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Abstract
Liver diseases, a wide spectrum of pathologies from inflammation to neoplasm, have be-
come an increasingly significant health problem worldwide. Noninvasive imaging plays a 
critical role in the clinical workflow of liver diseases, but conventional imaging assessment 
may provide limited information. Accurate detection, characterization and monitoring 
remain challenging. With progress in quantitative imaging analysis techniques, radiom-
ics emerged as an efficient tool that shows promise to aid in personalized diagnosis and 
treatment decision-making. Radiomics could reflect the heterogeneity of liver lesions via 
extracting high-throughput and high-dimensional features from multi-modality imaging. 
Machine learning algorithms are then used to construct clinical target-oriented imaging 
biomarkers to assist disease management. Here, we review the methodological process 
in liver disease radiomics studies in a stepwise fashion from data acquisition and curation, 
region of interest segmentation, liver-specific feature extraction, to task-oriented model-
ling. Furthermore, the applications of radiomics in liver diseases are outlined in aspects 
of diagnosis and staging, evaluation of liver tumour biological behaviours, and prognosis 
according to different disease type. Finally, we discuss the current limitations of radiomics 
in liver disease studies and explore its future opportunities.
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1  | INTRODUC TION

Liver diseases, a wide spectrum of pathologies from inflammation 
to neoplasm, have become a major health problem worldwide. 
Noninvasive imaging plays a critical role in the characterization and 
monitoring of liver diseases. Conventional ultrasound, computed 
tomography (CT) and magnetic resonance imaging (MRI) are widely 
used for qualitative evaluation of liver morphology and blood sup-
ply.1-3 Tremendous progress is still being made in liver imaging with 
introduction of advanced techniques, including metabolic imaging, 
molecular imaging, and multi-parametric functional MRI, etc, allow-
ing improved evaluation of liver diseases and assisting personalized 
medical decision making.4-6

With accumulation of scalable liver imaging data, radiomics 
emerges as a novel radiological technique that comprehensively 
utilizes large-scale medical imaging into the process of liver disease 
management via artificial intelligence techniques.7,8 It enables ex-
traction of high-throughput quantitative imaging features beyond 
inspections of naked human eyes and converting encrypted medical 
imaging into minable numerical data.8 Combined with clinical, patho-
logical, or genetic information, radiomics would assist in lesion char-
acterization, preoperative diagnosis, treatment efficacy evaluation, 
as well as prognosis prediction in various clinical settings.9-11

Quantitative imaging traits were proved to be associated with 
global gene expression programmes, and could reconstruct 78% of 
the global gene expression profiles in liver cancer.12 This ground-
breaking result laid a foundation and greatly encouraged researchers 
to explore the potential of quantitative imaging tool in preopera-
tive genetic/pathological outcome prediction. Hence, a great deal 
of radiomics studies have been conducted using multi-parametric 
and multi-modality imaging in terms of liver disease diagnosis and 
treatment decision making.13-48 In certain scenarios, this artificial 
intelligence-based technique could even compete pathological 
gold standard, providing new ways for unsolved clinical problems 
in the paradigm of liver disease management.16 Nevertheless, it 
still requires further multi-centre and prospective validation for the 
validity of radiomics. The interpretability and the correlation with 
biological/pathological underpinnings also represent substantial ob-
stacles for the translation of artificial intelligence into real clinical 
practice.

Here, we review the basic concepts of radiomics methodologies 
specific for liver studies from data acquisition, liver/lesion segmen-
tation, feature design, to model construction (Figure 1). Meanwhile, 
representative clinical applications of radiomics in liver diseases 
regarding diagnosis, staging, evaluation of liver tumour biological 
behaviours, and prognosis are also within the scope of this study. 
Finally, we summarize the current challenges and limitation of radio-
mics, and explore its future directions in liver diseases.

2  | METHODOLOGY OF R ADIOMIC S IN 
LIVER DISE A SES

2.1 | Data acquisition and curation

Data used in radiomics studies can be single-centre or multi-centre, 
and retrospective or prospective. Here, we searched PubMed (8 
October 2019) for radiomics studies on liver diseases using terms 
(liver diseases AND radiomics), and found 36 clinical target-oriented 
published work.13-48 Most (33 out of 36) studies were performed on 
single-centre with retrospective cohort, while only two studies were 
performed on multi-centre and prospective cohort (Table 1). And the 
most commonly used imaging modality was CT (18 studies), followed 
by MRI (12 studies), positron emission tomography (PET) (two stud-
ies) and ultrasonography (US) (four studies) (Table 1).

Considering the effect of inconsistent imaging acquisition pro-
tocol and reconstruction procedure in multi-centres via multi brand 
manufactories, preprocessing of the collected imaging data is re-
quired. Currently, the most commonly used methods conclude re-
sampling and intensity normalization. Image resampling is used to 
improve image quality and eliminate bias introduced by non-uni-
form imaging resolution.49,50 Image intensity normalization is uti-
lized to correct inter-subject intensity variation by transforming all 
images from original greyscale into a standard greyscale.51,52 Park 
et al normalized liver signal intensity according to the spleen signal 
on hepatobiliary phase (HBP) images to extract high-order textural 
features and revealed the improved diagnostic value as compared 
with non-normalized data.29

In addition to imaging data, clinical factors were also involved in ra-
diomics analysis, including patient age, gender, Child-Pugh stage, histo-
logic grading, BCLC stage, cirrhosis and its cause, etc.13-48 Laboratory 
examination indexes comprise serum α-fetoprotein (AFP) level, pro-
thrombin induced by vitamin K absence-II (PIVKA-II) level, carbohydrate 
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Key points

• Radiomics as an emerging technique based on medical 
imaging analysis is more commonly used in liver disease 
studies.

• Inter-personal heterogeneity could be revealed via ex-
tracting high-dimensional quantitative imaging features 
and analysed by artificial intelligence algorithms.

• Radiomics can be applied in the diagnosis, treatment 
effect evaluation and prognosis prediction in liver 
diseases.
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antigen 19-9 (CA 19-9) level, hepatitis B virus surface antigen (HBsAg), 
serum alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), serum total bilirubin (TB), conjugated bilirubin (CB), serum albu-
min (ALB), prothrombin time (PT), platelet count (PLT), etc.13-48

2.2 | Region of interest segmentation

Segmentation of region of interest (ROI) could be divided into 
manual segmentation and semiautomatic/automatic segmenta-
tion. Most radiomics studies on liver disease applied manual seg-
mentation. Only six studies performed semiautomatic/automatic 
segmentation.17,30,39,46,53,54

Manual segmentation is performed by radiologists to annotate the 
location and precise boundary of the lesion. Another way of manual 
segmentation is realized by placing a rectangular/circle box via deep 
learning analysis. Wang et al conducted a squared ROI segmentation 
as the input of convolution neural network (CNN) and achieved sat-
isfying performance in liver fibrosis stage prediction.16 Naganawa 
et al applied similar segmentation approach with a 2-cm diameter cir-
cular ROI covering the lesion while excluding intrahepatic vessels.15 
Considering the discrepancy of subjective judgement in manual seg-
mentation, segmentations by multi-clinicians, of multi-time point, and 
using computer perturbation are required to decrease the intra- and 
inter-reader variability.32 Feature reproducibility and robustness are 
generally evaluated through calculation of intra-class correlation co-
efficient and concordance correlation coefficient.36,56,57

Automatic segmentation aims to annotate ROIs by computer 
automatically, whereas semiautomatic segmentation still needs 

partial manual intervention to mark the centre of the lesion before 
automatic segmentation. Several classic segmentation algorithms 
showed good performance in liver lesion annotation.58-61 These 
methods can be generally divided into three categories: (a) algo-
rithms based on intensity thresholds and region (global thresholding, 
local thresholding, region growing, and region splitting and merg-
ing methods), (b) algorithms based on statistical approach (statisti-
cal parametric mapping and maximization segmentation algorithm), 
clustering (k-means clustering and fuzzy clustering) and deformable 
model approach (Snake model and geometric active contour model), 
(c) algorithms incorporating empirical knowledge into the segmenta-
tion process (Atlas Guided Approach and Artificial Neural Network).

2.3 | Feature extraction

Radiomic features are divided into manual engineered features and 
deep learning (DL) features. Manual engineered features include 
shape/histogram/texture-based features. Shape-based features de-
scribe the geometric attributes of the ROIs. Histogram features cap-
ture the first-order statistic characteristics of liver parenchyma or 
liver lesion. Textural features, extracted from a series of high-order 
textural matrixes, describe the granular textural pattern of the ROIs. 
In addition, filtered features are extracted from ROI preprocessed by 
wavelet, Laplacian and Gaussian filters from multiple dimensions.62 
Commonly used manual engineered features are shown in Table 2. 
Another type of engineered features is defined as empirical features or 
semantic features that are designed by experience and knowledge of 
radiologists. Fu et al designed “peer-off” features with hypothesis that 

F I G U R E  1   Workflow of radiomics methodological process
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tumour grows from inside to outside.63 By splitting the tumour into 10 
peel-off layers and extracting corresponding statistical features and 
its ratio, it can reflect tumour growth pattern and spatial heterogene-
ity. They found the feature - POF_entropy showed satisfactory value 
for predicting the progress-free survival following liver resection and 
transarterial chemoembolization. This feature exactly represented the 
texture randomness or irregularity of the innermost layer.

Compared with manual engineered features, DL network could 
extract supplementary high-dimensional features that are hard to 
depict by observers.55,64-66 The DL network encodes medical image 
into shape information and abstract textural information via shallow 
and deep layers respectively. Wang et al proposed a novel method 
to automatically extract DL features from MR imaging using CNN.64 
They found that DL features outperformed textural features in pre-
dicting the malignancy of HCC. Chaudhary et al used unsupervised 
auto-encoder framework to extract DL features.66 Features ex-
tracted from the bottleneck layer showed predictive ability for the 
survival risk of liver cancer.

2.4 | Task-oriented modelling

Generally, the methods for feature selection conclude filter-based, 
wrapper-based, and model-embedded methods.67 Filter-based 
methods produce a selected feature set according to the correlation 
between features and the classifying labels. Commonly used filter-
based methods include calculation of mutual information, correla-
tion coefficient and uni-variable analysis (ie Mann-Whitney U test 
and Chi-squared test), etc.68-70 Wrapper-based methods take into 
account the weighing of feature subsets, and are combined with an 
appointed classifier. It selects features that could improve the ac-
curacy of the prediction to the maximum extend and removes the 
features that contribute less to the prediction until the specified 
feature number is reached. Model-embedded methods perform 
feature selection in the process of model construction. An exam-
ple of this method is the least absolute shrinkage and selection op-
erator (LASSO) algorithm.71 LASSO aims to minimize the residual 
sum of squares, subjected to the sum of the absolute value of the 
coefficients being less than a tuning parameter. It forces specified 
coefficients to zero and thus effectively produce a simpler model. 
Among the aforementioned methods, filter-based methods require 
less computation time than the other two methods but with lower 
prediction accuracy. Thus, they are most commonly used as a pri-
mary selection method to initially reduce features.23,55

Regarding modelling strategy, radiomics studies on liver disease 
mostly utilized supervised learning modelling. LASSO logistic re-
gressing modelling was commonly used, demonstrating satisfying 
performance particularly in small sample size based studies.22,31,72 
Support vector machine and random forest were also used in pub-
lished liver disease radiomics studies.19,23,27,32 Notably, Li et al com-
pared six types of machine-learning algorithms in predicting liver 
fibrosis, including adaptive boosting, decision tree, logistic regres-
sion, neural network, random forest and support vector machine.20 

Their result indicated that adaptive boosting, random forest and 
support vector machine stood out as superior modelling methods 
with improved accuracy for fibrosis prediction.

3  | R ADIOMIC S IN THE DIAGNOSIS AND 
STAGING OF LIVER DISE A SES

For clinical application, radiomics plays a pivotal role in the diagnosis, 
staging and grading of several liver diseases, of which most efforts 
focused on hepatic malignancies and liver diffuse diseases (Figure 2).

3.1 | Hepatic malignancies

Hepatocellular carcinoma (HCC) is currently the most common 
primary liver cancer.73 However, many non-HCC malignancies (eg 
small duct type intrahepatic cholangiocarcinoma [ICC] and com-
bined hepatocellular-cholangiocarcinoma) and other atypical be-
nign focal liver lesions (eg haemangioma and hepatic adenoma) can 
mimic HCC, making the diagnosis challenging via current imaging 
techniques.74,75

Radiomics demonstrated great potential in differentiating focal 
liver lesions.25,76,77 Li et al primarily investigated texture features of 
focal hepatic lesions on spectral attenuated inversion-recovery T2 
weighted MRI, and found that the radiomics signatures can help clas-
sify hepatic haemangioma, hepatic metastases and HCC with satisfy-
ing diagnostic performances (area under the curve [AUC]: 0.83-0.91).76 
Trivizakis et al reported that the three-dimensional convolutional neu-
ral network features on diffusion-weighted MR images achieved an 
accuracy of 83% for discriminating primary and metastatic liver tu-
mours.77 In addition to MR imaging, radiomics analysis on multi-modal 
ultrasound images also demonstrated diagnostic ability for benign and 
malignant focal liver lesion classification (AUC: 0.94, 95%CI: 0.88-
0.98) and malignant subtyping (AUC: 0.97, 95%CI: 0.93-0.99).25

3.2 | Liver diffuse diseases

Besides hepatic malignancies, radiomics also showed potential in 
characterization of liver diffuse diseases including fatty liver dis-
eases and liver fibrosis. The first study evaluating the performance 
of CT-based texture features for predicting nonalcoholic steatohep-
atitis (NASH) was conducted by Naganawa et al, which included 88 
retrospective suspected NASH patients.15 They reported that the 
AUC reached up to 0.94 in patients without suspected fibrosis, but 
dropped significantly in patients with suspicion of fibrosis (AUC: 
0.60). Tang et al further explored the relationship between a quanti-
tative ultrasound-based machine learning model and histopathology 
scoring in a rat model.78 Their results demonstrated that combining 
quantitative ultrasound parameters with conventional shear wave 
elastography significantly improved the classification accuracy of 
steatohepatitis, liver steatosis, inflammation and fibrosis.
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Other than fatty liver diseases, more studies focused on liver fibro-
sis staging and associated complications. A prospective multi-centre 
study by Wang et al revealed that DL radiomics of shear wave elas-
tography (SWE) significantly improved the accuracy of liver fibrosis 
staging, with AUCs of 0.97, 0.98 and 0.85 for cirrhosis (F4), advanced 
fibrosis (≥F3) and significant fibrosis (≥F2) respectively.16 Similar re-
sults have been reported by another prospective study, in which the 
machine-learning-based multi-parametric ultrasomics model achieved 
remarkably improved power for significant fibrosis (≥F2).20

CT-based radiomics was also utilized for noninvasive assess-
ment of liver fibrosis. Choi et al retrospectively developed a DL 
system on portal venous phase CT images in 7461 patients and val-
idated it in an independent data sets comprising 891 patients.79 
The accuracy was of 79.4% in the validation sets, with AUC of 0.96, 
0.97 and 0.95 for ≥ F2, ≥F3 and F4 respectively. Regarding portal 
hypertension, Liu et al reported in their multi-centre prospective 
study that the radiomics signature on portal venous phase CT im-
ages accurately detected portal hypertension with the C-index of 
0.889, 0.800, 0.917 and 0.827 in four external validation cohorts 
respectively.23

4  | R ADIOMIC S IN THE E VALUATION OF 
LIVER TUMOUR BIOLOGIC AL BEHAVIOURS 
AND PROGNOSIS

Beyond diagnosis and staging, radiomics enables quantitative as-
sessment of liver tumour biological behaviours, as well as prediction 
of prognosis and antitumoral treatment effect (Figure 2).

4.1 | HCC

4.1.1 | Measurement of tumour differentiation and 
proliferation

Histologic grade was one of the most important risk factors for 
postoperative recurrence in HCC.80-83 Recently, two MRI-based 
studies investigated radiomic features for HCC aggressiveness 
characterization, demonstrating the potential of radiomics as in-
dicative biomarkers for HCC grade.24,84 Regarding Ki-67 level, Ye 
et al reported that radiomics analysis can evaluate the tumour 
Ki-67 level preoperatively with good accuracy (C-index: 0.936) in 
a prospective study.85

4.1.2 | Assessment of tumour vascular invasion

Preoperative discrimination between neoplastic and bland portal 
vein thrombosis and detection of microvascular invasion in HCC is 
critically important.86,87 Canellas et al explored the role of CT tex-
ture features for differentiating neoplastic and bland portal vein 
thrombosis. They found that mean value of positive pixels and 

entropy can characterize portal vein thrombosis.88 Recent studies 
have shown promising results of CT and ultrasound-based radiom-
ics signatures for preoperative microvascular invasion prediction, all 
with high diagnostic accuracy.17,89

4.1.3 | Prediction of treatment 
efficacy and prognosis

Radiomics analysis permits accurate prediction of prognosis and 
effective diverse therapy evaluation.73,90 Several studies were 
conducted for hepatic resection evaluation, and one study was 
for liver transplantation evaluation.13,19,21,28,91-93 Furthermore, Li 
et al found that texture analysis of CT images can be helpful not 
only in prognosis prediction, but also in treatment selection be-
tween liver resection and transcatheter arterial chemoemboliza-
tion (TACE).81 For HCC patients with prominent vascular invasion 
and/or extrahepatic spread (BCLC stage C), systematic treatment 
is the standard of care recommended by current guidelines from 
different geographical regions.36,90 Mulé et al retrospectively in-
vestigated 92 advanced HCC patients from two centres and re-
ported that the contrast-enhanced CT texture feature entropy 
was correlated with tumour heterogeneity by manual visualiza-
tion, and entropy on portal venous phase images was an independ-
ent predictor for OS.94

Radiomics analysis also yielded promising results in predicting 
response for patients treated with immunotherapies. Sun et al ret-
rospectively generated a contrast-enhanced CT-based radiomics 
signature of tumour-infiltrating CD8 cells and investigated its per-
formances in predicting tumour immune phenotype (immune-in-
flamed vs immune-desert) and response to anti-programmed cell 
death protein (PD)-1 or anti-programmed cell death ligand 1 (PD-
L1) monotherapies.95 Another study by Chen et al explored the 
capacity of radiomics analysis on gadoxetic acid-enhanced MR 
imaging in predicting immunoscore, a new prognostic biomarker 
for immunotherapy revealing tumour infiltrating lymphocytes 
density.96

4.2 | ICC

ICC is an aggressive primary hepatic cancer arising from the bile 
duct epithelium.97 However, unlike HCC, surgical resection is cur-
rently the only curative treatment for ICC patients.98 A recent 
single-centre retrospective study reported that the radiomics sig-
nature on preoperative arterial-phase contrast-enhanced MR im-
ages can be used to predict early recurrence of ICC after partial 
hepatectomy with the AUC of 0.82 and 0.77 in the training and 
validation cohort respectively.55 Ji et al constructed a radiomics 
signature from portal venous CT to predict lymph node metasta-
sis in biliary tract caners.99 They found good discrimination of the 
signature in both training (AUC: 0.81) and validation cohort (AUC: 
0.80).99
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4.3 | Metastatic hepatic malignancies

In addition to primary liver cancers, radiomics also showed prom-
ise in the evaluation of several metastatic hepatic malignancies. 
Lubner et al found that pretreatment portal venous phase CT tex-
ture features of the colorectal liver metastases were significantly 
associated with tumour grade, KRAS mutation and OS.100 Another 
retrospective study investigated the ratio between the texture of 
colorectal liver metastases and the surrounding liver, and found 
that it may reflect tumour aggressiveness, chemotherapy response 
and OS.101 However, Lee et al reported that texture features from 
liver parenchyma on portal venous phase CT cannot be used to 

predict the development of hepatic metastasis in colorectal can-
cer patients.102 Apart from colorectal cancer, emerging evidence 
suggests that the CT-based radiomics signature of esophago-
gastric liver metastases can help predict treatment response to 
chemotherapy.27

5  | FUTURE CHALLENGES AND 
OPPORTUNITIES

Current published studies revealed the potential of radiomics analysis 
in liver disease diagnosis, tumour biological property profiling, and 

F I G U R E  2   Illustration of clinical application of radiomics on liver diseases
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prognosis estimation. However, although MR imaging can provide the 
multi-parametric information regarding hepatic function and micro-
environment with higher tissue resolution, most studies to date have 
focused on radiomics analyses of CT.103-106 In addition, a large num-
ber of studies were retrospective in design and lack independent ex-
ternal validation across different geographical areas and races, which 
may limit the generalizability and applicability of the current findings. 
Different prevalence of disease may also influence the accuracy of 
the algorithm (eg positive and negative predictive values). Moreover 
radiomics results are extremely sensitive to the various technical ac-
quisition parameters, especially among different vendors. Therefore, 
more large scale multi-centre prospective studies with standardized 
acquisition, segmentation and imaging postprocessing are needed to 
ensure further development of radiomics in liver diseases.

6  | CONCLUSIONS

Radiomics as a newly emerged quantitative technique is burgeoning in 
liver disease management with consistently developing methodology. 
Previous studies, although mainly retrospective in design and based on 
single imaging modality, have revealed its potential in diagnosis, treatment 
evaluation and prognosis prediction of several liver diseases. Nevertheless, 
further multi-centre and prospective validation is still needed to valid its 
clinical usefulness, especially in prognosis-related targets.

Current main obstacles for the application of radiomics in liver 
disease rely on high-quality data collection and mechanism expla-
nation on the biological basis. Multi-institutional data sharing and 
intensive collaborations on data cleansing and labelling offer appeal 
in filling this gap. Artificial intelligence algorithms with improved 
accuracy and interpretability meanwhile need to be developed to 
facilitate broader translation and clinical adoption.
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