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Abstract

Online multi-object tracking needs to overcome the intrinsic detector deficiencies,

e.g., missing detections, false alarms, and inaccurate detection responses, to grow

multiple object trajectories without using future information. Various distractions

exist during this growing process like background clutters, similar targets, and

occlusions, which present a great challenge. We in this work propose a method

for learning a distractor-aware discriminative model that can handle continuous

missed and inaccurate detection problems due to the occlusion or the motion blur.

To deal with target appearance variations, a relational attention learning mecha-

nism is proposed to capture the distinctive target appearances by selectively ag-

gregating features from history states with weights extracted from their appear-

ance topological relationship. Based on the discrimination model, a multi-stage

tracking pipeline is designed for automatic trajectory initialization, propagation,

and termination. Extensive experimental analyses and comparisons demonstrate

its state-of-the-art performance on widely used challenging MOT16 and MOT17
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benchmarks. The source code and trained models of this work will be released to

facilitate further studies on the multi-object tracking problem.

Keywords: multi-object tracking, distractor-aware discrimination learning,

relational attention learning

1. Introduction1

Multi-Object Tracking (MOT), a.k.a Multi-Target Tracking (MTT), is an impor-2

tant problem in computer vision with many practical applications such as video3

surveillance, autonomous driving and human-computer interaction [1]. The goal4

of multi-object tracking is to determine the trajectories of multiple objects si-5

multaneously by localizing and associating targets with the same identity across6

multiple frames. It remains a very challenging problem due to factors like target7

appearance variations, irregular object motions, partial and full object occlusions8

[2].9

A MOT algorithm often relies heavily on object detector to automatically10

initialize, propagate and terminate object trajectories. The dominant tracking-11

by-detection strategy [3, 4] applies an object detector at each frame first and then12

associates detection responses across frames to generate the object trajectories.13

Benefited from the recent advances in deep detection models [5], the object detec-14

tion performance has been significantly improved. However, the detection results15

of existing models are far from perfection. As shown in Fig. 1, missing detection,16

false alarm, and inaccurate detection response still occur frequently even with17

the state-of-the-art detection models. A MOT algorithm thus needs to overcome18

these intrinsic detector deficiencies to track targets under challenging situations19

1Data from https://motchallenge.net/results/MOT17Det/
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Figure 1: Exemplary detection failures in MOT challenge. In (a), the cases of false alarm, in-

accurate detection and missing detection are demonstrated respectively. In (b), these three kinds

of detection failures of different state-of-the-art detectors1 are evaluated using MODA (Multiple

Object Detection Accuracy), Precision and Recall . Best viewed in color.

like large pose variations, severe object occlusions, and complex target interac-20

tions.21

To handle these issues, global association based methods [6, 7, 8] generate22

trajectories in a batch mode by solving a global optimization problem. Those23

methods utilize the information from both the past and future simultaneously to24

suppress detection noises occurred in the current frame and to smooth object25

trajectories across multiple frames. Though tracking in a batch mode typically26
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achieves better performance, it is non-causal and not applicable in online scenar-27

ios where a target identity must be determined at the current time step. Without28

future information available, it is more challenging for online multi-object track-29

ing algorithms to grow target trajectories when it is continuously miss-detected or30

occluded after several frames.31

Facing these challenges, this work proposes an online MOT algorithm which32

learns a unified and multi-functional discrimination model to distinguish the target33

from both distracting backgrounds and other neighboring or overlapping targets.34

Inspired by the recent Siamese structure [9], the discrimination model takes two35

image samples as input and outputs a discrimination confidence value as well as36

a similarity. This discrimination model is firstly learned offline by distinguish-37

ing generic object samples from other targets and background distractions with a38

distractor-aware loss function. To handle the target appearance variations caused39

by factors like pose variations, object occlusions and target interactions, the dis-40

crimination model is further enhanced by a relational attention procedure, which41

introduces a lightweight self-attention mechanism by capturing the trajectory fea-42

ture globally from the history states stored in a temporal window and aggregating43

them via the weighted fusion learning.44

By incorporating the object detection responses and the proposed discrimina-45

tion model, a multi-stage tracking pipeline is designed for automatic trajectory46

initialization, propogation, and termination. The discrimination model builds for47

each initialized target a dedicated appearance model, which is efficiently updated48

online to preserve its discrimination ability. This dedicated appearance model49

serves not only as a single object tracker to grow the target trajectory in the sce-50

nario that the target is isolated from other targets with inaccurate detection re-51
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sponse or even miss-detected but also as a discriminator to distinguish against52

distractions from the backgrounds and other neighboring or occluding targets. Its53

predictions are used to replace missing detection responses and refine inaccurate54

responses, and its confidence scores prevent tracking from drifting in the long55

term. To summarize, this work incorporates the merits of single object tracker56

and offline object detector and overcomes their deficiencies to present a new on-57

line MOT algorithm with distractor-aware discrimination learning. Its main con-58

tributions are threefold.59

• A distractor-aware discrimination learning model is proposed to facilitate60

online multi-object tracking to better differentiate one target from other tar-61

gets and semantic backgrounds in the scenes.62

• A relational attention learning mechanism is introduced to handle appear-63

ance variations of targets caused by large pose variations, object occlusions,64

and target interactions.65

• A multi-stage tracking strategy is established within a temporal sliding win-66

dow which leverages the object detection responses and tracker predictions67

to deal with trajectory drifting.68

Based on the above technical contributions, this study has developed an effec-69

tive online MOT system. Extensive experimental analyses and evaluations on the70

widely used challenging MOT16 and MOT17 benchmarks demonstrate the ef-71

fectiveness of the proposed approach. To facilitate further studies on the online72

multi-object tracking problem, we will release the source code and trained models73

of the proposed MOT approach.74
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2. Related Work75

Multi-Object Tracking. Tracking-by-detection is becoming the most popular76

strategy for multi-target tracking with the development of object detection meth-77

ods. The main idea is that trajectories are generated by associating the detected78

object hypotheses produced by an off-the-shelf object detector. Many methods79

tackle the task in a batch mode by formulating tracking as a global optimization80

problem, such as multicut [7], continuous-discrete energy minimization [10], to81

name a few. These approaches utilize information from both the past and future82

frames together to handle detection failures. However, tracking in the batch mode83

is not suitable for time-critical applications in the real world. In contrast, online84

MOT methods rely only on the information up to the current frame to estimate85

trajectories. These methods can be divided into two categories: probabilistic in-86

ference [11] and deterministic optimization [12]. Such online tracking methods87

are more sensitive to noisy detections, and detection failures seriously affect the88

tracking performance. In this work, we integrate merits of object detection and89

single object tracker to deal with detection failures. Single object tracker can90

refine the detection and compensate for the missing detection, and confident de-91

tection can remedy the tracker drifting.92

Object Detection in MOT. Object detection, especially pedestrian detection,93

receives considerable interests in MOT as it is the first and a critical step for94

tracking-by-detection methods. Traditional pedestrian detectors, such as ACF95

[13] and DPM [14], exploit various filters on hand-craft features with sliding win-96

dow strategy to localize objects. Recently, object detection is dominated by the97

CNN-based methods [5]. These methods use deep features rather than hand-craft98
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features to classify and localize each target simultaneously. CNN-based detectors99

outperform significantly traditional detectors both on speed and accuracy. How-100

ever, even the state-of-the-art CNN-based detectors still inevitably encounter de-101

tection failures in practice, especially in crowd scene for MOT, as targets interact102

with others frequently and the environment sometimes is extremely cluttered. De-103

tection failure is one of the most challenging problem for tracking-by-detection104

methods. Our work focuses on applying a single object tracking method to handle105

detection failures including false alarm, missing detection and inaccurate local-106

ization.107

Single Object Tracker in MOT. Thanks to the significant progress in Single108

Object Tracking (SOT) field in recent years, single object trackers have been109

introduced into MOT task in several previous works. Compared with single target110

tracking, multi-target tracking has several difficulties. First, the number of targets111

is uncertain, and the start and end points of the trajectory are uncertain. Second,112

serious occlusions occur between the targets. Finally, there may be strong similarities113

between the targets. Therefore, single-target trackers cannot be directly applied to114

multi-target tracking tasks. Xiang et al. utilizes Markov Decision Process (MDP)115

[15] to track targets in tracked state with optical flow based on the TLD tracker116

[16]. STAM [17] exploits a spatial-temporal attention mechanism to handle drift117

issues via regarding all the detections as SOT proposals. DMAN [18] directly118

applies the ECO tracker [19] from SOT with a cost-sensitive loss and designed119

a spatial-temporal network for data association when SOT tracker is considered120

losing the target. However, all these methods are combined with online-updating121

SOT tracker which is slow in speed and costs a lot of memory. To make matters122

worse, there are not enough samples to update each tracker, causing the trajectory123
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to drift gradually.124

In this work, we propose an online MOT algorithm based on the offline training125

siamese SOT tracker, SiamRPN [20]. Siamese network-based tracking method126

[9] contains two CNN branches: one for the template target and the other for127

the search region, the two branches share the same architecture and parameters.128

During tracking, the two branches are fed into the cross-correlation layer for129

sliding window evaluation. B. Li et al. [20] fuse a Siamese network and Region130

Proposed Network (RPN) detection method to formulate tracking task as a one-shot131

detection problem and get the top tracking performance with a high speed. To132

enhance the robustness and accuracy of existing Siamese-based trackers, Z. Zhang133

et al. [21] propose new residual modules to eliminate the negative impact of padding.134

In SiamRPN++ [22], a new architecture is proposed to perform layer-wise and135

depth-wise aggregations, which reduces the model size and further increase the136

speed. There are three main changes when we tailor the SiamRPN tracker for137

MOT in this paper. Firstly, a bi-direction correlation-based tracking structure is138

exploited in each candidate associate pair to reduce the potential for tracking drift.139

Secondly, a distractor-aware discriminative loss function is proposed to handle140

distractors. Finally, a relationship attention mechanism is combined to alleviate141

the occlusion problem.142

3. Proposed Online MOT Algorithm143

As a state-of-the-art single object tracking method, SiamRPN can grow trajectory144

with bounding box regression from region proposals. However, it does not per-145

form well in the cases when some trajectories are close and interfere with each146

other or a trajectory is continuously occluded after several frames. Based on147
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Figure 2: Schematic of the proposed discrimination model. A pair of Region-of-Interests (RoIs)

p, q with their wrappers p̂, q̂ and candidate search regions p̄, q̄ are input to the network. The

template-candidate tuples (p̂, q̄), (q̂, p̄) are processed by a Siamese network respectively, where

the feature maps of the template Fpt, Fqt ∈ R15×15×256 are used to provide a refined RoI

(qr, pr) for the candidate search feature maps Fqs, Fps ∈ R31×31×256 with the Refining Mod-

ule (RM). Compact features extracted from the feature maps with the help of RoIs (p, qr, q, pr)

are concatenated to form a 1024-dimensional feature vector, which is further exploited in the

Discrimination Module (DM) to discriminate whether p and q are of the same identity. c© denotes

the concatenation operator. ROIP means ROI Pooling. In RM, ∗d denotes depth-wise cross cor-

relation. The cross correlation maps C ∈ R17×17×256 are fed to two convolution branches to

generate a confidence map S ∈ R17×17×2k and to refine bounding boxes B ∈ R17×17×4k. The

bounding box with the highest confidence score is selected as the refined target.

these considerations, a distractor-aware discrimination learning model integrating148

siamese structure is proposed to compensate missing detection, smooth inaccurate149

detection, and discriminate distractors simultaneously.150
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3.1. Distractor-aware Discrimination Learning151

The schematics of the proposed discrimination model is shown in Fig. 2. It takes152

two image samples as input and outputs a discrimination confidence as well as a153

similarity map. The discrimination confidence is used to discriminate confusing154

targets while the similarity map benefits to reflect the samples’ spatial relationship.155

The feature extractor fθ is a modified ResNet-50 structure within which the first156

four stages are retained and the output stride is reduced to 8 to obtain a higher157

spatial resolution. The blocks hφ and hw in the Refining Module (RM) are both158

two 1×1 convolutional layers with {256, 2k} and {256, 4k} channels respectively,159

with k being the number of proposals. The cross correlation operation in RM not160

only refines the candidate bounding box, but also provides the ROI to extract161

features for binary classification, i.e., whether the association is correct or not.162

In order to explain the loss function more clearly, we first introduce the mean-

ing of the notations used in the loss function. The Discrimination Module (DM,

c.f. Fig.2) outputs the predicted cofidence score c. The ground-truth c∗ represents

whether the pair of image samples belong to the same target. The output p =

[px, py, pw, ph] (c.f. Fig. 2) of S and p∗ = [p∗x, p
∗
y, p

∗
w, p

∗
h] denote the the predicted

probability and the ground-truth label that the corresponding anchor is responsi-

ble for refining the target position. The output t of B is a vector representing 4

parameterized coordinates of the bounding box predicted by each positive anchor

while t∗ is that of associated ground-truth. The parameterization method is the

same as RPN [23]:

px =
gx − ax
aw

, py =
gy − ay
ah

pw = log
gw
aw
, ph = log

gh
ah

, (1)

where gx, gy, gw, gh represent the center position and size of the ground truth163
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bounding box while ax, ay, aw, ah denote that of an anchor.164

The loss function of our model consists of three components for different

tasks, the box classificationLbc, the box regressionLbr and the association classification

Lac as follows:

L = Lbc(p, p∗) + λ1 · Lbr(t, t∗) + λ2 · Lac(c, c∗), (2)

where λ1 and λ2 are balance parameters. Although the box regression Lbr and165

box classification Lbc are motivated by RPN, there are some differences when it166

comes to MOT. In RPN, the anchor which has the highest IoU overlap with a167

ground-truth box or an IoU overlap higher than 0.7 with any ground-truth box is168

selected as a positive sample, while the negative samples are the anchors whose169

IoU values are lower than 0.3. The model is prone to just discriminate foreground170

from the non-semantic background as the training procedure is dominated by easy171

negative samples, which is very disadvantageous for multi-target tracking task that172

needs to distinguish between different foreground targets.173

Hence, in the proposed distract-aware loss, for the box classification, more

hard negative samples, such as other confusing targets and ignored anchors (IoU

∈ [0.3, 0.7]) are punished, for the box regression, the variation of proposals associated

with the same target is also minimized to suppress the occurrence of diffusion box.

The new losses can be formulated as follows:

Lbc(p, p∗) = (1− α)Lebc(p, p∗) + αLhbc(p, p∗)

Lbr(t, t∗) = (1− β)Lsbr(t, t∗) + βLcs(t)
. (3)

BothLebc andLhbc are binary cross entropy losses, where the former acts on positive174

foreground and easy negative samples like RPN and the latter acts on the hard-negative175

samples. The hard-negative samples are selected from other foreground with176
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different identity or ignore anchors who have higher responses, to enforce the177

model to extract more discriminative features. Lsbr is the smooth L1 loss on all178

positive samples for box regression and Lcs(t) = E‖t− t̄‖1 intends to ensure all179

the positive proposals are close and compact, where t̄ means the expectation of180

the predicted parameterized coordinates and E is the expectation operator. The181

close and compact constraint not only benefits to the subsequent Non-Maximum182

Suppress (NMS) operation, but also helps to make the features more discriminative.183

The α and β are parameters to balance different components. These two improvements184

are important for solving the frequent ID switches in MOT tasks.185

Furthermore, an association classification loss Lac, the cross-entropy loss over186

two classes, is also adopted in Eq.(2) to distinguish whether the pair of image187

samples belong to the same target. Given a new frame, we name the trajectory188

where at most one detection overlapping with its prediction as isolated trajectory189

and competitive trajectory otherwise. In training, only competitive trajectories190

are collected to generate positive and negative samples to train the association191

classifier.192

3.2. Relational Attention Learning193

The target appearance often varies from frame to frame due to factors like object194

occlusions, pose variations, and target interactions. To handle these variations,195

history observations are commonly used to character trajectory feature. The most196

common practice is to normalize the history features with the weights encoding197

the similarities between them and the candidate. However, the relationship among198

history observations is typically overlooked. The relationship can weaken the in-199

fluence from outliers to update the trajectory feature more robustly. To this end,200

a lightweight self-attention mechanism is introduced in our model to capture the201
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Figure 3: The details of the Relational Attention Module. MP is the global max-pooling operator.

R, T denote reshape and transpose operators respectively. ⊗ represents the matrix multiplication

and ⊕ means element-wise addition.

relationship among history observations. Instead of acquiring the importance of202

history sample through its similarity with current sample, we learn the depen-203

dence of the trajectory on each sample online in a self-attention manner, thereby204

suppressing the negative effects of noise points.205

Specifically, as illustrated in Fig. 3, for each trajectory, given N history ob-

servations with feature maps F1, a spatial Gaussian weight is first applied at each

channel to reduce the effect of surroundings. The features are further compacted

with a 1 × 1 convolution layer. A global max-pooling operator is followed to

abstract invariant features P ∈ RN×C′ . A relation matrix is calculated by multi-

plying P with its transpose. The row-normalized relation matrix D ∈ RN×N is

obtained as

Dij =
exp(Pi ·PT

j )∑N
k=1 exp(Pi ·PT

k )
, (4)
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where Dij indicates the j-th observation’s impact on the i-th observation. The206

relation map D is then reshaped as a vector and fed into two fully-connected layers207

(N2 × N2, N2 × N ) followed by a softmax layer to obtain the attention score208

w ∈ RN of each observation.209

The final output (trajectory kernel) K ∈ RN×C×H×W is obtained by

K =
N∑
i=1

wiF1i . (5)

To ensure that the trajectory kernel updates smoothly, a momentum term is used in210

the update process as Kt = ηKt−1 + (1− η)K, where η = 0.95 is the momentum211

coefficient.212

In training, before the unified end-to-end training, relational attention module213

is first pretrained using specified samples generated from competitive trajectories.214

Feature maps of N − k observation set SN−k in the same trajectory are extracted215

using fθ, while the other k feature maps are extracted from observations set Sk of216

other trajectories. k is a random integer ranging from 0 to 0.3 × N . The label of217

observation o is 1
N−k if o ∈ SN−K , and 0 otherwise.218

3.3. Multi-stage Tracking219

The proposed discrimination model can distinguish the target from both distract-220

ing background and other neighboring or overlapping targets, which is essential221

to grow trajectory. And trajectory propogation is a critical step in multi-target222

tracking. Benefited from the discrimination model, a multi-stage tracking pipeline223

(shown in Fig. 4) is designed in this work to track multiple targets in an online224

mode.225

Considering that isolated trajectory and competitive trajectory face large dif-

ferences in growing, we adopt different tracking strategies for isolated and com-
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Figure 4: Pipeline of the proposed MOT algorithm. For each frame, targets are tracked in three

stages, i.e., growing isolated trajectories (S1), growing competitive trajectories (S2) and associ-

ating untracked trajectories with unassigned detections using IoU (S3). In S1, the RM branch is

used to locate new locations which helps to suppress misses or inaccurate detections. The DM

branch is used in S2. Facing the competitive trajectories, the bi-directory track in DM provides

stronger distinguishing information, which helps to suppress ID switches. Trajectory initialization,

propogation and termination are handled in a management agency at each time step. For each

tracked track, relational attention is used in the management agency to online update its template

to adapt to apparent changes.

petitive trajectories. In the first stage, each alive trajectory takes its current bound-

ing box as candidate region and refines the bounding box using RM branch. For

the isolated trajectory, the refined bounding box is appended as new observation

if the trajectory’s confidence (as Eq. (6)) is larger than a threshold τp.

STk =


∑np

i Si

np
· (2− exp(ε

√
np)), if np > 0

1, else
, (6)

where np is the time of continuous tracking in the first stage and Si denotes the226

refining confidence in the i-th growth. ε is a balance parameter. Empirically, the227

ε is related to the allowed maximum number Nmax of consecutive failed matches,228

ε ≈ log(2)/
√
Nmax. ε = 0.1 in all our experiments.229
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In the second stage, for competitive trajectories, their refining bounding box230

and overlapped detections after NMS are collected as candidates. The similar-231

ities between trajectory and the candidates are calculated using the association232

classifier branch of the discrimination model. Then the Hungarian algorithm is233

applied at the association similarity matrix to grow competitive trajectory. In the234

last stage, the remaining detections are further assigned to the untracked trajec-235

tories based on IoU between detections and tracker predictions with a threshold236

τiou.237

After data association, each untracked trajectory is considered as lost in the

current frame and a new trajectory is initialized for each unmatched detection with

a high response confidence. To alleviate the influence of false detection, any new

trajectory will be deleted once it is lost in any of the first τi frames. The trajectory

will be terminated if it keeps lost for over τt successive frames or exits the field

of view. For the trajectory kernel update, N history observations are selected as

follows,

oi = arg maxt−iτt<j≤t−(i−1)τtQoj , i = 1, ..., N , (7)

where Qoj is the detection confidence of oj .238

4. Experiments239

In this section, we first introduce the experiment settings including datasets, evalu-240

ation metrics and the implementation details in Sec. 4.1. The proposed distractor-241

aware loss, the relational attention module and the multi-stage tracking strategy242

are then analyzed respectively in Sec. 4.2. Finally, in Sec. 4.3, our proposed on-243

line MOT algorithm is compared with the state-of-the-art methods on the public244

MOT benchmarks.245
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4.1. Experiment Settings246

Datasets. We evaluate our online MOT algorithm on the publicly available MOT16247

and MOT17 benchmark datasets [24]. The MOT16 dataset consists of 14 video248

sequences, 7 for training and 7 for testing respectively, and provides public de-249

tections derived from DPM [14]. The MOT17 dataset shares the same video250

sequences with MOT16 and provides another two sets of public detections (by251

Faster R-CNN [23] and SDP [25]) for more comprehensive evaluation. We use252

the training sequences in MOT16 benchmark for model training and investigation.253

Specifically, two sequences, MOT16-09 and MOT16-10, are selected for valida-254

tion and the remaining ones are used for training. Public detections are used in all255

experiments for fair comparison.256

Evaluation Metrics. We adopt the widely used CLEAR MOT metrics [26, 27] to257

measure the performance of the proposed online MOT algorithm. These metrics258

include Multiple Object Tracking Accuracy (MOTA ↑), Mostly Tracked targets259

(MT ↑, the ratio of ground-truth trajectories that are covered by a track hypothesis260

for at least 80% of their respective life span), Mostly Lost targets (ML ↓, the261

ratio of ground-truth trajectories that are covered by a track hypothesis for at most262

20% of their respective life span), the number of False Negatives (FN ↓), the263

number of False Positive (FP ↓), the number of ID Switches (IDS ↓) and the264

number of Fragments (Frag ↓). Additionally, ID F1 score [28] (IDF1 ↑), which265

denotes the ratio of correctly identified detections over the average number of266

ground-truth and computed detections, is also employed to measure the identity-267

preserving ability of trackers. Here ↑ denotes that higher scores indicate better268

performance, and ↓ denotes lower scores indicate better performance. Metrics269

of ACC, EFI, EFP and IoU are used in ablation study, which will be illustrated270
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accordingly.271

Implementation Details. The proposed algorithm is implemented with PyTorch.272

During the further training phase of the discrimination model, the feature extrac-273

tion layers fθ are fixed and the remaining parameters are fine-tuned on MOT train-274

ing dataset. The ratios and scales of the anchors used in the RM are set as {2, 3}275

and {7, 9} respectively. The learnable weights of relational attention module are276

initialized with xavier initialization [29]. Any two observations which have277

the same identity and with temporal distance less then 50 frames are paired as a278

sample. The network is trained for 25 epochs with the Stochastic gradient descent279

(SGD) optimizer. Learning rates for region proposal and relational attention mod-280

ule are initialized as 1e− 4 and 1e− 2 respectively. As training proceeds, they are281

reduced to their 1/10 quantity at the 10-th and 18-th epoch.282

For training data preparation, there are 82, 805 samples in each epoch for train-283

ing and 20, 000 samples for validation. Any two observations with the same iden-284

tity and with temporal distance less than 50 frames are paired as a sample. Data285

augmentation, such as color jitter, image horizontal flip, and random displacement286

noise of search region is used in training.287

For the parameters setting, in training, the balance parameters in Eq. (2) are288

experimentally set as λ1 = 1, λ2 = 2 in all the evaluations and the parameters α, β289

are both set as 0.4 when the proposed model is evaluated on MOT benchmark. In290

the data association, the thresholds for alive trajectory is set as τp = 0.8. The bal-291

ance parameter ε in Eq. (6) is set as 0.05 and N = 8 historical states are collected292

to extract the trajectory feature. We set τiou = 0.4 to suppress the overlapped293

detections. The trajectory initialization threshold τi is set as 2 and the termination294

threshold τt is set as 30. Multi-parameter is a general problem of MOT approaches295
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[7, 30, 31, 17, 32, 18, 33]. Most of the common parameters in our method are set296

as other approaches and without further tuning, the regularizers in loss function297

will be further analyzed in Sec 4.2.298

4.2. Ablation Study299

The Advantage of Distractor-aware Loss. As shown in Eq. (3), we name Lhbc300

and Lcs as repulse and consistency terms. The Lhbc pushes the hard negative sam-301

ples away from the positive samples and the Lcs concentrates the predictions of302

the positive samples more concentrated. To better evaluate the effects of these two303

loss components, we report the performance regarding Lhbc and Lcs by varying the304

balance parameters α and β in Table 1.305

In the evaluation, given a template and a search area, it is deemed as a correct306

prediction if the IoU between the ground-truth and the regression is greater than307

0.7. We use ACC to denote the ratio of correct predictions. The metric of EFI308

denotes the ratio of error prediction from ignored anchors in all error predictions,309

which means some negative samples from ignored anchors are mis-classified as310

positive. The metric of EFP denotes the ratio of error prediction from positive311

anchors in all error predictions, which means the classification is right while the312

regression is inaccurate severely. α = 0 means only the original RPN loss is313

used while α = 1 means the samples from the ignored anchors rather than the314

negative anchors are exploited in training. We evaluate the impact of different β on315

performance at α = 0.4 and the performance of different α at β = 0.4 in Table 1.316

It can be concluded that, the best ACC is achieved when α = 0.4 and the best EFI317

is obtained when α = 1.0. This demonstrates that the repulse loss term is more318

effective to distinguish negative samples from ignored anchors. Further more, the319

ACC is further improved and the EFP is reduced when the consistency loss is320
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Table 1: Analysis of the proposed distractor-aware loss with different values of α and β.

Parameter Metric 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α@(β = 0.4)
ACC(%) 84.20 85.32 85.50 86.43 86.52 86.09 85.93 85.83 85.46 85.10 82.19

EFI(%) 13.71 11.72 11.31 10.54 10.76 10.99 9.96 11.08 9.90 8.86 7.69

β@(α = 0.4)
ACC(%) 86.52 87.12 87.08 87.04 87.32 86.29 85.62 85.57 85.72 84.02 0.03

EFP(%) 10.76 7.61 9.83 11.12 10.56 11.45 12.03 16.08 17.99 15.71 86.53

used. However, when β is greater than 0.4, the performance is degraded. The321

reason behind this case is that the loss function pays more attention to regression322

consistency rather than accuracy. In the extreme case, β = 1 for example, where323

the regression accuracy is almost totally ignored, the ACC degrades to nearly 0.324

Note that EFI and EFP are not necessary to be consistent with ACC because the325

multiple loss terms influence each other.326

We further analyze the proposed loss using MOT metrics along with metrics of327

ACC and IoU which means the average overlap between correct regressions and328

targets. To better investigate the influence regarding only Lhbc and Lcs in Eq.(3),329

we exclude the influence from the relational attention module by removing this330

module when we construct baseline variants. Specifically we compare four vari-331

ants. The first is a plain one with neither Lhbc nor Lcs, i.e., the box regression loss332

Lbr and box classification loss Lbc in Eq. (2) are the same as in RPN. The second333

and the third ones are counterparts with either Lhbc or Lcs. The fourth one is a334

variant with both Lhbc and Lcs. A tick mark in Table 2 indicates the corresponding335

loss term is included in the counterpart. Results in Table 2 suggest that both Lhbc336

and Lcs contribute to improve the model. For example, the MOTA, IoU, IDF1,337

and ACC values increase with varying degrees. The repulse term Lhbc is especially338

more effective, as the results indicate.339
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Table 2: Ablation study results on the validation set in terms of different configurations of loss

terms and the Relational Attention module (RA).

Method Lhac Lcs RA ACC(%) IoU MOTA(%) IDF1(%) IDS Frag

ablation models

84.24 0.7138 45.8 47.2 158 353
√

87.26 0.7154 46.7 49.9 147 322
√

87.15 0.7092 45.9 47.4 164 337
√ √

87.48 0.7169 47.4 51.3 137 305
√

88.51 0.7267 47.5 52.1 102 297

final model
√ √ √

90.90 0.7456 48.9 54.6 91 299

The Advantage of Relational Attention (RA). Fig. 5 shows the visualization340

results of the self-attention mechanism. (a) demonstrates eight stored historical341

states and (b) is the search area of the target in the current frame. The atten-342

tion weights obtained respectively in global and local modes are compared in (c).343

Global mode means the attention weights are obtained by the relational attention344

module, while local mode obtains the attention weights by normalizing the sim-345

ilarities between each historical state and the candidate. It is not difficult to find346

from (c) that, because of error associations, the weights of the 7-th and 8-th his-347

torical states obtained by the local mode are extremely higher than other values.348

This results in that the cues of these two observations are dominated when aggre-349

gating observations with these weights to character the trajectory. Therefore, the350

candidate in (b) will be assigned to the trajectory leading to identity switch in this351

case.352

Different from the weights obtained in local mode, weights achieved by self-353

attention mechanism encode the relationships among all the observations to eval-354

uate the importance of each observation to the trajectory more robustly as shown355
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Figure 5: Visualization of relational attention module. (a) presents eight historical states of an

object. (b) shows searching area of the target. (c) compares the attention weights between the his-

torical states and the search candidate by the local mode (without the relational attention module)

and the global mode (with the relational attention module). The attention weights in global mode

are more consistent than those in local mode.

in (c). The weighted average of the historical samples is used as the current fea-356

ture of the trajectory, to measure the matching degree between the current target357

and the trajectory. Thus, the relational attention module can suppress casual mis-358

matches to better collect historical information globally. For the example in Fig.359

5, the black suit man will be considered temporarily lost in (b) as the similarity360

between the target and the trajectory feature after fusion is small, thus avoiding361

the exchange of track ID with the light shirt man.362

Quantitative results in Table 2 also validate that the proposed relational atten-363

tion module is effective. Regardless of whether distractor-aware loss terms are364

used, the relational attention module improves model performace. In particular,365

the better values of IDF1 and IDS demonstrate the benefits from the relational366
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Figure 6: Exemplar tracking results.The thin yellow boxes indicate the detection results, while the

other boxes indicate the tracking results.

attention module in reducing identity switch in MOT tracking.367

Exemplar tracking results are shown in Fig. 6. The detection of trajectory #2368

is missing but the proposed model can track it successfully with the RM. Trajec-369

tory #3 and #5 are occluded by trajectory #2 in frame #36, but the trajectories’370

identities are preserved with the help of association classifier branch.371

The Advantage of Multi-stage Strategy. In addition to the classification branch372

and the relational attention learning, the multi-stage strategy also plays an impor-373

tant part in out multi-target tracking model. To analyze the impact of each step,374

the ablation experiments have been conducted on MOT16 training set as shown in375

Table. 3, where DAL is the abbreviation of Distractor-Aware Learning.376

SiamRPN [20] tracker is selected as the baseline. Specifically, for each new377

frame, detections are first suppressed by predictions, and then each detection378

whose confidence larger than 0.6 is considered to be the starting point of a tra-379

jectory to establish a specific SiamRPN tracker. It is straight forward to find from380

Table.3 that naive SiamRPN tracker has a very poor performance on MOT task.381

This is due to the poor ability of the proposed feature to discriminate between fore-382
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Table 3: Analysis on multi-stage strategy.

Method MOTA(%) MOTP (%) IDs IDF1(%) Frag FPS

SiamRPN (naive) 28.9 44.4 2864 19.6 1935 10.4

+ DAL 32.2 70.4 528 45.8 1027 4.7

+ DAL + (S1,2) 44.1 72.3 511 47.1 785 4.3

+ DAL + RA + (S1,2) 48.2 74.5 122 52.9 358 2.9

+DAL +RA +(S1,2,3) (final model) 48.9 75.9 91 54.6 299 2.7

grounds, resulting in trajectory prone to drift and frequent track id switch. After383

adding DAL, the extracted features are better for the identification of the fore-384

ground, so tracking performance is improved. (S1,2) means the first and second385

stages are used in the method, i.e.the trajectories are divided into two categories,386

isolated and competitive, for tracking, and the detection is not only used to cre-387

ate new trajectory, but also used to correct the trajectory where the tracking drift388

occurs. We can find the first two stages are benefit to significant improve MOTA389

and MOTP. To further utilize the historical information handling the frequent ID390

switch, RA is combined. It can be find the historical information is important for391

reducing the ID switch, IDs has dropped from 511 to 122, and IDF1 has increased392

by nearly 4 percent. Our final proposed method contains the single object tracker393

with distractor-aware discrimination learning, the RA and the multi-stage tracking394

strategy.395

By analyzing and comparing the experimental results in Table.3, we get three396

conclusions. Firstly, naive SiamRPN alone are not sufficient for robust application397

in multi-object scenarios with many distractors, and discriminative features are398

necessary. Secondly, RA is important for reducing ID switch. Lastly, the multi-399

stage tracking strategy can well integrate the functions of each module (e.g. DAL,400
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RA, Detections) to achieve better tracking performance.401

In addition, we compare model speeds in the last column of Table 3. It can402

be found that although the speed of SiamRPN can reach higher than 100 FPS in403

single target tracking, the speed is greatly reduced in MOT task. This is mainly404

because each target in MOT needs to create a SiamRPN tracker separately. The405

DAL module reduces speed further because the bi-directory tracking strategy is406

used to make better use the sequence information in the tracking process. The RA407

module needs to extract features and build the relationship topology map, which408

also brings time consumption. In the future work, we will process targets in one409

frame at the same time instead of processing each target individually to reduce410

redundant operations and improve the tracking speed of the model.411

Table 4: Evaluation results on MOT16. The best two results regarding each metric are marked by

red and blue respectively.

Mode Method MOTA(%) IDF1(%) MT(%) ML(%) FP FN IDS Frag

Offline

LMP [7] 48.8 51.3 18.2 40.1 6654 86245 481 595

GCRA [34] 48.2 48.6 12.9 41.1 5104 88586 851 1117

FWT [35] 47.8 44.3 18.1 38.2 8886 85487 852 1534

NLLMPa [36] 47.6 47.3 17.0 40.4 5844 89093 629 768

ASTT [37] 47.2 44.3 16.3 41.6 4680 90877 633 814

MCjoint [38] 47.1 52.3 20.4 46.9 6703 89368 370 598

NOMT [30] 46.4 53.3 18.3 41.4 9753 87565 359 504

Online

Ours 48.5 52.8 14.0 37.2 7525 85657 782 1886

MOTDT [31] 47.6 50.9 15.2 38.3 9253 85431 792 1858

AMIR [39] 47.2 46.3 14.0 41.6 2681 92856 774 1675

DMMOT [18] 46.1 54.8 17.4 42.7 7909 89874 532 1616

STAM16 [17] 46.0 50.0 14.6 43.6 6895 91117 473 1422

DCCRF16 [32] 44.8 39.7 14.1 42.3 5613 94133 968 1378
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Table 5: Evaluation results on MOT17. The best two results regarding each metric are marked by

red and blue respectively.

Mode Method MOTA(%)IDF1(%) MT(%) ML(%) FP FN IDS Frag

Offline

FWT [35] 51.3 47.6 21.4 35.2 24101 247195 2985 6611

MHT DAM [33] 50.7 47.2 20.8 36.9 22875 252889 2314 2865

EDMT17 [40] 50.0 51.3 21.6 36.3 32279 247297 2264 3260

IOU17 [41] 45.5 39.4 14.7 40.5 19993 281643 5988 7404

Online

Ours 51.4 53.7 16.5 34.9 21042 251873 2319 5527

MOTDT17 [31] 50.9 52.7 17.5 35.7 24069 250768 2474 5317

HAM SADF17 [42] 48.3 51.1 17.1 41.7 20967 269038 1871 3020

DMAN [18] 48.2 55.7 19.3 42.7 26218 263608 2194 5378

4.3. Evaluation on MOT Benchmarks412

The proposed approach is compared with several state-of-the-art MOT meth-413

ods on the test sets of both MOT16 and MOT17 benchmarks. Quantitative com-414

parison results are presented in Table 4 and Table 5, respectively.415

For MOT16 dataset, our method achieves the best performance in terms of416

MOTA and ML metrics and comparable results in terms of IDF1 and FN val-417

ues against the state-of-the-art online MOT methods. As the most comprehensive418

metric for MOT, the MOTA value obtained using our approach is even comparable419

with the performance of state-of-the-art offline methods (e.g., [34]), which demon-420

strates the effectiveness of the proposed method. In further analysis, we find our421

approach obtains a comparable IDF1 value but a higher IDS value. As the IDS is422

the total number of identity switches while IDF1 is the ratio of correctly identified423

detections over the average number of ground-truth and computed detections, it424

proves the relational attention module is capable of suppressing casual associa-425

tions. The under-performance of MT and Frag is mainly due to the adopted naive426

zero-order motion model where the results in previous frame are directly used as427
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current candidates. Candidates with large deviations lead to a higher Frag and a428

lower MT. When a more complicated motion mode (5-order) is adopted, the MT429

increases from 14.0 to 15.2 and Frag drops from 1886 to 1780. More studies on430

the motion model will be our future work.431

Similarly, for MOT17, Table 5 shows that the proposed approach outperforms432

the other state-of-the-art online MOT trackers regarding MOTA and ML metrics433

and achieves the comparable performance in terms of IDF1, FP and FN.434

The overall tracking speed of the proposed approach on MOT16 and MOT17435

testing sequences is about 2.5 and 2.2 fps using the 2.2 GHz CPU and a TITAN X436

GPU without dedicated optimization of the code. There are two main reasons for437

the slow tracking speed. First, a single target tracking is created for each target,438

and there is a lot of computation redundancy between the trackers. Secondly, in439

order to make better use the sequence information in the tracking process, the use440

of bi-directory tracking in the discrimination module has slowed down the speed441

even more. How to speed up the tracking speed will be one of our future research442

directions.443

5. Conclusion444

In this work, we have proposed an online multi-target tracking method which445

learns a distractor-aware discrimination model to grow each target either when446

it is continuously miss-detected or occluded after several frames. To handle the447

appearance variations, a lightweight self-attention module has also been designed448

to capture the distinctive target appearances by selectively aggregating features449

from history states with weights extracted from their appearance topological rela-450

tionship. With the discrimination model, a multi-stage tracking strategy is further451
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designed for multi-target tracking. Experimental results on public MOT16 and452

MOT17 benchmark datasets verify the effectiveness of the proposed method.453

Although the effectiveness of the proposed method has been verified on the454

MOT benchmark, at least two aspects which can be explored in the future to455

further improve the performance. Firstly, there is still room for improvement in the456

MT and the Frag performance. More complex and accurate motion models will457

further be studied to enhance the model. Secondly, the proposed model locates458

the current position of each target with the Siamese structure. In essence, each459

target has experienced the operations such as cropping, wrapping, resizing, feature460

extraction and cross correlation, resulting in a nearly proportional relationship461

between the tracking time and the number of targets. In addition, we will process462

multiple targets in one frame at the same time instead of processing each target463

individually to reduce redundant operations and improve the tracking speed of the464

model.465

6. Acknowledgements466

This work is supported by Beijing Natural Science Foundation (Grant No.467

L172051), the Natural Science Foundation of China (Grant No. 61751212, 61721004),468

the NSFC-general technology collaborative Fund for basic research (Grant No.469

U1636218), the Key Research Program of Frontier Sciences, CAS, Grant No.470

QYZDJ-SSW-JSC040, and the CAS External cooperation key project.471

28



References472

[1] X. Yan, I. Kakadiaris, A. Shah, Modeling local behavior for predicting social473

interactions towards human tracking, PR 47 (4) (2014) 1626–1641.474

[2] W. Luo, J. Xing, X. Zhang, X. Zhao, T.-K. Kim, Multiple object tracking: A475

literature review, arXiv preprint arXiv:1409.7618.476

[3] H. Wu, Y. Hu, K. Wang, H. Li, L. Nie, H. Cheng, Instance-aware representa-477

tion learning and association for online multi-person tracking, PR 94 (2019)478

25–34.479

[4] K. Du Yong, V. Ba-Ngu, J. Moongu, A labeled random finite set online480

multi-object tracker for video data, PR 90 (2019) 377–389.481

[5] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, M. Pietikäinen,482
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