for predicting nonalcoholic steatohep-
atitis (NASH) was conducted by Naganawa et al, which included 88
retrospective suspected NASH patients.’® They reported that the
AUC reached up to 0.94 in patients without suspected fibrosis, but
dropped significantly in patients with suspicion of fibrosis (AUC:
0.60). Tang et al further explored the relationship between a quanti-
tative ultrasound-based machine learning model and histopathology

scoring in a rat model.”®

Their results demonstrated that combining
quantitative ultrasound parameters with conventional shear wave
elastography significantly improved the classification accuracy of

steatohepatitis, liver steatosis, inflammation and fibrosis.
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Other than fatty liver diseases, more studies focused on liver fibro-
sis staging and associated complications. A prospective multi-centre
study by Wang et al revealed that DL radiomics of shear wave elas-
tography (SWE) significantly improved the accuracy of liver fibrosis
staging, with AUCs of 0.97, 0.98 and 0.85 for cirrhosis (F4), advanced
fibrosis (F3) and significant fibrosis (xF2) respectively.* Similar re-
sults have been reported by another prospective study, in which the
machine-learning-based multi-parametric ultrasomics model achieved
remarkably improved power for significant fibrosis (2F2).2°

CT-based radiomics was also utilized for noninvasive assess-
ment of liver fibrosis. Choi et al retrospectively developed a DL
system on portal venous phase CT images in 7461 patients and val-
idated it in an independent data sets comprising 891 patients.79
The accuracy was of 79.4% in the validation sets, with AUC of 0.96,
0.97 and 0.95 for 2 F2, 2F3 and F4 respectively. Regarding portal
hypertension, Liu et al reported in their multi-centre prospective
study that the radiomics signature on portal venous phase CT im-
ages accurately detected portal hypertension with the C-index of
0.889, 0.800, 0.917 and 0.827 in four external validation cohorts
respectively.®

4 | RADIOMICS IN THE EVALUATION OF
LIVER TUMOUR BIOLOGICAL BEHAVIOURS
AND PROGNOSIS

Beyond diagnosis and staging, radiomics enables quantitative as-
sessment of liver tumour biological behaviours, as well as prediction

of prognosis and antitumoral treatment effect (Figure 2).

4.1 | HCC

4.1.1 | Measurement of tumour differentiation and
proliferation

Histologic grade was one of the most important risk factors for
postoperative recurrence in HCC.8%8% Recently, two MRI-based
studies investigated radiomic features for HCC aggressiveness
characterization, demonstrating the potential of radiomics as in-
dicative biomarkers for HCC grade.?*®* Regarding Ki-67 level, Ye
et al reported that radiomics analysis can evaluate the tumour
Ki-67 level preoperatively with good accuracy (C-index: 0.936) in
a prospective study.®’

4.1.2 | Assessment of tumour vascular invasion

Preoperative discrimination between neoplastic and bland portal
vein thrombosis and detection of microvascular invasion in HCC is
critically important.2%” Canellas et al explored the role of CT tex-
ture features for differentiating neoplastic and bland portal vein

thrombosis. They found that mean value of positive pixels and

entropy can characterize portal vein thrombosis.®® Recent studies
have shown promising results of CT and ultrasound-based radiom-
ics signatures for preoperative microvascular invasion prediction, all

with high diagnostic accuracy.”®’

4.1.3 | Prediction of treatment
efficacy and prognosis

Radiomics analysis permits accurate prediction of prognosis and
effective diverse therapy evaluation.”>?° Several studies were
conducted for hepatic resection evaluation, and one study was
for liver transplantation evaluation.}31921.289193 Frthermore, Li
et al found that texture analysis of CT images can be helpful not
only in prognosis prediction, but also in treatment selection be-
tween liver resection and transcatheter arterial chemoemboliza-
tion (TACE).®! For HCC patients with prominent vascular invasion
and/or extrahepatic spread (BCLC stage C), systematic treatment
is the standard of care recommended by current guidelines from
different geographical regions.2*?° Mulé et al retrospectively in-
vestigated 92 advanced HCC patients from two centres and re-
ported that the contrast-enhanced CT texture feature entropy
was correlated with tumour heterogeneity by manual visualiza-
tion, and entropy on portal venous phase images was an independ-
ent predictor for 05.7*

Radiomics analysis also yielded promising results in predicting
response for patients treated with immunotherapies. Sun et al ret-
rospectively generated a contrast-enhanced CT-based radiomics
signature of tumour-infiltrating CD8 cells and investigated its per-
formances in predicting tumour immune phenotype (immune-in-
flamed vs immune-desert) and response to anti-programmed cell
death protein (PD)-1 or anti-programmed cell death ligand 1 (PD-
L1) monotherapies.”® Another study by Chen et al explored the
capacity of radiomics analysis on gadoxetic acid-enhanced MR
imaging in predicting immunoscore, a new prognostic biomarker
for immunotherapy revealing tumour infiltrating lymphocytes
density.”

42 | ICC

ICC is an aggressive primary hepatic cancer arising from the bile
duct epithelium.97 However, unlike HCC, surgical resection is cur-
rently the only curative treatment for ICC patients.”® A recent
single-centre retrospective study reported that the radiomics sig-
nature on preoperative arterial-phase contrast-enhanced MR im-
ages can be used to predict early recurrence of ICC after partial
hepatectomy with the AUC of 0.82 and 0.77 in the training and
validation cohort respectively.>® Ji et al constructed a radiomics
signature from portal venous CT to predict lymph node metasta-
sis in biliary tract caners.”” They found good discrimination of the
signature in both training (AUC: 0.81) and validation cohort (AUC:
0.80).77
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Diagnosis and Staging

Hepatic malignancies:
Diagnosis and differentiation of
primary and metastatic liver
cancers
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Liver diffusediseases:
Diagnosis and staging of
nonalcoholic steatohepatitis
andliver fibrosis
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Hepatocellular carcinoma:
*  Tumor differentiation and .
proliferation 0
+ Microvascular invasion
+ Treatmentresponse and
survival: surgery,
locoregional, systematic and
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Evaluation of tumor biological behaviors and prognosis

Intrahepatic cholangiocarcinoma:
Treatment response: surgery .
Lymph node metastasis .

gp gw ¥

Metastatic hepatic malignancies:
Tumor differentiation

Gene mutations

+ Prognosis

FIGURE 2
4.3 | Metastatic hepatic malignancies

In addition to primary liver cancers, radiomics also showed prom-
ise in the evaluation of several metastatic hepatic malignancies.
Lubner et al found that pretreatment portal venous phase CT tex-
ture features of the colorectal liver metastases were significantly
associated with tumour grade, KRAS mutation and 05.1°° Another
retrospective study investigated the ratio between the texture of
colorectal liver metastases and the surrounding liver, and found
that it may reflect tumour aggressiveness, chemotherapy response
and 0S.7°" However, Lee et al reported that texture features from

liver parenchyma on portal venous phase CT cannot be used to

Illustration of clinical application of radiomics on liver diseases

predict the development of hepatic metastasis in colorectal can-
cer patients‘m2 Apart from colorectal cancer, emerging evidence
suggests that the CT-based radiomics signature of esophago-
gastric liver metastases can help predict treatment response to

chemotherapy.?’

5 | FUTURE CHALLENGES AND
OPPORTUNITIES

Current published studies revealed the potential of radiomics analysis

in liver disease diagnosis, tumour biological property profiling, and
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prognosis estimation. However, although MR imaging can provide the
multi-parametric information regarding hepatic function and micro-
environment with higher tissue resolution, most studies to date have
focused on radiomics analyses of CT.}%31% | addition, a large num-
ber of studies were retrospective in design and lack independent ex-
ternal validation across different geographical areas and races, which
may limit the generalizability and applicability of the current findings.
Different prevalence of disease may also influence the accuracy of
the algorithm (eg positive and negative predictive values). Moreover
radiomics results are extremely sensitive to the various technical ac-
quisition parameters, especially among different vendors. Therefore,
more large scale multi-centre prospective studies with standardized
acquisition, segmentation and imaging postprocessing are needed to
ensure further development of radiomics in liver diseases.

6 | CONCLUSIONS

Radiomics as a newly emerged quantitative technique is burgeoning in
liver disease management with consistently developing methodology.
Previous studies, although mainly retrospective in design and based on
single imaging modality, have revealed its potential in diagnosis, treatment
evaluation and prognosis prediction of several liver diseases. Nevertheless,
further multi-centre and prospective validation is still needed to valid its
clinical usefulness, especially in prognosis-related targets.

Current main obstacles for the application of radiomics in liver
disease rely on high-quality data collection and mechanism expla-
nation on the biological basis. Multi-institutional data sharing and
intensive collaborations on data cleansing and labelling offer appeal
in filling this gap. Artificial intelligence algorithms with improved
accuracy and interpretability meanwhile need to be developed to
facilitate broader translation and clinical adoption.
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