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a b s t r a c t 

Dynamic gesture recognition, which plays an essential role in human-computer interaction, has been 

widely investigated but not yet fully addressed. The challenge mainly lies in three folders: 1) to model 

both of the spatial appearance and the temporal evolution simultaneously; 2) to address the interference 

from the varied and complex background; 3) the requirement of real-time processing. In this paper, we 

address the above challenges by proposing a novel deep deformable 3D convolutional neural network 

for end-to-end learning, which not only gains impressive accuracy in challenging datasets but also can 

meet the requirement of the real-time processing. We propose three types of very deep 3D CNNs for 

gesture recognition, which can directly model the spatiotemporal information with their inherent hier- 

archical structure. To eliminate the background interference, a light-weight spatiotemporal deformable 

convolutional module is specially designed to augment the spatiotemporal sampling locations of the 3D 

convolution by learning additional offsets according to the preceding feature map. It can not only diver- 

sify the shape of the convolution kernel to better fit the appearance of the hands and arms, but also 

help the models pay more attention to the discriminative frames in the video sequence. The proposed 

method is evaluated on three challenging datasets, EgoGesture, Jester and Chalearn-IsoGD, and achieves 

the state-of-the-art performance on all of them. Our model ranked first on Jester’s official leader-board 

until the submission time. The code and the trained models are released for better communication and 

future works 1 . 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Gesture recognition in real-world has drawn significant atten-

ion from computer vision community, owing to its broad applica-

ions in many areas like VR/AR and human-computer interaction

1,2] . In the past decades, although many methods have been pro-

osed, dynamic gesture recognition from video sequence is still a

hallenging problem. The difficulties mainly lie in three folders: 

1) The most discriminative parts in a gesture video clip are the

ands and arms. The area of the region they occupied is relatively

mall compared to the whole video frame. As a result, the clas-

ifier is easily misguided by the varied environments and complex

ackgrounds in real-world scenes. 2) Different from action recogni-
∗ Corresponding author. 

E-mail address: yfzhang@nlpr.ia.ac.cn (Y. Zhang). 
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ion, background context can be hardly employed to facilitate ges-

ure recognition. Motion information plays a more important role

n gesture recognition than action recognition. The model needs to

istinguish the fine-grained difference in the movement of hands.

n a widely used action dataset UCF-101 [3] , action categories can

sually be identified from a still image as illustrated in Fig. 1 -(a),

ecause the background context, such as surrounding scenes and

nteracted objects, can provide enough cues for recognition. How-

ver, it is difficult to distinguish dynamic gestures using a still im-

ge. For example, “moving hand left” versus “moving hand right”

annot be classified with only one frame, because both of them

an be turned into each other by just reversing the temporal or-

er of the image sequence as illustrated in Fig. 1 -(b). 3) An ap-

licable gesture recognition system requires to real-timely process

he video stream. However, the most popular deep neural network

ethods for video classification, i.e., two-stream-based deep neural

etwork [4] , cannot be executed in real-time. In detail, the optical

ow, which is responsible for extracting temporal information in

https://doi.org/10.1016/j.patcog.2020.107416
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107416&domain=pdf
mailto:yfzhang@nlpr.ia.ac.cn
https://github.com/lshiwjx/deform_conv3d_pytorch_op
https://doi.org/10.1016/j.patcog.2020.107416
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Fig. 1. (a) Images randomly selected in the UCF-101 [3] action dataset. (b) A gesture image sequence in the Jester dataset and its duplicate by reversing the order of the 

sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

i  

a  

p  

e  

o  

2  

R  

c  

p  

t  

a  

s  

b  

3  

t

 

t  

t  

e  

p  

o  

o  

t  

t  

s

 

 

 

 

 

 

 

 

 

 

 

 

the two-stream framework, has to be obtained off-line due to its

intensive computation. 

To address the issue of the interference from background clut-

ter in gesture recognition, certain methods perform hand detection

to reduce the effect of the backgrounds [5] . Nevertheless, the addi-

tional process for hand detection needs extra computation cost and

hand position annotations. Furthermore, the final recognition per-

formance heavily relies on the accuracy of hand detection, which

may become the bottleneck of the overall framework. Recently, Cao

et al. [6] propose to insert a spatiotemporal transformer module

into the LSTM to warp the feature map to a canonical view in both

the spatial and temporal dimensions. It can be trained end-to-end

without additional preprocessing. However, based on the learned

transform matrix, the transformer can only globally warp the en-

tire feature map, which lacks the flexibility for locally geomet-

ric transformation. Inspired by Dai et al. [7] , a spatiotemporal de-

formable convolution is proposed in this work to replace the spa-

tiotemporal transformer. Conventional convolution can be seen as a

weighted sum over a sampling grid in the input feature map which

is fixed to be a rectangle. The spatiotemporal deformable convolu-

tion augments the sampling locations for each convolutional step

by learning additional offsets in both spatial and temporal dimen-

sions according to the preceding feature map. It enables free-form

deformation of a spatiotemporal sampling grid and can generalize

various transformations for the shift, scale and rotation. In contrast

with Dai et al. [7] which only focus on the 2D deformation, our

spatiotemporal deformable convolution can not only diversify the

sample region and shape to better match the appearance of hands

and arms, but also help models pay more attention to the discrim-

inative frames in a video sequence. The spatiotemporal deformable

module is light-weight with a small number of parameters for off-

set learning. It can readily replace the plain 3D convolutional layers

and be trained end-to-end with the standard back-propagation. 

As for the requirement of modeling both the spatial and tem-

poral information simultaneously and running gesture-recognition

system real-timely, the 3D convolutional neural networks (CNNs)

is a suitable choice. The hierarchical architecture of the 3D CNN is

intuitively suitable for spatiotemporal modeling, which can capture

the appearance and motion simultaneously from the low-level de-

tails to the high-level semantics. Besides, due to the ability to be

processed in parallel, the 3D CNNs are faster during training and

inference compared with the two-stream-based methods and can

be executed in real-time. 

 

However, the traditional 3D CNN models are mainly based on

he C3D [8] structure, which has only eight convolutional layers. It

s shallower than most of the successful 2D models used in im-

ge classification domain, resulting in limited representation ca-

acity. A valid question is why not build deeper 3D CNN mod-

ls for gesture recognition. In this work, we propose three types

f deep 3D CNN models for gesture recognition based on three

D CNN models succeeded in image classification domain, namely,

esNet [9] , ResNeXt [10] and Inceptions [11] . Since the model be-

omes deeper, it becomes harder to train due to a large number of

arameters. In this work, certain practical skills, which are proved

o be important for training very deep 3D CNNs, are also proposed

nd validated, including using the models pre-trained on the large-

cale action recognition datasets, performing data augmentation in

oth the spatial and temporal dimensions. Using these skills, our

D deep models exhibit evident improvement compared with the

raditional C3D. 

To the best of our knowledge, This is the first work to propose

he spatiotemporal deformable convolution and combine it with

he very deep 3D CNNs to directly model the whole gestures in an

nd-to-end manner. We demonstrate that our method, which can

erform inference in real-time and needs only RGB videos with-

ut any additional pre-processing such as optical flow extraction,

utperforms other methods on three challenge datasets, EgoGes-

ure [12] , Jester [13] and Chalearn-IsoGD [14] . All of the proposed

hree types of very deep 3D CNN models can be improved by in-

erting our spatiotemporal deformable convolution module. 

The main contributions of our work include: 

• We articulate the differences between gesture recognition and

general action recognition in three aspects: 1) Background con-

text can provide useful knowledge for action recognition. How-

ever, it is useless and even harmful in gesture recognition. 2)

The motion of hands and arms are more crucial part in ges-

ture recognition than in action recognition. 3) Gesture recog-

nition is more sensitive to the computational complexity than

action recognition as it is mainly used in a real-time human

computer interaction system. Therefore, we think that the ges-

ture recognition is a fine-grained classification task. The model

needs to focus on the spatial appearance and temporal motion

of the hands and arms. 
• We design a light-weight spatiotemporal deformable convolu-

tion module which enables free-form deformation of the sam-
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pling grid for a convolutional kernel on both spatial and tempo-

ral dimensions. The proposed method achieves state-of-the-art

performance on three challenging datasets, EgoGesture, Jester

and Chalearn-IsoGD. 
• We provide an insight that the benefit of plugging the spa-

tiotemporal deformable convolution module to the higher level

layer is larger than to the lower level layer. 
• We propose a data spatiotemporal augmentation method to

randomly generate diverse data samples in a spatiotemporal

cube, which is proved to be effective for model training. 

. Related work 

.1. Gesture recognition 

Gesture recognition has been widely investigated for decades

ith many works proposed for this issue, ranging from static to

ynamic gestures, and from the hand-crafted-feature-based meth-

ds to CNN-based methods. Traditional methods focus on design-

ng various hand-crafted features for gesture recognition. Ohn-Bar

t al. [15] evaluate a set of common spatiotemporal descriptors

nd employ them for an in-vehicle vision-based gesture recogni-

ion system. Wan et al. [16] propose a method named mixed fea-

ures around sparse keypoints (MFSK) to extract spatiotemporal

eatures and perform one-shot learning gesture recognition from

GB-D data. Tand et al. [17] propose to combine templates and

elocity information to spot the beginning and ending points in

and gesture trajectories. Different weights are assigned to fea-

ure sequences based on the positions of corner points in the arbi-

rary trajectories. However, the expression capacity of these hand-

rafted features is still limited. Some of the features are computa-

ional expensive. 

Recently, deep-learning-based methods have achieve tremen-

ous success in many computer vision tasks such as image de-

ection [18] , pose estimation [19] and action recognition [20] . It

lso exhibit excellent performance in the field of gesture recog-

ition. Wang et al. [21] propose three simple representations of

epth sequences, i.e., Dynamic Depth Image (DDI), Dynamic Depth

ormal Image (DDNI) and Dynamic Depth Motion Normal Images

DDMNI), and fine-tune the existing ConvNets models trained on

mage data for classification of depth sequences. To better uti-

ize the temporal information, C3D [8] is employed for dynamic

esture recognition, since it can directly model the spatial and

emporal information with the 3D Convolutional kernel. On the

017 ChaLearn LAP Large-scale Isolated Gesture Recognition Chal-

enge, the C3D-based methods have demonstrated the powerful

patiotemporal feature representation ability and achieved remark-

ble performance. Li et al. [22] enhance the traditional C3D model

ith the help of the saliency theory, which is employed to alle-

iate the interference of gesture-irrelevant factors. However, com-

ared with the successful models employed in image classification

rea, e.g. ResNet [9] , Inceptions [11] , C3D is relatively shallow and

ts capacity is limited. 

Many works leverage the LSTM for long-term sequence mod-

ling. Zhu et al. [23] combine the C3D and LSTM to model the

esture. The Spatial Pyramid Pooling (SPP) is employed to nor-

alize the spatiotemporal features for final classification. Pigou

t al. [1] demonstrate that the temporal information is more im-

ortant for gesture recognition compared with other tasks such as

ideo classification. They further show that temporal pooling and

STM is crucial for this task and lead to significant improvements.

owever, RNN-based method is hard to train due to the vanish-

ng and the exploding gradient problems [24] . Besides, when us-

ng LSTM for gesture recognition, the input of LSTM is high-level

epresentation extracted by CNN, which may cause the neglect of
ow-level temporal information. In this sense, directly model the

hole sequence with 3D CNNs is more suitable. 

Employing optical flow is another rewarding method for mo-

ion encoding. It is widely used for action recognition [4,20] and

s leveraged as a modal input for gesture recognition [25] . How-

ver, there is a great computational preprocessing complexity for

alculating the optical flow, which cannot meet the requirement of

eal-time execution. Thus, we do not consider this kind of methods

n this work. 

Recent works [26,27] focus on the multi-modal fusion. Duan

t al. [26] fuse the RGB stream, the depth steam and the optical

ow field of the RGB/depth videos in an unified framework, where

he SoftMax scores are added to get the final prediction. They addi-

ionally propose to use the saliency information to help modeling

he human motions. Chang [27] proposes to employ the skeletal

oint-based features and the appearance information near the ac-

ive hand in an RGB image to capture the detailed motion of fin-

ers. In this work, since our motivation is to investigate the effec-

iveness of the spatiotemporal deformable module, we only con-

ider the RGB modality. 

Compared with action recognition or scene recognition where

he background can provide useful context knowledge, it becomes

n obstacle for gesture recognition. To avoid the interference of the

ackground clutter, many methods perform the spatial-temporal

and segment process [15] . Using additional detection process

rings additional computational cost. Since the recognition perfor-

ance heavily relies on the accuracy of detection, it always be-

omes the bottleneck of the system. Recently, Cao et al. [6] propose

 recurrent spatiotemporal transformer module, which can learn

 3D homography transformation matrix in the training process

nd actively transform the 3D feature maps into a canonical view.

nstead of transforming all of the pixels with a uniform manner,

e propose a spatiotemporal deformable convolution module in

his paper to augment each sampling location individually for spa-

iotemporal convolution, which brings more flexibility while main-

aining the end-to-end learning capability. 

.2. 3D CNNs 

3D CNNs have been widely used in the action recognition field.

he 3D CNNs [28] use 3D convolutional kernels which can directly

xtract the spatiotemporal features form the low levels to the high

evels. Because the 3D CNNs have much more parameters than the

D CNNs, it is more difficult to train and the performance is also

imited. Recently, due to the emergence of the large-scale video

ataset [29] and using the pre-trained models, the 3D-CNN-based

ethods have shown better performance than the 2D-CNN-based

ethods. The earliest 3D convolutional network is C3D [8] , which

s designed based on the VGG ConvNet and has only 8 convolu-

ional layers. After that, many deeper 3D convolutional networks

re designed based on the 2D CNNs that are successful used in

he image classification field. For example, I3D [29] is designed

ased on the Inception [30] model and Res3D [31] is designed

ased on the ResNet [32] model. Besides, S3D [33] proposes to

eplace some of the 3D convolutional layers to the 2D convolu-

ional layers to save the computation while keeping the accuracy

nchanged. In [34] , the 3 × 3 × 3 convolutions are replaced with

ne 1 × 3 × 3 convolutional filters on the spatial domain and one

 × 1 × 1 convolutions on the temporal domain. 

.3. Deformable convolution 

Conventional convolution samples the input feature map at

xed locations, which lacks internal mechanisms to handle the ge-

metric transformations. Many works have been proposed to solve

his problem. Some methods focus on the modification of input
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Fig. 2. Illustrations of the basic blocks for three types of models explored in this work: (a). ResNet Basic Block. (b). ResNet Bottleneck Block. (c). ResNeXt Bottle Block. (d). 

Inception Block. MP denotes the max-pooling layer. 
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feature map. Residual Attention Network [35] learns an attention

mask in a residual branch, which is multiplied to the input feature

map to emphasize the important contents of the feature map. Spa-

tial Transformer Network [36] learns a transform matrix to warp

the feature map to the desired form. 

Other methods focus on augmenting the sampling locations of

convolution. Dilated convolution [37] moving the sampling location

father apart by increasing kernel’s stride to be larger, which can

expand the receptive field of convolution while retaining the same

computing complexity. Deformable convolution [7] also augments

the sampling grid by learning 2D offsets for each of the sampling

locations according to the preceding feature map but has more di-

versity and flexibility compared with the above methods. 

3. Method 

In this section, we propose three types of deep 3D CNN mod-

els for gesture recognition based on three 2D models succeeded in

image classification domain. 

3.1. Going deeper with 3D CNNs 

Conventional C3D [8] is a VGG-like model, which has 8 con-

volutional layers, 5 max-pooling layers, and 2 fully-connected lay-

ers, followed by a SoftMax layer. It is relatively shallow but has

79M parameters. More than half of the parameters come from the

fully-connected layers, which have been proved redundancy and

unfriendly for training [9,11] . We modify the architecture of C3D

by removing the fully-connected layers and adding a 3D global-

average-pooling layer, which directly performs the spatiotemporal

average for feature maps of last convolutional layer. We also apply

batch normalization after each of the convolutional layers, which

has been proved to be practical [30] . 

However, the modified C3D is still shallow, and the deeper

models are needed for better feature extraction. As there are al-

ready various successful models employed in image classification

domain, we empirically select three types of typical 2D CNNs and

build the deeper 3D CNNs based on these models. In particular,

ResNet, ResNeXt and Inception are explored in the experiment.

Among these models, ResNet [9] uses the residual block ( Fig. 2 (a))

to build network. Each residual block provides shortcut connec-

tions that skip one or more layers, whose outputs are finally added

with the output of skipped layers. To build the deeper model,

the residual bottleneck block is applied, which add 1 × 1 blocks

to reduce the channel dimension ( Fig. 2 (b)). The final network is
uilt by heaping numbers of residual blocks. ResNeXt [10] widens

he ResNet along channel dimension to increase the capacity of

he model. Meanwhile, the convolutional kernels are divided into

roups, and each group is corresponded to a number of channels

 Fig. 2 (c)). Inception-based networks [11,30,38] exploit the split-

ransform-merge strategy to design the network. An example of

 basic inception block is shown in ( Fig. 2 (d)), which employs

onvolutions with different kernel size to capture details at vari-

us scales. The outputs of each of the convolutional branches are

oncatenated in the end, and the overall network is the stack of

hese blocks. In this work, the ResNet-18, ResNet-34, ResNet-101

9] , ResNeXt-101 [10] , Inception-V1 [11] and Inception-ResNet-V2

38] are selected for evaluation. 

To extend the selected architectures to 3D versions, we expand

he kernel size of all the convolutional and pooling layers from

 × k to k × k × k . Because the input length along the temporal di-

ension is shorter than those along spatial dimensions, some de-

ails of the model are modified to avoid down-sampling in tempo-

al dimension too early. For ResNet3D-18, ResNet3D-34, ResNet3D-

01, ResNeXt3D-101 and Inception-ResNet3D-V2, stride of the first

onvolutional layer and max-pooling layer is changed from (2, 2,

) to (1, 2, 2) which corresponds to the ( z, y, x ) dimensions of

he feature map, where z is the temporal dimension. Similarly, the

tride of the first two max-pooling layers in Inception3D-V1 is also

odified to (1,2,2). The depth and number of parameters of these

xtended models are listed in Table 3 , where the deepest model

Inception-ResNet3D-V2) has 190 layers. 

.2. Spatiotemporal deformable convolution 

3D convolution can be seen as the weighted sum over a regu-

ar 3D sampling grid with weight W . For each location p i on the

nput feature map X , the value of corresponding location p o on the

utput feature map Y can be calculated as Eq. (1) . 

 ( ˆ p o ) = 

∑ 

ˆ p n ∈V 
W ( ˆ p n ) · X ( ̂  p i + 

ˆ p n ) (1)

here the hat symbol indicates that the variable is inte-

ral. ˆ p = ( ̂  p x , ˆ p y , ˆ p z ) is the 3D vector representing the 3D

oints in the feature map. ˆ p n enumerates the locations in 3D

ampling grid V, which is decided by the kernel size and

he dilation value of convolution. For example, if the ker-

el size is 3 and the dilation value is 1, the V will be

 (−1 , −1 , −1) , (−1 , −1 , 0) , (−1 , −1 , 1) , · · · , (1 , 1 , 1) } . A simple 3D



Y. Zhang, L. Shi and Y. Wu et al. / Pattern Recognition 107 (2020) 107416 5 

Input

3D
 C

onv

Output

Offset

Input Output

(a) Standard 3D Convolutional Layer

(b) Deformable 3D Convolutional Layer

3D Convolution

Deformable 3D 
Convolution

Fig. 3. Illustrations of the standard 3D convolutional layer and the deformable 3D 

convolutional layer. 

c  

a

 

c  

p

Y  

W  

 

i  

c  

t  

r  

a  

d  

c  

f  

c  

n  

C  

s  

b  

t  

t

 

f  

p  

l  

l  

s  

E

X

W  

r  

a  

l  

b

Fig. 4. Illustration of the trilinear interpolation. p is the original point whose coor- 

dinates are fractional. Its value is calculated by weighted sum of ˆ q i , i = 1 , 2 , · · · , 8 , 

which are the surrounding integral points. 

 

t  

T  

w

 

W  

E  

w  

a

4

4

 

d

 

i  

t  

s  

H  

m  

t

4

 

h  

t  

g  

6  

g  

l

onvolutional layer is shown in Fig. 3 (a), where the output size is

ssumed the same as input. 

Rather than using the regular sampling grid, deformable 3D

onvolution learns 3D offset �p i,n to deform the conventional sam-

ling grid as Eq. (2) . 

 ( ˆ p o ) = 

∑ 

ˆ p n ∈V 
W ( ˆ p n ) · X ( ̂  p i + 

ˆ p n + �p i,n ) (2)

here �p i,n is individual for each convolution step according to

ˆ p i and ˆ p n . As illustrated in Fig. 3 (b), the offset map F is obtained

n an additional branch inside the dashed box. It is learned by a

arefully designed 3D convolutional layer, whose kernel size is set

o 3 × 3 × 3 with pad 1 and stride 1. It keeps the spatiotemporal

esolution of F the same as X . The number of kernels is designed

s 3 NC X , where 3 indicates three offset directions (one temporal

imension and two spatial dimensions), C X is the number of input

hannels and N is the volume of the sampling grid V (e.g., N = 27

or 3 × 3 × 3 kernel). Because C X may be quite large in certain

ases (e.g., the last convolutional layer of ResNeXt has 2048 chan-

els), we apply grouped deformable convolution which divides the

 X into G groups, and each group shares the same offsets. The re-

ulting F has 3 NG channels. If G is set to a small number, the num-

er of parameters needed to learn can be greatly reduced. Finally,

he learned offsets are used in deformable convolution to augment

he sampling locations. 

Note that the offset learned by convolutional layer is typically

ractional. To make the architecture differentiable, trilinear inter-

olation is applied to get the final output. As shown in Fig. 4 , tri-

inear interpolation is the extension of linear interpolation and bi-

inear interpolation. It calculates the target value according to the

urrounding points whose distance to the target is less than 1 as

q. (3) 

 (p) = 

∑ 

ˆ q 

X ( ̂  q ) · [(1 − | ̂  q x − p x | )] + 

·[(1 − | ̂  q y − p y | )] + [(1 − | ̂  q z − p z | )] + 
(3) 

here [ x ] + = max (0 , x ) . X is the input feature map. p = (p x , p y , p z )

epresents the fractional sampling position after adding the offset

nd ˆ q represent the surrounding integral points of p. X ( p ) is calcu-

ated by weighted sum over X( ̂  q ) , where weights are determined

y the distance between p and ˆ q . 
During training, both the convolutional kernels for generating

he output features and the offsets are learned simultaneously.

he gradients can be back-propagated through Eq. (2) and Eq. (3) ,

hich is formulated as Eq. (4), Eq. (5) and Eq. (6) . 

∂ Y ( ˆ p o ) 

∂ X ( ̂  q ) 
= 

∑ 

ˆ p n ∈V 
W ( ˆ p n ) ·[(1 − | ̂  q x − p x | )] + 

·[(1 − | ̂  q y − p y | )] + [(1 − | ̂  q z − p z | )] + 
(4) 

∂ Y ( ˆ p o ) 

∂ �p x 
i,n 

= W ( ˆ p n ) 
∑ 

ˆ q 

X ( ̂  q ) · sign ( ̂  q x − p x i ) 

·[(1 − | ̂  q y − p y 
i 
| )] + [(1 − | ̂  q z − p z i | )] + 

(5) 

∂ Y ( ˆ p o ) 

∂ W ( ˆ p n ) 
= X ( ̂  p i + 

ˆ p n + �p i,n ) (6)

here the definitions of symbols are same as Eq. (2) and Eq. (3) . In

q. (5) , we only list the partial derivative of the output feature map

ith respect to the offset along the x dimension, The formulation

long the y and z dimensions can be deduced accordingly. 

. Experiments 

.1. Datasets 

The experiments are conducted on three publicly available

atasets: EgoGesture [12] , Jester [13] and Chalearn-IsoGD [14] . 

Most of the gestures designed in these datasets are challeng-

ng to distinguish, which highly depend on temporal relations be-

ween frames rather than appearance, such as “Swiping Left” ver-

us “Swiping Right”, “Turning Hand Clockwise” versus “Turning

and Counterclockwise”. They are well adapted for testing our

ethods due to their higher requirements for spatiotemporal fea-

ure expression abilities. 

.1.1. EgoGesture 

EgoGesture is a large-scale multi-modal dataset for egocentric

and gesture recognition, which designs 83 gestures for interac-

ion with wearable devices. It contains 2081 RGB-D videos, 24161

esture samples and 2953224 frames from 50 distinct subjects in

 scenes. Each video has more than one gestures, and most of the

esture samples are less than 3 seconds. The average length of iso-

ated gesture videos is 38 frames. 
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Table 1 

Results for different input strategies. 

Model Accuracy 

C3D (Average Pooling) 85.1 

C3D (LSTM) 88.9 

C3D (Uniform Sampling) 89.8 

Table 2 

Results of the modified C3D and ResNet3D-18 with and without 

using models pre-trained on the Kinetics dataset. 

Model Depth Pre-train Accuracy #Params 

Standard C3D 11 No 89.8 79.0M 

Modified C3D 9 No 90.4 36.2M 

Modified C3D 9 Yes 91.3 36.2M 

Table 3 

Results for different 3D CNNs. 

Model Depth Acc #Params FPS 

ResNet3D-18 18 90.7 31.8M 1950 

Deformable ResNet3D-18 18 91.7 35.5M 1900 

ResNet3D-34 34 91.9 60.8M 1600 

Deformable ResNet3D-34 34 92.2 65.8M 1540 

ResNet3D-101 101 94.0 81.7M 1040 

Deformable ResNet3D-101 101 94.2 85.5M 907 

ResNeXt3D-101 101 94.2 45.8M 700 

Deformable ResNeXt3D-101 101 94.7 52.2M 600 

Inception3D-V1 22 89.6 12.0M 1910 

Deformable Inception3D-V1 22 90.9 12.5M 1870 

InceptionResNet3D-V2 190 92.3 111.5M 640 

Deformable InceptionResNet3D-V2 190 92.7 118.0M 416 
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4.1.2. Jester 

Jester is a recent video dataset for hand gesture recognition,

which contains 27 kinds of predefined hand gestures performed in

front of a camera. It has totally 148,092 gesture samples extracted

from the original videos at 12 frames per second. The samples are

officially split into three sets, 118,562 samples for training, 14,787

samples for validation and 14,743 samples for testing without pro-

viding labels. The average length of the video is 35 frames. 

4.1.3. Chalearn 

Chalearn-IsoGD is a large dataset which contains 249 kinds of

gestures performed by 21 different individuals. There are totally

35,787 samples for training and 5784 samples for validation. It has

both the RGB and the Depth modality. In this work, we only use

the RGB videos. 

4.2. Training details 

We use 32 frames whose size is 112 × 112 pixels as a clip to

balance the GPU memory and information contained in each clip.

For training, we first randomly sample 32 frames and sort them

in the temporal order. If the sample is shorter than 32 frames,

we expand it by duplicating every frame (e.g., given xy , it will be

extended to xxyy ). This process will be executed recurrently un-

til the sample is longer than 32 frames. Then we perform ran-

dom cropping for each frame with the cropping ratio randomly

selected from 0 . 7 − 1 . The cropped frames are finally resized to

112 × 112 pixels. Mean-subtraction and std-division are performed

for each frame. When testing, we uniformly sample 32 frames and

center-crop them to 224 × 224 pixels, which is finally resized to

112 × 112 pixels. 

We use the stochastic gradient descent (SGD) with Nesterov

momentum (0.9) as the optimizer. We use 4 GPUs (NVIDIA TI-

TAN XP) for training. Batch size is 64 for ResNet3D-18, ResNet3D-

34, ResNeXt3D-101 and Inception3D-V1, and is 32 for ResNet3D-

101 and Inception-ResNet3D-V2. Cross-entropy is selected as the

loss function to back-propagate gradients. Weight decay is set to

0.0 0 05, and initial learning rate is set to 0.001. The learning rate is

multiplied by 0.1 at the 20 th and 30 th epoch. The training process

is ended at the 40 th epoch. 

When plugging the deformable convolutional module, the

weights and the biases of the convolution, which produce the off-

set field, is initialized to 0. The model is first pretrained in the tar-

get dataset while the deformable convolutional module is freezed.

Then both the basic model and the deformable convolutional mod-

ule are finetuned with the learning rate set as 0.0 0 01. 

4.3. Experiments on EgoGesture Dataset 

We randomly split the EgoGesture dataset into training (80%)

and testing (20%) sets according to their subjects. Each video se-

quence is segmented into isolated gesture samples based on the

manual annotations of the beginning and the ending frames. The

learning task is to predict the class labels for each gesture sample,

and the classification accuracy is used as the evaluation metric. Al-

though the dataset has both RGB and depth videos, we only use

the RGB videos as input. 

4.3.1. Input strategy 

Because the convolutional neural networks require fixed size in-

puts, the gestures need to be preprocessed to a fixed length. Tradi-

tional methods exploit the segment-based strategy used in action

recognition. It first splits the gestures into short fixed-length clips,

then processes each clip with 3D CNNs separately and finally fuses

the results by average pooling or LSTM-based methods. We argue
hat there is no need to segment the gesture because it will ne-

lect the temporal relationship between segments. Besides, these

ethods are ineffective due to the segmenting step. 

Instead of using segment-based methods, we uniformly sample

he whole gesture into an uniform length and feed them into the

D CNN. The results employing different strategies are shown in

able 1 , from which we can see that directly sampling the whole

esture outperforms other methods. 

.3.2. Model pre-training 

The three fully connected layers at the end of the standard C3D

ring more than half of the model parameters, which makes the

odel difficult to train. By removing the three fully connected lay-

rs and adding Batch Normalization after convolution, the modified

3D shows the superiority with higher accuracy yet with fewer pa-

ameters ( Table 2 ). 

To test the importance of pre-training, we evaluate the modified

3D with and without the pre-trained model. As there is no large

ataset for gesture recognition, an action dataset, Kinetics [29] , is

sed in this paper for model pre-training. It has 30 0,0 0 0 videos

round 10 seconds for 400 action classes. The results are shown

n Table 2 . It can be found that the pre-training is vital for the

raining of 3D CNNs as the performance gap with or without pre-

raining is large. We argue that it is because the 3D CNN has a

ast number of parameters due to the additional dimension of the

ernel, which makes it more data-hungry. 

.3.3. Going deeper 

The C3D is relatively shallow compared with the success-

ul models used in image classification. We further test the

eeper and more powerful models described in Section 3.1 to

ee whether these models can perform better. The ResNet3D-18,

esNet3D-34, ResNet3D-101, ResNext3D-101, Inception3D-V1 and

nceptionResNet-v2 are evaluated. All the above models are pre-

rained on the Kinetics dataset and finetuned on the EgoGesture
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Table 4 

Effect of different positions for deformable 3D 

convolution. Res5c represents the third con- 

volutional layer in Conv5_x of ResNeXt3D-101 

shown in Table 6 . Others can be inferred ac- 

cordingly. 

Position Accuracy #params 

None 94.2 45.8M 

res5c 94.5 47.9M 

res5bc 94.6 50.0M 

res5abc 94.7 52.2M 

res5abc&res4abc 94.7 58.0M 
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Table 5 

Results for different data augmentation strategies. (D) 

stands for the spatiotemporal data augmentation strategy 

described in Section 4.3.5 . 

Methods Accuracy 

ResNext3D-101 94.2 

ResNext3D-101(D) 94.5 

ResNext3D-101(D) + left-right flip 93.0 

ResNext3D-101(D) + dropout 94.7 

Deformable ResNext3D-101(D) + dropout 95.1 
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ataset. The FPS is calculated by averaging the inference time of

alidation set with batch size 1 on a single Titan-XP GPU. The load-

ng and preprocessing time are took in to account in the calcula-

ion of FPS. 

Final results are listed in Table 3 , which shows that the recog-

ition performance rises when using deeper models. In detail, the

nception3D get the lowest accuracy as it has the minimum num-

er of parameters compared with other models. The performance

f the ResNet family improves when they going deeper. By us-

ng the group convolution, ResNeXt3D-101 achieves the best per-

ormance among these models while keeping the number of pa-

ameters moderate. Hence, we use this architecture as the back-

one model in our work. The InceptionResNet3D-V2 is the deepest

odel with the largest number of parameters, but its performance

s not as well as ResNeXt3D-101. Moreover, all of these models can

e executed in real-time since we only use the RGB modality in

n end-to-end framework without additional steps such as detec-

ion and segmentation. There is a negative correlation between the

PS rate and the parameter amount of the model. It can be seen

hat the extra computational cost of adding the deformable convo-

utional module is limited for all of the models because the mod-

le only needs to be added in a small number of top layers. The

peed decrease of the deeper models (e.g. InceptionResNet3D-V2)

s larger than the shallower models (e.g. ResNet3D-18) by adding

he module. The reason is that the channel number of the top lay-

rs of the deeper model is larger than that of the shallower model,

hich results in more parameters for this layer. 

.3.4. Embedding the spatiotemporal deformable convolution 

As introduced in Section 3.2 , we plug our proposed spatiotem-

oral deformable convolution modules in above models to test the

ffectiveness. Although the plain convolutional layers can be sub-

tituted by deformable version easily, it is not sensible to replace

hem all. Table 4 evaluates the effect of deformable convolution

ositions in the network, where we make the experiments based

n ResNext3D-101 ( Table 6 ). We gradually replace the convolu-

ional layer with the deformable version from the top layer to

he bottom layer. It is observed that the accuracy is steadily im-

roved when more deformable convolution layers are used, and

he best accuracy is obtained when the final three convolutional

ayers ( conv 5 x in Table 6 ) are modified to deformable version. We

elieve that the learning of offsets needs the high-level seman-

ic information, which the lower layers cannot provide. Extra de-

ormable convolutional layers will bring additional parameters to

earn, which may harm the training process. According to the re-

ult, three deformable convolutional layers are enough for this ar-

hitecture. 

As for other architecture, we replace the top 2 layers of

esNet3D-18, top 3 layers of ResNet3D-34, top 2 layers of

nception3D-V1 and top 11 layers of InceptionResNet3D-V2. The

etails can be found in the released code. All the results are shown

n Table 3 , where adding the deformable module brings consistent

mprovement in accuracy. This well demonstrates the effectiveness
f the proposed spatiotemporal deformable convolution modules.

esides, there is only a limited increase in the amount of parame-

ers and computation time. 

.3.5. Spatiotemporal data augmentation 

Data augmentation has been proved an essential skill in the

raining process for image classification. It should be effective for

raining of 3D CNNs because the 3D CNNs have a large number of

arameters and suffer more from the overfitting problem. We de-

ign a spatiotemporal data augmentation method. It first crops the

ideo in both spatial and temporal dimensions, then resizes the

ropped video to the final resolution. The crop-shape is randomly

enerated, and the resize-shape is decided by the network archi-

ecture. 

In detail, we use ResNext3D-101 to test the data augmenta-

ion skill in EgoGesture. The input-shape of the network we used

n this work is 32 × 112 × 112 which corresponds to length,

eight and width. The original size of the video is l × 240 × 320,

here l represents the temporal length of the video and is var-

ed for different sam ples. The crop-shape is randomly generated

etween 40 × 224 × 224 and l × 240 × 320. The original video

s first cropped to the generated crop-shape and then resized to

2 × 112 × 112. The operation of temporal resizing is achieved by

niform sampling. When testing the model, we choose three crop-

hapes, i.e. 32 × 208 × 208, 40 × 224 × 224 and 48 × 240 × 240.

or each crop-shape, 8 corners and 1 center of each sample are

ropped. There are totally 27 clips generated for one gesture video,

nd prediction scores are averaged to predict the final label. All ex-

eriments are fine-tuned on Kinetics pre-trained models, and other

etails are the same as Section 4.3.2 . Besides, left-right flipping for

mage and adding the dropout layer (drop rate is 0.5) before fully

onnected layer are also tested. 

Table 5 shows the results of experiments introduced above.

t shows consistent improvement using spatiotemporal data aug-

entation skills and dropout layer. An interesting phenomenon

s that using left-right flipping augmentation harm the perfor-

ance of recognition. We argue that flipping operation confuses

he model when distinguishing gestures like “swiping left” ver-

us “swiping right.” Combing the data augmentation skills with

eformable convolution module, our Deformable ResNeXt3D-101

chieves the highest accuracy. 

.3.6. Compared with other methods 

Table 6 describes the architecture of Deformable ResNeXt3D-

01. The proposed model is compared with previous state-of-

he-art methods using RGB videos as input. iDT-FV [39] is

he most widely used hand-crafted features for video analyses.

GG16+LSTM [40] extracts the frame feature with VGG and feed

hem into LSTM for video-level modeling. C3D+SVM [8] uses

3D to model short clips and fuses the features with average

ooling. The final label is predicted by SVM. C3D+LSTM [6] is

imilar to VGG16+LSTM, but it replaces the VGG16 with C3D.

3D+RSTTM [6] further plugs a spatiotemporal transformer into

STM to better augment the model. Table 7 shows the final recog-

ition accuracy of these methods, where our model achieves the



8 Y. Zhang, L. Shi and Y. Wu et al. / Pattern Recognition 107 (2020) 107416 

Table 6 

Illustration of the architecture for Deformable ResNeXt3D-101. Each 

convolutional layer is followed with Batch Normalization and ReLU. 

(T) represents the temporal dimension and (XY) represents the spa- 

tial dimension. Downsampling is performed on conv3_1, conv4_1 and 

conv5_1 with the stride of 2. Every convolutional layer with 3 × 3 × 3 

kernel size is grouped along the channel dimension with g = 32 . 

Layers Deformable 3D ResNeXt-101 

conv1 
7 × 7 × 7 , 64 , stride 1(T ) , 2(XY ) 

3 × 3 × 3 , max − pooling, stride 1(T ) , 2(XY ) 

conv2_x 

⎧ ⎨ 

⎩ 

1 × 1 × 1 , 128 

3 × 3 × 3 , 128 

1 × 1 × 1 , 256 

⎫ ⎬ 

⎭ 

× 3 

conv3_x 

⎧ ⎨ 

⎩ 

1 × 1 × 1 , 256 

3 × 3 × 3 , 256 

1 × 1 × 1 , 512 

⎫ ⎬ 

⎭ 

× 4 

conv4_x 

⎧ ⎨ 

⎩ 

1 × 1 × 1 , 512 

3 × 3 × 3 , 512 

1 × 1 × 1 , 1024 

⎫ ⎬ 

⎭ 

× 23 

deformable conv5_x 

⎧ ⎨ 

⎩ 

1 × 1 × 1 , 1024 

3 × 3 × 3 , 2048 

1 × 1 × 1 , 2048 

⎫ ⎬ 

⎭ 

× 3 

average pooling, dropout, fc, SoftMax 

Table 7 

Validation accuracies on EgoGesture. 

Methods Accuracy 

iDT-FV [39] 64.3 

VGG16 + LSTM [40] 74.7 

C3D + SVM [8] 86.4 

C3D + LSTM [6] 88.9 

C3D + RSTTM [6] 89.3 

Inception3D-V1 [29] 90.9 

ResNet3D-18 [31] 91.7 

S3D [33] 93.4 

Deformable 3D ResNeXt 95.1 

Table 8 

Validation accuracies on Jester. 

Methods Accuracy 

Modified C3D 92.2 

ResNet3D-18 93.2 

ResNet3D-34 93.9 

ResNet3D-101 94.4 

Inception3D-V1 92.6 

InceptionResNet-v2 95.4 

S3D 96.6 

ResNeXt3D-101 96.4 

Deformable ResNeXt3D-101 97.1 

 

 

 

 

 

 

 

 

 

 

 

Table 9 

Validation accuracies of classifying “Swiping Left” ver- 

sus “Swiping Right” using ResNet3D-18, which is 

trained with original videos and evaluated with videos 

and labels that have different orders. 

Input Accuracy 

Original video / original label 98.3 

Order-reversed video / original label 1.2 

Order-reversed video / modified label 94.3 

Table 10 

Validation accuracies on Jester using videos and labels 

in different orders. 

Input Accuracy 

Original video / original label 97.1 

Order-reversed video / original label 45.5 

Single image 58.5 
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best performance compared with other methods with a large mar-

gin. 

4.4. Results on jester 

4.4.1. Accuracy on validation set 

The Jester dataset is split into training, validation and testing

sets according to the official provided.csv files. Training details are

similar with Section 4.2 and the final accuracy of different models

on validation set are listed in Table 8 . Consistent with the results

in EgoGesture, the ResNeXt3D-101 achieves the best performance

among tested models and embedding deformable convolution fur-

ther improves the recognition accuracy. Different from the results

in EgoGesture, the difference between the competing models in

Jester is more significant. We think that the number of the sam-

ples in Jester is larger than EgoGesture, which is beneficial to train

deeper and larger models. 
.4.2. Do 3D CNNs really learn the temporal information? 

We pick up a subset of Jester which contains only two classes,

.e., “Swiping Left” and “Swiping Right.” These two classes are

trongly temporal dependent. We train a ResNet3D-18 on this sub-

et, which achieves 98.26% on validation set ( Table 9 ). Then, we

everse the order of the testing videos without modifying the la-

el and evaluate the original model again using the reversed data.

he performance drops dramatically to 1.24%. Finally, we use the

rder-reversed testing videos again but modify the labels of the

wo classes accordingly. For example, if we reverse the order of a

ideo with label “Swiping Left”, we will modify the label to “Swip-

ng Right.” When evaluating the original model again, the perfor-

ance returns back to the original level (94.28%). It means that

D CNNs distinguish the two classes mainly based on the tempo-

al information. In other words, 3D CNNs do learn the temporal

nformation to distinguish the two classes. 

We further make the experiment on all of the classes on

ester. In detail, we train a Deformable ResNeXt3D-101 with orig-

nal videos and test it using the order-reversed videos. Table 10

hows that there is a significant drop on performance when using

rder-reversed videos for testing. We plot the accuracy values of

ll classes as well as the difference between accuracy values using

ifferent inputs in Fig 5 . It shows that the performance of using

rder-reversed videos as input drops more in temporal dependent

lasses such as “Swiping Left” versus “Swiping Right” and drops

ess in temporally independent classes such as “Thumb Up.” It il-

ustrates that the 3D CNNs can well capture the appearance infor-

ation for the temporally independent classes as well as the tem-

oral information for the temporal dependent classes. 

We also test the performance of applying 2D CNNs, which can-

ot model temporal information at all. We train a 2D ResNeXt-101

sing the randomly selected frame from videos as input. For evalu-

ting, the results of all the frames of the video are averaged to get

he final prediction. Table 10 shows that the accuracy of applying

D CNNs is much lower than applying 3D CNNs, which illustrates

he importance of modeling temporal information. Fig. 5 shows

hat 2D CNNs cannot distinguish the classes that are strongly tem-

oral dependent. For example, it can successfully recognize the

lass of “Thumb Up” ( > 90%), but it fails to distinguish the sam-

les of “Swiping Left” versus “Swiping Right” ( < 40%). 

The confusion matrix of final result using Deformable

esNeXt3D-101 is plotted in Fig. 6 . It shows that most of the

onfusing gesture pairs are successfully distinguished, such as

Swiping Left” versus “Swiping Right,” “Swiping Up” versus “Swip-

ng Down.” The pair “Turning Hand Clockwise” and “Turning Hand

ounterclockwise” are a little confused. Based our obervation, we
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Fig. 5. The accuracies for each of the classes with different inputs. Nor, rev and sin stand for the normal-order video, reverse-order video and single image respectively. The 

symbols nor-rev and nor-sin stand for the difference between the two items. 

Fig. 6. Confusion matrix of recognition result in Jester. 
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Fig. 7. Visualization of the offsets learned by deformable 3D convolution. The labels of two samples are “Turning Hand Clockwise” and “Zooming In With Full Hand”. 

Table 11 

Accuracies of using a corner of videos as input. DC stands 

for the deformable convolution. 

Position w/o DC w/ DC Gain 

Middle,center-crop 95.6 96.1 0.5 

Beginning,left-top-crop 91.5 92.3 0.8 

End,right-bottom-crop 81.1 82.6 1.5 

Table 12 

Test accuracy in Jester dataset. 

Methods Accuracy 

20BN’s Jester System 82.3 

Ford’s Gesture Recognition System 94.1 

Besnet [41] 94.2 

TRN [42] 94.8 

DIN 95.31 

Spatiotemporal Two Streams Network 96.3 

Motion Fused Frames [43] 96.3 

ResNeXt3D-101 95.7 

Deformable ResNeXt3D-101 96.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 13 

Validation accuracies in Chalearn-IsoGD dataset. 

Model Chalearn 

Li et al [22] 37.3 

Zhu et al [23] 43.9 

ResC3D [44] 45.1 

Wang et al [21] 43.7 

2SCVN-RGB [26] 45.7 

Roitberg et al [45] 52.3 

ResNeXt3D-101 53.0 

Deformable ResNeXt3D-101 54.3 

InceptionResNet3D-V2 55.1 

Deformable InceptionResNet3D-V2 55.8 
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found that there are a lot of wrong labels for these two classes in

the original dataset, which causes the low performance. 

4.4.3. Deformable convolution 

To better show the effectiveness of deformable convolution, we

use part of the gestures as input to evaluate the performance of

ResNeXt3D-101 with or without embedding deformable convolu-

tion module. In particular, we cut out the 32-frame clips from the

beginning, middle and end of videos as input, and crop the left-

top, central and right-bottom corner of frames respectively. The

results are shown in Table 11 , from which we can see the perfor-

mance gain of using deformable convolution increases when the

gestures are incomplete or not in the center. It can be explained as

the offsets learned by deformable convolution can help the model

extract useful features. 

Two successfully recognized samples in Jester are visualized in

Fig. 7 . Sample locations of one deformable convolutional step are

plotted with red points. It can be seen that sample locations are

deformed in both spatial (the sample locations are not in a grid)

and temporal (the number of sample locations in different frames

are different) dimensions to match the video content better. 

4.4.4. Accuracy on test data 

Our models are further evaluated on the test set of Jester, and

the result is submitted to the official leaderboard. Table 12 shows

the final results compared with other methods listed in the leader-

board, where our model achieves the best performance until the

submission time. It can be seen that deep 3D CNN shows ex-

cellent capacity for video representation, and embedding the de-

formable convolutional layers brings additional improvement. We
annot find the papers of several submissions so we only list the

ethods name they provided in the website 

.5. Results on chalearn-IsoGD 

We also conduct experiments on the Chalearn-IsoGD dataset.

esNeXt3D-101 and InceptionResNet3D-V2 are compared with

heir deformable version in Table 13 . It shows that the

nceptionResNet3D-V2 performs better than ResNeXt3D-101.

dding the deformable convolutional module brings consistent

mprovements for both of the two models. Besides, our models

re compared with other methods that use only the RGB videos

s input on the Chalearn-IsoGD dataset, where our model achieves

he state-of-the-art performance. 

. Conclusion 

In this work, three types of very deep 3D CNNs, which are

xtended from the models succeeded in the image classification

omain, are proposed for dynamic gesture recognition. A spa-

iotemporal deformable convolutional module is specially designed

o augment the sampling locations of the 3D convolution, which

elps models paying more attention to discriminative parts of the

ideo sequence in both spatial and temporal dimensions. We inves-

igate the effect of the hyper-parameters of the deformable convo-

utional module and get the best configuration based on the ab-

ation studies. We observed that the benefit of plugging the spa-

iotemporal deformable convolution module to the higher level

ayer is larger than that to the lower level layer. This can be ex-

lained as the offset learning needs high-level semantic informa-

ion under larger receptive field, which lower layers cannot pro-

ide. We further propose some practical skills for the training of

he deep 3D CNNs, such as the spatiotemporal data augmenta-

ion and using pretrained models. The final model is evaluated on

hree challenging datasets, EgoGesture, Jester and Chalearn, which

chieves the state-of-the-art performance on all of them. We also

onduct two experiments to confirm the ability of the 3D CNNs
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or modeling the temporal information and the ability of the spa-

iotemporal deformable convolutional module for paying attention

o discriminative contents in videos. Future works can focus on

ow to better model the temporal relations between frames and

educe the parameters in the 3D CNNs without the dropping of

he performance. It is also worth to investigate how to combine

he RGB videos with other data modalities such as the depth infor-

ation and the pose information. 
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