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Bioluminescence tomography (BLT) can three-dimensionally and quantitatively resolve the molecular
processes in small animals in vivo. In this paper, we propose a BLT reconstruction algorithm based
on duality and variable splitting. By using duality and variable splitting to obtain a new equivalent con-
strained optimization problem and updating the primal variable as the Lagrangianmultiplier in the dual
augmented Lagrangian problem, the proposed method can obtain fast and stable source reconstruction
even without the permissible source region and multispectral measurements. Numerical simulations on
a mouse atlas and in vivo mouse experiments were conducted to validate the effectiveness and potential
of the method. © 2012 Optical Society of America
OCIS codes: 170.3010, 170.6960, 170.6280.

1. Introduction

Bioluminescence imaging (BLI) is an emerging
molecular imaging modality, which can be used to
monitor physiological and pathological activities at
the molecular level. This technique is widely adopted
for tumor cell detection, drug discovery, and gene ex-
pression visualization [1–4]. Bioluminescence tomo-
graphy (BLT) can three-dimensionally reconstruct
the bioluminescent probe in small animals with a

sensitive charge-coupled device (CCD) camera
capturing the surface light signals. By combining
multiple BLI acquisition with micro-computed-
tomography (micro-CT) anatomical structure, BLT
can further resolve the depth of source distributions
in biological tissues [5].

BLT is a typical ill-posed problem [6]. To compute a
meaningful approximate solution, many reconstruc-
tion methods for BLT have been developed. Most of
those existing methods were adopted to use a multi-
spectral strategy [7–10] and a permissible source
region (PSR, also called the region of interest) strat-
egy [10–13] to overcome the ill-posed property of the

1559-128X/12/235676-10$15.00/0
© 2012 Optical Society of America

5676 APPLIED OPTICS / Vol. 51, No. 23 / 10 August 2012

Nicole
高亮



problem. Although these strategies improve the
reconstruction qualities to a certain degree, they im-
pose some limitations on practical applications. For
example, the ill-posedness can be decreased by se-
lecting relatively small domains as the PSR. How-
ever, it is not always reliable or feasible to define
such a region effectively in practical cases [14]. In ad-
dition, spectrally resolved methods can significantly
increase signal acquisition time and the computa-
tional burden [15].

No matter which strategy is adopted, regulariza-
tion techniques are usually combined to overcome
the ill-posedness and recover source distribution
from noisy measurements. Among different regular-
ization methods, the L2-type regularization strategy
is the most popular and commonly applied method,
which minimizes the output-least-square formula-
tion incorporated with the L2-norm regularization
term to stabilize the problem [10–13]. The merit
of the regularization with the L2-norm penalty func-
tion is that it is simple and easy to solve by standard
tools for linear optimization such as the Newton
method [12,13,16]. However, it leads to the solution
being oversmoothed. This characteristic is not condu-
cive to reconstructing the light source, especially in
multiple-source reconstruction cases. In addition,
the volumes of the bioluminescent probes are very
small compared with the whole reconstruction
domain in BLT practical applications. Therefore, sev-
eral reconstruction algorithms with sparsity regular-
ization have been reported recently [17–20].

Compared with L2-type regularization, the ob-
jective function of sparsity regularization is convex
but nondifferentiable. Thus, many existing methods
with a sparsity regularity strategy are adopted to
reformulate them as a convex and differentiable
quadratic program with nonnegative constrained
conditions and then use efficient iteration methods
to optimize them. Lu et al. presented a sparsity
reconstruction algorithm for spectral BLT based on
the diffusion approximation (DA) model where
the differentiable approximation method and the
limited-memory variable metric bound constrained
quasi-Newton method were used to optimize the
objective function [17]. He et al. developed a sparsity
reconstruction method with the multilevel finite
element method (FEM) approach for solving the
BLT inverse problem and combined an interior-point
method with the preconditioned conjugate gradients
algorithm (l1_ls) to solve the constrained problem
[18]. Gao et al. proposed an approach based on the
radiative transfer equation (RTE) and multilevel
FEM, in which a standard interior-point method
was applied to regularize the inverse source recovery
[19]. The aforementioned methods demonstrate the
feasibility and potential of sparsity regularization
with numerical simulation and phantom experi-
ments. However, those reconstruction algorithms re-
quire either a PSR or multispectral measurements.
Furthermore, when the matrix A [a system matrix
in the linear relationship of the BLT inverse problem,

defined in detail in Eq. (5)] is dense, reconstruction
algorithms for BLT based on the interior-point meth-
ods do not display their optimal performance and
require a long computation time [20]. Recently, as
the standard algorithm for solving the problem of
Lp regularization [21], an iterative shrinkage algo-
rithm (IST) has been successfully applied in fluores-
cence molecular tomography [22]. However, the
iterative-shrinkage-based method belongs to the class
of first-order algorithms, and its convergence rate is
relatively slow, especially when the regularization
parameter is very small or the problem is very
ill-posed [23].

In this work, a sparsity regularity algorithm based
on duality and variable splitting [24,25] is proposed.
We transformed the L1-norm minimization problem
into a dual optimization problem by using the duality
and variable splitting and handle the resulting con-
strained problem via an augmented Lagrangian (AL)
scheme. In the proposed method, only the dual vari-
able was iteratively computed in a subproblem, and
the primal variable of the source distribution was
obtained from computing soft thresholding with the
final result of the dual variable. Additionally, the
sparsity of the primal variable was explicitly used
in the subproblem to reduce the computational cost.
Therefore, our method can obtain fast, stable source
reconstruction even without the permissible source
region and multispectral measurements. To show
the merits of the method, we compared it with the
other two methods. The results of the simulations
in the mouse atlas and in vivo mouse experiments
validated the performance of our method.

This paper is organized as follows. Section 2 pre-
sents the photon propagation model, its linear rela-
tionship with the FEM, and the proposed algorithm.
In Section 3, the numerical simulations in a hetero-
geneous mouse atlas and in vivo mouse experiment
are conducted to evaluate the performance of the pro-
posed method. Finally, we discuss the results and
conclude this paper.

2. Method

A. Photon Propagation Model

The RTE is considered the most accurate model for
describing the process of photon propagation in bio-
logical tissues. However, RTE is computationally ex-
pensive. Generally, approximations of RTE such as
the DA model, simple spherical harmonics, spherical
harmonics, and discrete ordinates are more com-
monly used. Among all the approximate models,
the DA is the most popular one [26,27]:

−∇ ·D�r�∇Φ�r� � μa�r�Φ�r� � S�r� �r ∈ Ω�; (1)

where Ω is the whole reconstruction domain,Φ�r� re-
presents the photo fluence rate, S�r� provides the
source energy distribution, μa�r� is the absorption
coefficient, μ0s�r� is the reduced scattering coefficient,
and D�r� � 1 ∕ 3� μa�r� � μ0s�r�� indicates the optical
diffusion coefficient. Because the bioluminescence
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imaging experiment is generally performed in a
totally dark environment, no photon travels into Ω
through the boundary ∂Ω. Therefore, the DA is sub-
ject to the Robin boundary condition,

Φ�r��2A�r;n;n0�D�r��v�r� ·∇Φ�r���0 �r∈∂Ω�;
(2)

where ∂Ω donates the boundary of the whole recon-
struction domain and A�r; n; n0� represents the mis-
match coefficient between Ω and its surrounding
medium. The measured quantity is the outgoing
photon density of ∂Ω, which can be expressed as
follows [28]:

Q�r� � −D�r��v�r� ·∇Φ�r��
� �2A�r;n; n��−1Φ�r�; �r ∈ ∂Ω�: (3)

B. Linear Relationship Establishment

Equations (1) and (2) are converted into the following
matrix-form equation. A linear relationship between
the source distribution inside the heterogeneous
medium and the photon fluence rate on the surface
can be established by the finite element techniques:

PΦ � FS; (4)

where P is the positive definite matrix,Φ is the mea-
surable photon flux photon on the boundary nodes,
F is the source weight matrix, and S is the source
distribution on the interior nodes. The nonmeasur-
able entries in Φ and corresponding rows in P−1F
can be removed, which establishes a new linear
relationship [29]:

AS � Φm; (5)

where A ∈ RM×N and Φm is the boundary
measurement.

C. Reconstruction Based on Dual AL

As mentioned, BLT is the typical ill-posed inverse
problem. The most popular method for source recon-
struction is to formulate it as a least-square optimi-
zation problem. In view of the sparsity of the source
and the insufficiency of the measurable data, it is
natural and sensible to select the L1-norm as the
regularization term. Thus Eq. (5) can be converted
into the following unconstrained optimization
formulation:

min J�w� � 1
2
kAw −Φmk22 � λkwk11; (6)

where λ is the regularization parameter. It is popular
to cast the problem in Eq. (6) as a convex one. There-
fore, the previous methods tend to approximately

regard the problem as the basis pursuit problem
[17–19]:

min kwk1 subject to Aw −Φm � 0: (7)

Unlike the existing L1-norm regularization recon-
struction method for BLT, in this work, we converted
Eq. (6) into the following dual problem [30]:

max E�α; ν� � −
1
2
kα −Φmk2 � 1

2
kΦmk2

− δ∞λ �ν� subject to ν − ATα � 0; (8)

where the Fenchel duality theorem was used. δ∞λ is
the indicator function. δ∞λ � 0 if kδk∞ < λ and δ∞λ � ∞

otherwise. The sizes of α and w are M × 1 and N × 1,
respectively. Here, M is the number of nodes on the
surface and N is the number of all nodes in the body.
As for BLT, the dual problem can play an important
role in reducing computational cost. The denser the
mesh or the more complex the construction of the tis-
sue, the more computational cost can be saved. The
AL function for the dual problem is defined as

L�α; ν; w; μ� � E�α; ν� −wT�ATα − ν� − μ

2
kATα − νk22;

(9)

where w is a vector of the Lagrange multiplier and
corresponds to the source distribution on nodes in
the primal problem. μ is the barrier parameter
[31]. The main steps of the AL method consists in
maximizing L�α; ν; w; μ�with respect to �α; ν�, keeping
w fixed, then updating �α; ν�, and repeating these
two steps until stopping criteria are satisfied. Here,
the maximizer �α; ν� of Eq. (9) is used to update the
Lagrangian multiplier w as follows:

wk�1 � wk � μt�ATαt − νt�: (10)

Note that the terms involved in Eq. (9) and Eq. (10)
can be decoupled into a set of one-dimensional ones;
therefore we further carried out the maximization of
the AL function in Eq. (9) with respect to ν in a closed
form as follows:

L�α; ν; w; μ� � −
1
2
kα −Φmk2 � 1

2
kΦmk2

−
XN
j�1

�
μ

2

�
νj −

�
w
μ
� ATα

�
j

�
2
� δ∞λ �νj�

�
;

(11)

where νj denotes the jth element of ν. Consequently,
the maximizer ν�α� is given as follows:
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ν�α� � CLλ

�
w
μ
� ATα

�
; (12)

where CLλ is the clipping function. By substituting
the above ν back into Eq. (8), we can obtain the max-
imizer L�α; w; μ� and the Lagrange multiplier w as
follows:

max L�α; w; μ� � max−
1
2

��α −Φm
��2
2

−
μ

2

����Shrinkλ

�
ATα�w

μ

�����
2

2
; (13)

wk�1 � Shrinkλμk�wk � μkATαk�; (14)

where k donates the iterative step. Shrinkλμk is the
well-known soft threshold function and is defined
as follows [23]:

Shrinkλ�w��
�
max�jwjj−λ;0�

wj

jwjj

�
j

� j�1;…;n�: (15)

We next address the solution of the inner itera-
tion, Eq. (13). The inner maximization problem
in Eq. (13) is a linear least-squares problem, and
several optimization algorithms can be adopted. In
this work, the preconditioned conjugate gradient
method is employed due to its better performance
in large-scale linear inverse problems, which is pre-
sented in algorithm 2 [32]. Here, the preconditioner
only consists of the diagonal elements of the Hessian
matrix:

P � diag�∇2L�α�� � diag�−Im − μkA�AT��; (16)

where A� is the submatrix of A that consists of active
columns with indexes J� � f j ∈ f1; 2;…; ng:jwk�
μkATαj > jλμjkg. Im is the identity matrix of size m.
It is noted that Hessian computational complexity
is only proportional to the number of active compo-
nents of wk � μkATα. Thus, the sparser the solution
α becomes, the faster the computation of a Newton
step becomes.

There were two parameters needed for manual in-
itialization besides the regularization parameter and
stopping criterion, including the initial value of bar-
rier parameter μ and its increasing rate. The larger
initial value and increasing rate could accelerate the
convergence rate by saving both the computation re-
quired for each outer iteration and inner iteration.
However, this also risks making the condition of
the problem worse. Therefore, we used the conserva-
tive setting for the sequence of μ. The initial value of
μ was set to be 0.01=λ, and μk was increased by a
factor of 2. In fact, by using the above conservative
setting, the performance of the proposed method
could reach a compromise between efficiency and

stability. Algorithm 1 summarizes the proposed
algorithm.

Algorithm 1. Dual AL Algorithm
1: Initialize μ1, kmax, tol;
2: while k�J�w�k − J�w�k−1�k ∕ kΦmk ≥ tol or k ≤ kmax, do
3: Compute αk� 1 in Eq. (13) using Algorithm 2;
4: Update the primary variable wk� 1 by Eq. (14);
5: Update the barrier parameter μk�1 � 2μk;
6: Update k←k� 1;
7: End while

Algorithm 2. Preconditioned Conjugate Gradient Method
1: Input α, w, μ, Φm, AT , ε, k � 0;
2: Repeat;
3: Compute the search directionΔαk as an approximate solution to
the Newton system by preconditioned conjugate gradient, where
the preconditioner is calculated by Eq. (16);
4: Compute the step size γ by backtracking the line search;
5. Update the iteration by αk�1 � αk �Δαk · γ;
6: Update k←k� 1;
7: Until γ ≤ ε

3. Experiments and Results

A. Simulation Verifications

1. Single-source Case
Heterogeneous simulation experiments were con-
ducted to illustrate the performance of the proposed
reconstruction method. In order to approximate the
real situation as much as possible, the simulation
was based on the mouse atlas. The atlas was con-
structed by our group, and more details can be found
in [14,33]. In our simulation experiments, we se-
lected the torso section of the mouse atlas as the re-
gion to be investigated, which was 25 mm in height
and consisted of six tissues including muscle, lungs,
heart, liver, spleen, and bone. The optical properties
for tissues are listed in Table 1 [34]. As mentioned for
BLT, the volume of the bioluminescent sources is

Table 1. Optical Parameters of Each Organ in the Mouse Atlas [34]

Muscle Heart Lungs Liver Spleen Bone

μa (mm−1) 0.032 0.022 0.071 0.128 0.075 0.002
μ0s (mm−1) 0.586 1.129 2.305 0.646 2.178 0.935

Fig. 1. (Color online) Reconstruction model with a single source.
(a) Torso of the mouse atlas model with one source in the liver;
(b) Simulated photon distribution on the surface.
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always small and sparse, that is, as necessary for
early detection of tumors. Therefore, small spherical
sources were used in the simulation verification.

For the forward problem, FEM was employed to
generate the synthetic measurements. The atlas

model with the interior bioluminescent source was
discretized into a tetrahedral-element mesh consist-
ing of 30,998 nodes and 167,841 tetrahedral ele-
ments. The bioluminescent sources were 0.6 mm in
diameter and were located in the liver, with the
center at (18.24, 31.58, 47.29) (the units are in milli-
meters), as shown in Fig. 1(a). The density of the bio-
luminescent source is set to be 2.0 nWatts ∕mm3.
Figure 1(b) shows the simulated photon distribution
on the surface. The reconstruction mesh consisted of
4,093 nodes and 20,068 tetrahedral elements. By re-
moving the points on the top cross section and bottom
cross section, there were 1166 measurement nodes
and 3624 unknowns. The proposed method could
be competent for whole-body bioluminescence tomo-
graphy. Therefore, the size of the system matrix was
1166 × 3624.

The reconstruction results were evaluated quanti-
tatively in terms of reconstruction time, location er-
ror, and maximum reconstruction value. We defined
the location error to be LE � jSrecon − Srealj, where
Sreal is the real location of the source center and
Srecon is the location of the node with the maximum
reconstructed value for that source.

To better illustrate the performance of the pro-
posed method, we compared the proposed method

Fig. 2. (Color online) Comparison of the reconstruction results.
(a), (b), (c), and (d) are the reconstruction results with Newton-
L2 (without PSR), Newton-L2 (with PSR), IS-L1, and the proposed
method, respectively. The results are shown in the form of iso-
surfaces for 40% of the maximum value (left column) and slice
images in the z � 47.29 mm plane (right column). The small yel-
low sphere in the iso-surfaces view image and the circles in the
slice images denote the real position of the bioluminescent source.

Fig. 3. (Color online) Reconstruction results with kth outer
iteration.

Table 2. Quantitative Comparisons of Reconstruction Results

Recon. Method Recon. Position (mm) LE (mm) Recon. Time (s)
Maximum Recon.
Value (nW ∕mm3)

Newton-L2 (14.45, 35.50, 45.75) 5.6684 1301.7 0.00104
Newton-L2 (with PSR) (18.19, 34.25, 46.40) 2.8132 215.6 0.01042
IS-L1 (18.26, 31.97, 47.28) 0.3995 237.9 0.01363
Proposed method (18.26, 31.97, 47.28) 0.3995 4.51 0.01434
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with the IST-basedmethod (IS-L1) [22] and Tikhonov
regularization method [12,13,16]. Both of them are
typical methods for optical reconstruction. The for-
mer can be viewed as an extension of the classical

gradient algorithm and is attractive due to its simpli-
city. Here, we calculated the step size of IST using the
method introduced in [22] and set the maximum
iteration number to be 100000. In our experiments,

Table 3. Quantitative Information about Reconstruction Results with k th Outer Iteration

kth J�x�
Maximum Recon.
Value (nW ∕mm3)

Number of Inner
Iteration Time (s)

0 (Initial value) 0 0 — —

1 2.58068e-11 0.00200 10 1.2065
2 1.00169e-11 0.00394 3 0.1874
3 9.88048e-13 0.00681 3 0.2365
4 9.77913e-13 0.01072 3 0.3096
5 9.62687e-13 0.01379 6 0.5587
6 9.67595e-13 0.01433 6 0.8528
7 9.62326e-13 0.01434 5 1.1052

Table 4. Quantitative Comparisons of Reconstruction Results with Different Gaussian Noise Levels

Noise Level Recon. Method
Recon. Location
Center (mm) LE (mm)

Recon.
Time (s)

Maximum Recon.
Value (nW ∕mm3)

5% Newton-L2 (15.06, 40.46, 53.91) 11.5296 1360.3 0.00676
Newton-L2(with PSR) (18.19, 34.25, 46.40) 2.8132 206.6 0.02293
IS-L1 (18.26, 31.97, 47.28) 0.3995 244.7 0.01162
Proposed method (18.26, 31.97, 47.28) 0.3995 4.93 0.01250

10% Newton-L2 (15.89, 43.03, 53.58) 13.2826 1347.8 0.00797
Newton-L2(with PSR) (25.37, 30.38, 49.27) 7.4944 218.6 0.01192
IS-L1 (18.26, 31.97, 47.28) 0.3995 241.2 0.01016
Proposed method (18.26, 31.97, 47.28) 0.3995 5.35 0.01108

15% Newton-L2 (15.30, 17.26, 33.11) 20.3579 1341.6 0.00892
Newton-L2(with PSR) (18.19, 34.25, 46.40) 2.8132 205.6 0.01778
IS-L1 (18.26, 31.97, 47.28) 0.3995 226.4 0.00868
Proposed method (18.26, 31.97, 47.28) 0.3995 4.94 0.01003

Table 5. Quantitative Information about Reconstruction Results with k th Outer Iteration for Different Levels of Noise

Noise Level kth J�x� Maximum Recon. Value (nW ∕mm3) Number of Inner Iteration Time (s)

5% 0 (Initial value) 0 0 — —

1 2.79457e-11 0.00168 12 1.4417
2 3.39168e-12 0.00307 3 0.1995
3 3.38357e-12 0.00531 3 0.3303
4 3.37738e-12 0.00857 4 0.4859
5 3.37053e-12 0.01133 4 0.6593
6 3.36685e-12 0.01231 4 0.7179
7 3.36641e-12 0.01250 5 1.0511

10% 0 (Initial value) 0 0 — —

1 2.86798e-11 0.00156 9 1.2666
2 3.29571e-12 0.00278 3 0.2966
3 3.29003e-12 0.00458 3 0.3423
4 3.28576e-12 0.00693 3 0.4162
5 3.28195e-12 0.00922 3 0.4900
6 3.27976e-12 0.01055 6 1.0265
7 3.27923e-12 0.01108 6 1.4625

15% 0 (Initial value) 0 0 — —

1 2.83062e-11 0.00142 10 1.2854
2 3.31427e-12 0.00246 4 0.3002
3 3.30929e-12 0.00400 3 0.2832
4 3.30605e-12 0.00598 4 0.4146
5 3.30334e-12 0.00798 4 0.7073
6 3.30171e-12 0.00948 5 0.8368
7 3.30099e-12 0.01003 6 1.0690
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we reconstructed the source with the Tikhonov regu-
larization method in two different cases. In first case,
there was no PSR employed, which was similar with
the conditions of IS-L1 and the proposed method.
In the second case, we defined f�x; y; z�j46 ≤ z ≤ 50g
as the PSR, and there were 666 nodes in the
reconstruction region.Weuseda limited-memory var-
iation of the Broyden–Fletcher–Goldfarb–Shanno
(LBFGS) method to solve the objective function of
Tikhonov regularization, because theNewtonmethod
is a second-order optimization method. Here, we set
the maximum iteration number for the LBFGS to
be 800. The regularization parameter for the three
methods was manually optimized. Finding the
optimal or near-optimal regularization parameters
automaticallywill be our futurework.All of the recon-
structions were carried out on a personal computer
with Intel Core2 Duo processor, 3.2 GHz, and
2 GB RAM.

The comparison experiment using the three meth-
ods was performed. The visual effects of the recon-
struction results are presented in the form of slice
images and iso-surfaces as shown in Fig. 2. The
quantitative information is also listed in Table 2.
It can be seen that both IS-L1 and the proposed
method could obtain satisfactory source location and
maximum reconstruction value. The reconstruction
result of Newton-L2 was oversmoothed and highly
dependent on the selection of PSR, and its perfor-
mance was inferior to the other two methods. As for
the proposed method, it not only performed slightly
better than IS-L1 in terms of maximum reconstruc-
tion value, but it was also about 50 times faster than
IS-L1.

Due to an improved direction and an automatic
step-size selection mechanism, the proposed method
could obtain better results within 5 s. In the ex-
periment, the reconstruction was completed when
the number of outer iterations (the number of up-
dated primal variables) was 7. In contrast, it was

100000 for IS-L1. A set of slice images for the recon-
struction results corresponding to the kth outer
iteration is shown in Fig. 3, and the quantitative data
are listed in Table 3, where J�x� is the value of the
objective function in Eq. (6).

2. Reconstructions with Different Noise Levels
It is well known that the ill-posed nature of BLT
makes the reconstruction sensitive to measurement
noise. We performed simulations based on measure-
ments with different levels of Gaussian noise to eval-
uate the robustness and stability of the proposed
method. The heterogeneous model and the setting
of source were the same as those in previous subsec-
tion. Gaussian noise at 5%, 10%, and 15%, respec-
tively, was added to the synthetic measurements.
The quantitative reconstruction results are compiled
in Table 4. We found that both IS-L1 and the pro-
posed method could localize the source from the
whole body, even in the presence of noise. Compared
with IS-L1, the proposed method could produce com-
parative quantitative results. However, its recon-
struction time was about 45 times that of IS-L1.

Fig. 4. (Color online) Reconstruction results in the double-source
case. The results are shown in the form of iso-surfaces for 40% of
the maximum value (left column). Slice images in z � 47.06 mm
and 47.29 mm planes (right column) were selected to show the re-
sults in more detail. The small yellow sphere in the iso-surfaces
view image and the circles in the slice images denote the real posi-
tion of the bioluminescent source.

Fig. 5. (Color online) Reconstruction results in the double-
sources case. The results are shown in the form of iso-surfaces
for 40% of the maximum value (left column). Slice images in
z � 47.06 mm, 47.29 mm, and 47.45 mm planes (right column)
were selected to show the results in more detail. The small yellow
sphere in the iso-surfaces view image and the circles in the slice
images denote the real position of the bioluminescent source.

Table 6. Reconstruction Results in Double-source Case

Source
Number

Actual
Position
(mm)

Recon. Location
Center (mm)

Location
Error
(mm)

Maximum Recon.
Value (nW ∕mm3)

1 (18.74,
39.15,
47.06)

(18.75, 39.20,
46.86)

0.2064 0.0163

2 (18.24,
31.58,
47.29)

(18.26, 31.97,
47.28)

0.3995 0.0145
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Additionally, to describe the process of the recon-
structions in more detail, the reconstruction results
corresponding to the kth outer iteration for each level
of noise are listed in Table 5.

3. Double-source Case and Multiple-source Case
With respect to multisource intensities and depths, a
two-source-setting simulation and a three-source-
setting simulation were considered in evaluating
the proposed method. Both forward mesh and recon-
structionmeshhave the same size as thoseused in the
single-source case. All of the sources were placed in
the liver and had the same size as the one used in the
single-source case. Their position centers and inten-
sities were (18.24, 31.58, 47.29) and 2, (23.60,
37.94, 47.45) and 1.8, and (18.74, 39.15, 47.06) and
1, respectively. Figure 4, Fig. 5, Table 6, and Table 7
show the reconstruction results for different source

setups in the form of slice images along with iso-
surfaces for 40% of themaximum value and quantita-
tive data. We found that the sources can be distinctly
distinguished and accurately reconstructed.

B. In Vivo Experiment

In this subsection, an in vivo experiment was
performed to further evaluate the proposed algo-
rithm. The experiment was conducted in the dual-
modality optical/micro-CT in vivo imaging prototype
system developed in our lab [35–37]. A nude, hairless
mouse (Nu/Nu, Laboratory Animal Center, Peking
University, China) was used in this experiment.
The test luminescent source implanted into the abdo-
men of a nude mouse was a transparent catheter
filled with luminescent liquid. The source had a simi-
lar emission spectrum with the firefly luciferase-
based source. It was about 1 mm in diameter and
2.5 mm long.

The optical data, including photographs and lumi-
nescent images, were captured by a CCD camera
(Princeton Instruments VersArray 1300B, Roper
Scientific, Trenton, NJ) from four directions at 90 deg
intervals. To reduce dark current noise and increase
intensity of luminescent signals, the CCD was cooled
to −110 °C using liquid nitrogen, and the integration
time was set to 120 s. The four-view superimposed
images of photographs and luminescent images are
shown in Fig. 6. After finishing optical acquisition,
the anesthetized mouse was scanned using micro-CT.
According to the information based on anatomical
structures, the CT image was segmented into the
heterogeneous model including muscle, heart, liver,
lungs, and kidneys, as shown in Fig. 7(a). The optical
parameters for the tissues are listed in Table 8
[34,38]. Then a landmarks-based rigid-body registra-
tion method was adopted in this work to register

Fig. 7. (Color online) In vivo heterogeneousmodel. (a) Torso of the
model. (b) Three-dimensional photon distribution on the surface
resulting from two-dimensional bioluminescence photographs.

Table 7. Reconstruction Results in Multiple-source Case

Source
Number

Actual
Position
(mm)

Recon. Location
Center (mm)

Location
Error
(mm)

Maximum Recon.
Value (nW ∕mm3)

1 (18.74,
39.15,
47.06)

(18.75, 39.20,
46.86)

0.2064 0.0167

2 (18.24,
31.58,
47.29)

(18.26, 31.97,
47.28)

0.3995 0.0146

3 (23.60,
37.94,
47.45)

(23.60, 37.97,
47.65)

0.2023 0.0156

Table 8. Optical Parameters of Each Organ in the Heterogeneous
Model [34,37]

Muscle Heart Lungs Liver Kidneys

μa (mm−1) 0.008 0.138 0.456 0.829 0.150
μ0s (mm−1) 1.258 1.076 2.265 0.735 2.507

Fig. 6. (Color online) Multiview superimposed images of photo-
graphs and luminescent images. (a), (b), (c), and (d) are 0°, 90°,
180°, and 270° views, respectively.
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CT data with the bioluminescent images [36]. After
the registration, the absolute irradiance distribu-
tion in two-dimensional bioluminescent images was
mapped on the three-dimensional mouse surface.
The photon distribution onto the surface is shown
in Fig. 7(b). Additionally, the bioluminescent source
was easily distinguished in CT images, and the
actual center of the source was (20.05, 16.18, 8.46).

The torso consisted of 1832 nodes and 9072 tetra-
hedral elements. The reconstruction took 3.46 s. The
reconstruction center position of the source was
(20.46, 15.23, 8.11) with a deviation of 1.05 mm to
the actual center, and the final reconstructed results
of the proposed method are shown in Fig. 8.

4. Conclusion

In this paper, the BLT problem based on L1-norm
regularization was transformed into a dual problem,
and the resulting constrained problem was attacked
with an AL scheme. The proposed method is based on
the dual sparse reconstruction problem and expli-
citly uses the sparsity of the primal variable. Thus
the proposed approach is accomplished in large-scale
ill-posed inverse problems with dense system ma-
trices, which makes it very suitable for BLT.

It is noted that the in vivo experiment was not as
accurate as the simulations. There are many reasons
responsible for this instance. In the first place, the
error was generated when wemapped the energy dis-
tribution from two-dimensional images to the three-
dimensional mouse surface. Second, main tissues
were reserved for building a heterogeneous model,
but others were simply regarded as muscle, which
also led to errors. With the improvement of the ex-
perimental procedures and imaging system, recon-
struction quality could be promoted. After all, it is
a newly developed imaging system.

For BLT reconstruction, the DA is attractive and
popular due to its moderate computational efficiency
and explicit physical meaning. However, it has some
limitations in certain regions, such as in the void or
more absorptive regions. To solve this problem, more

complex and precise forward models have been
developed. BLT reconstruction is a linear inverse
problem in nature; thus the proposed method can be
performed on these advanced models with fewer
modifications.

In conclusion, an efficient reconstruction algo-
rithm for BLT based on the duality and variable
splitting is presented. Both simulations and the
in vivo experiment have validated that the proposed
method can accurately reconstruct the biolumines-
cent source without the PSR and multispectral mea-
surements. Future work will be focused on in vivo
experiments with probe-marked tumor models.
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