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In this paper, a multilevel, hybrid regularization method is presented for fluorescent molecular tomo-
graphy (FMT) based on the hp-finite element method (hp-FEM) with a continuous wave. The hybrid
regularization method combines sparsity regularization and Landweber iterative regularization to im-
prove the stability of the solution of the ill-posed inverse problem. In the first coarse mesh level,
considering the fact that the fluorescent probes are sparsely distributed in the entire reconstruction
region in most FMT applications, the sparse regularization method is employed to take full advantage
of this sparsity. In the subsequent refined mesh levels, since the reconstruction region is reduced and
the initial value of the unknown parameters is provided from the previous mesh, these mesh levels
seem to be different from the first level. As a result, the Landweber iterative regularization method
is applied for reconstruction. Simulation experiments on a 3D digital mouse atlas and physical
experiments on a phantom are conducted to evaluate the performance of our method. The recon-
structed results show the potential and feasibility of the proposed approach. © 2012 Optical Society
of America
OCIS codes: 170.3010, 170.0170, 170.6960, 170.6280.

1. Introduction

In recent years, there has been increasing interest in
in vivo small animal optical molecular imaging due to
its high molecular specificity, nonionizing radiation,
and cost-effectiveness [1,2]. FMT, as a promising op-
tical molecular imaging technique, can be applied to
drug discovery and preclinical oncological research
[3–5]. In this imaging process, the excitation light il-
luminates the tissue surface of the small animal la-
beled beforehand with fluorescent probes. Then,
these fluorescent probes are excited to emit photons,
which are measured on the surface of the small

animals.With themeasured data, we can reconstruct
the spatial distribution and concentration of the fluor-
escent probes [6,7].

One of the major challenges in reconstruction of
FMT is its severe ill-posedness because only the sur-
face data is measurable [8]. This can be alleviated by
increasing the measured datasets [9], and employing
the adaptive finite element method or adaptive
meshing techniques [7,10,11]. In the past few years,
the adaptive finite element method has been applied
to FMT. In [10], Joshi et al. presented an adaptive
finite element method for reconstruction with fluor-
escent targets in reflectance cube geometry using
hexahedral elements. Song andWang et al developed
a novel adaptive finite element algorithm based
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on the longest refinement method for free-space
fluorescent tomography [7]. In [11], Lv et al. proposed
a parallel adaptive finite element method for fre-
quency domain fluorescence molecular imaging with
simplified spherical harmonics approximation in a
micro-MRI-based mouse volume model. To stabilize
the solution of the inverse problem, the Tikhonov
regularization method is often utilized to constrain
this problem since it is simple and can be solved
efficiently using standard minimization methods
[12,13]. However, the solution is often oversmoothed.
In addition, a priori information is included to im-
prove the quality of the reconstructed image, such
as imposing a permissible region of the target [14].
For many FMT applications, the fluorescent target
is often sparsely distributed in the reconstruction re-
gion. This can be considered as important a priori
information for FMT. To fully take advantage of spar-
sity of the fluorescent target, sparsity regularization
was applied to FMT reconstruction and showed good
performance [15].

In this paper, we developed a multilevel, hybrid
regularization strategy that combined sparsity regu-
larization and Landweber iterative regularization
for FMT reconstruction based on the hp-finite ele-
ment method (hp-FEM). In the proposed approach,
adaptive hp-FEM was employed to create a multile-
vel finite element mesh by autoadapted reduction of
the mesh size and increment of the basis function or-
der in the reconstruction region [16,17]. The recon-
struction region was reduced from a coarse mesh
to a fine mesh due to the fact that the region was
comprised of nodes with large values, which is usual-
ly considered as the permissible region for the loca-
tion of the fluorescent target. In the first coarse
mesh, considering the region of the fluorescent target
is often very small compared with the entire recon-
struction region, the sparsity regularization method
was employed to find a solution that provided a good
initial guess and good localization for the fluorescent
target. In the subsequent refined mesh levels, the re-
construction region was largely reduced because it
only included nodes with large values. The fluores-
cent target distribution then seemed to not have
obvious sparseness compared with the reduced re-
construction region, which makes these mesh levels
different from the first mesh. The Landweber itera-
tive regularization method was then performed for
reconstruction. Landweber iterative regularization
has been widely used for ill-posed problems because
of its stability and computation efficiency [18–20].
The proposed algorithm was tested on a 3D digital
mouse atlas and homogeneous physical phantom.
Reconstructed results revealed the feasibility and po-
tential of the algorithm for FMT.

The paper is organized as follows. The proposed al-
gorithm and experimental setup are presented in
Section 2. In Section 3, 3D digital mouse model simu-
lations and physical experiments are conducted to
evaluate our algorithm. We discuss the results and
present a conclusion in Section 4.

2. Method

A. Linear Relationship Establishment

When FMT is excited by a continuous-wave (CW)
point source, the photons’ propagation is usually
represented using the following coupled diffusion
equations (DEs) [21–23]:

�
∇ · �Dx�r�∇Φx�r�� − μax�r�Φx�r� � −Θδ�r − rs�
∇ · �Dm�r�∇Φm�r�� − μam�r�Φm�r� � −Φx�r�ημaf �r�
�r ∈ Ω�; �1�

where subscript x and m denote excitation light and
emission light, respectively. D is the diffusion coeffi-
cient, and μa is the absorption coefficient. Φ denotes
the photon density. ημaf �r� is the fluorescent yield to
be reconstructed, which is denoted as X�r� in the
following part of this article. The absorption coeffi-
cient due to the fluorophore, μaf , is directly related
to the fluorophore concentration by the formula
μaf � In�10�εN, where ε is the molar extinction coef-
ficient and N is the concentration of the fluorophore
[24]. Here, the Robin-type boundary conditions are
implemented on the boundary [25]. Using the finite
element method, for total S excitation point sources,
we have the final weighted matrix:

Φm � AX . (2)

This is a linear relationship between the measured
photon flux density and the unknown fluorescent
yield. Detail descriptions are presented in [15,23].

B. Multilevel, Hybrid Regularization Method

Reconstruction of FMT is often an ill-posed inverse
problem. As mentioned above, the adaptive finite
element method can reduce the ill-posedness and im-
prove the resolution of the images. A proper regular-
ization method should consider a priori information
of the inverse problem. We developed a multilevel,
hybrid regularization method to constrain FMT re-
construction based on the hp-FEM. This method
combines sparsity regularization and Landweber
iterative regularization, which just fully considers
the different priori information in different mesh
levels.

Here, thehp-FEMisemployed tocreateamultilevel
mesh. In the first mesh, the reconstruction region is
discretized into a uniformly coarse mesh. The region
of the fluorescent target is much smaller than the re-
construction region, as shown in Fig. 1(a), hence the
sparsity regularization method was applied to fully
take advantage of the sparseness, which was an im-
portant priori information of fluorescent target. As
a result, (2) can be solved by the following minimiza-
tion problem with the l1 regularization term:

min
X

f‖AX −Φm‖
2
2 � λ1‖X‖1g; (3)
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where ‖X‖1 � P
ijxij and λ1 is the regularization

parameter. From the results in the coarse mesh, the
region comprised of nodeswith large values is usually
considered as the permissible region for the fluores-
cent target.According to this point, the reconstruction
region is reduced fromacoarsemesh to a finemesh. In
the subsequent refined mesh levels, the reconstruc-
tion region is largely reduced and the fluorescent tar-
get distribution lacks obvious sparseness compared
with the reduced reconstruction region, as shown in
Figs. 1(b) and 1(c). In addition, the reconstructed re-
sults from the previous mesh provide an initial guess
for fluorescent target distribution. These allow the
subsequent mesh levels to be different from the first
level. The Landweber iterative regularization is then
performed for reconstruction. Landweber iterative
regularization has been widely used for ill-posed pro-
blems because of its stability and computation effi-
ciency [18,19]. Its form is as follows:

X iter�1 � �I − λ2ATA�X iter � λ2ATΦm; (4)

where λ2 � 1∕
P

diag�AAT� [26]. When presented
withagood initial value,Landweber iterative regular-
ization can improve the quantification smoothly in a
small step length between neighboring iterations.

Assume there are sequence mesh levels L1;…;Lk
in FEM.

Algorithm:

Step 1: i � 1, for the initial coarse mesh level L1, reconstruct the
distribution of the fluorescent target Xi for the entire
reconstruction region Ωi � Ω using sparsity regularization, i.e.,
solve (3).
FOR i � 2 to K,
Step 2: Determine the permissible domain Ωi of the fluorescent
target distribution from the results of the coarse mesh by choosing
nodes with large values.
Step 3: Implement hp-FEM on the permissible domainΩi to obtain
a fine mesh Li.
Step 4: Reconstruct Xi for the reconstruction region Ωi on the
refined mesh level Li by Landweber iterative regularization, i.e.,
solve (4), and i � i� 1.
END

C. Experimental Setup

We examined the localization and quantification
abilities of the proposed reconstruction algorithm
on a noncontact system. Figure 2 shows the proto-
type FMT imaging system. The target was placed on
a rotational stage, which was controlled by the com-
puter. Illumination was provided by a 671nm CW la-
ser source (CrystaLaser, Reno, Nevada, USA, and
Model NO. CL671-050-O) with a power of 3mW. The
laser was a stabilized compact red laser. The spot
diameter of the laser beam was approximately
0.85mm. A custom-made 35nm bandpass filter
(HZXD, Beijng, China) centered at 720nm was used
to allow light transmission at the emission wave-
length. A highly sensitive charge-coupled device
(CCD) camera (Princeton Instruments PIXIS 2048B,
Roper scientific, Trenton, New Jersey), which was
cooled to −70 °C, was employed to collect fluorescent
signals. A Nikon Micro-NIKKOR 55mm f ∕2.8 man-
ual focus lens was mounted on the CCD camera. The
laser light entered an optical scanner (RAYLASE,
Germany) which consists of two mirrors. These mir-
rors were controlled by an in-house developed soft-
ware and the laser beam can be directed at any
position. When rotating the target to different an-
gles, multiple measurements could be implemented.

3. Experiments and Results

In this section, four groups of verification experi-
ments were designed and conducted to validate
the potential and feasibility of the proposed multile-
vel, hybrid regularization method for FMT. First, a
single fluorescent target reconstruction was per-
formed for comparison using only the sparsity regu-
larization method at each mesh level, and it showed
better performance at the location and in the fluor-
escent yield reconstruction. We then investigated
the robustness and stability of our algorithm by con-
sidering the noise and optical parameters effect.
Third, the performance of the developed method for
double fluorescent targets reconstruction was tested
on a 3D digital mouse. Finally, phantom experiments
were conducted to further test our method.

Fig. 1. (Color online) Different reconstruction regions at different mesh levels, where the red cylinder is the fluorescent target. (a) The
reconstruction region for the first mesh consists of the entire mouse torso. (b) The green zone is the reconstruction region at the second
level. (c) The green zone is the reconstruction region at the third level.
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A. 3D Digital Mouse Simulations for a Single Fluorescent
Target

In the numerical simulations, a 3D digital mouse at-
las of CT and cryosection data was utilized to provide
anatomical information [27]. Only the torso section of
the mouse with a height of 35mmwas selected as the
region to be investigated. A cylindrical fluorescent
target with a 0.8mm radius and 1.6mm height was
placed in the liver with center at (11.9mm, 6.4mm,
16.4mm), as shown in Fig. 3(a), and the fluorescent
yield of the fluorescent target was set to be
0.05 mm−1. For the forward problem, the torso model
was discretized into 132,202 tetrahedral elements
and 24,906 nodes to obtain synthetic measurements
on the surface using the FEM method. The optical
parameters for different organs are listed in Table 1
[14,28]. In this experiment, the fluorescent targetwas
excited by 18 point sources at different positions in se-
quence, as shown inFig. 3(b). Theblackdots represent
positions of the excitation point sources, which were
modeled as isotropic point sources located one mean
free path of photon transport beneath the surface on
the z � 16.5 mm plane. For each excitation source,
the surface data on the opposite side with a 120° field
of view (FOV) were measurable. Measurements were
obtained every 20° and a total of 18 datasets were
assembled for the reconstruction of the fluores-
cent yield.

For the inverse problem, reconstruction was con-
ducted on a personal computer with a 2.66GHz In-
tel(R) Xeon(R) CPU E5430 and 8.00GB RAM. The
maximum mesh level was set to Lmax � 3 in this pa-
per. The digital mousemodel was initially discretized

into 15,141 tetrahedral elements and 3050 nodes as
the coarse mesh, and the ultima refined mesh in the
hp-FEM has 20,117 tetrahedral elements and 3909
nodes. Here, we employed the incomplete variables
truncated conjugate gradient method as the sparsity
regularization method for the first mesh [29]. We did
not represent how to determine a good regularization
parameter in detail since it is a very challenging
task. Instead, we selected the range between 1e − 8
and 1e − 13, which is sufficient for our experiments.
In order to demonstrate better performance of the
presented algorithm, we compared it to use the spar-
sity regularization method at each mesh level. In all
experiments, we selected the largest value of X�r� as
the reconstructed fluorescent yield, and chose the
node with the largest reconstructed value as the cen-
ter of the fluorescent target and the nodes with the
reconstructed value bigger than 70% of the largest
value as the reconstructed target. Figure 4 shows
the reconstructed results at each mesh level on the
axial slice where the center of the real fluorescent
target is located. The figures in the left column pre-
sent the results of our method, while the figures in
the right column show the results of using the spar-
sity regularization method. The black circles in Fig. 4
denote the real fluorescent target and the color bar is
the value of the fluorescent yield with a unit of mm−1.
The minimum value in the color bar is set to zero
while the maximum one is using the larger value

Fig. 2. (Color online) Our prototype FMT imaging system. (1) La-
ser, (2) optical scanner, (3) phantom, (4) rotational stage, (5) CCD
camera. The components of the system are shown as described in
Subsection 2.C.

Fig. 3. (Color online) (a) Torso of the mouse atlas model with a
cylindrical fluorescent target in the liver, (b) the plane of excitation
sources at z � 16.5 mm. The black points in (b) represent the loca-
tion of the isotropic point sources. For each excitation source, fluor-
escence is detected at the opposite side with a 120° FOV.

Table 1. Optical Parameters of the Mouse Organs

Tissue μax (mm−1) μ0sx (mm−1) μam (mm−1) μ0sm (mm−1)

Muscle 0.0052 1.08 0.0068 1.03
Heart 0.0083 1.01 0.0104 0.99
Lungs 0.0133 1.97 0.0203 1.95
Liver 0.0329 0.70 0.0176 0.65
Kidneys 0.0660 2.25 0.0380 2.02
Stomach 0.0114 1.74 0.0070 1.36
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of the results of two methods. To analyze the results
quantitatively, Table 2 summarizes the final results
and location error (LE), which is the Euclidean dis-
tance between the centers of the reconstructed and
the actual target, namely LE � ��x − x0�2 � �y − y0�2
��z − z0�2�1∕2, where �x; y; z� is the reconstructed coor-
dinate and �x0; y0; z0� is the actual coordinate.

Although Table 2 indicates that the reconstructed
fluorescence yield of our method is similar with that
of the sparsity regularization method, the maximum
value location of the reconstructed target of our
method is obviously more accurate than that of the
compared method. As a result, the reconstructed
fluorescent yield of our method on the selected slice
is brighter than that of the compared method, as
shown in Figs. 4(e) and 4(f).

In order to evaluate the proposed multilevel, hy-
brid regularization technique for reconstruction,
sparsity regularization and Landweber iterative reg-
ularization were both implemented for the conven-
tional finite element, respectively, namely on the
fixed mesh. The fluorescent target is the same as de-
scribed above. And the fixed mesh is also the same as
the final refined mesh in our method. Table 3 and
Fig. 5 provide the results. It is clear that the recon-
structed positions are near to the mouse surface due
to the ill-posed nature of the inverse problem. And
the reconstructed fluorescent yields are much smal-
ler than our method.

B. Stability Analysis

We evaluated the stability and robustness of the re-
construction algorithm by taking into consideration
the influence of noise and optical properties. First,
simulations were conducted on a 3D digital mouse
by considering the measured data at different levels
(0%, 10%, 20%, and 40%) of the additive Gaussian
noise. Detail descriptions about this can be found
in [17]. Figure 6 shows the corresponding results
in transverse views on the z � 16.4 mm plane at
each noise level. From (a), (b), (c), and (d) in Fig. 6,
as the noise level increases, the reconstructed loca-
tion error is kept invariable, and the fluorescent yield
contains miniscule fluctuation. It demonstrates that
the influence of noise on the reconstruction results is
small and confirms the robustness of the proposed
method.

We also investigated the dependence of the recon-
struction results on the optical parameters. Two ty-
pical sets of optical properties were considered here,
as listed in Table 4 and Table 5. The first set is the
optical parameters at the excitation and emission
wavelength of Cy5.5, i.e., wavelengths at 670 and
710nm. The simulation, which was carried out with
these optical parameters, is denoted as case 1. The
second set is the optical parameters at the excitation
and emission wavelength of Indocyanine green, i.e.,
wavelengths at 780 and 830nm. The simulation,
which was carried out with the second set of optical
parameters, is denoted as case 2. All of the optical
parameters were estimated according to the method

Fig. 4. (Color online) A comparison of the reconstruction results
for a single fluorescent target between our method and by only
using the sparsity regularization method at each mesh level.
(a), (c), (e) are the transverse views of the reconstruction at z �
16.4 mm plane using the proposed method at the initial coarse
mesh, refined mesh, and final mesh, respectively, with a threshold
of 70% of the maximum value (the black circles denote the real
target). (b), (d), (f) are corresponding results only using the sparsity
regularization at each mesh.

Table 2. Reconstructed Results for a Single Target on the Final Mesh

Method
Actual Position
Center (mm)

Recon. Position
Center (mm) LE (mm)

Actual Fluo.
Yield (mm−1)

Recon. Fluo.
Yield (mm−1)

Our method (11.9, 6.4, 16.4) (12.2, 6.5, 16.5) 0.33 0.05 0.023
Compared method (11.9, 6.4, 16.4) (11.5, 5.6, 17.9) 1.75 0.05 0.027
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Fig. 5. (Color online) The transverse view of the reconstructed results for a single target at z � 16.4 mm plane, based on a fixed mesh,
which is the same as the final mesh in our method. (a) The sparsity regularization method. (b) The Landweber iterative regularization.

Table 3. Quantitative Comparison Between Sparsity Regularization and Landweber Iterative Regularization Based on a Fixed Mesh

Method
Actual Position
Center (mm)

Recon. Position
Center (mm) LE (mm)

Actual Fluo.
Yield (mm−1)

Recon. Fluo.
Yield (mm−1)

Sparsity (11.9, 6.4, 16.4) (9.7, 5.1, 15.7) 2.65 0.05 0.012
Landweber (11.9, 6.4, 16.4) (10.4, 4.0, 15.8) 2.89 0.05 0.002

Fig. 6. (Color online) (a), (b), (c), and (d) are results for single target of the transverse views at the z � 16.4 mm plane using our method
with 0%, 10%, 20%, and 40% of the Gaussian noise, respectively, where the black circles denote the real target.
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in [28]. The simulations were performed on the same
model as that in the single target case. The recon-
struction results are shown in Fig. 7. The location er-
ror and reconstructed fluorescent yield of these
simulations are presented in Table 6. We can observe
that the reconstructed location in case 2 is superior to
that in case 1 although its fluorescent yield is a little
smaller. It is noted that the ratio of the reduced scat-
tering coefficient to the absorption coefficient in case

2 is larger than that in case 1, which means case 2
better satisfies the hypothesis of the DE model,
i.e., scattering predominates over absorption.

C. Reconstruction of Double Fluorescent Targets

We also investigated the double fluorescent targets
experiment with the mouse model. Two fluorescent
targets were located in the liver with centers at
(11.9, 6.4, 16.4mm) and (11.9, 10.9, 16.4mm),

Table 4. Optical Parameters of the Mouse Organs at 670 nm and 710 nm

670nm 710nm

μax (mm−1) μ0sx (mm−1) μ0sx∕μax μam (mm−1) μ0sm (mm−1) μ0sm∕μax
Muscle 0.075 0.412 5.49 0.043 0.350 8.14
Heart 0.051 0.944 18.51 0.030 0.870 29.00
Lungs 0.170 2.157 12.69 0.097 2.093 21.58
Liver 0.304 0.668 2.20 0.176 0.629 3.57
Kidneys 0.058 2.204 38.00 0.034 2.021 59.44
Stomach 0.010 1.417 141.70 0.007 1.340 191.43

Table 5. Optical Parameters of the Mouse Organs at 780 nm and 830 nm

780nm 830nm

μax (mm−1) μ0sx (mm−1) μ0sx∕μax μam (mm−1) μ0sm (mm−1) μ0sm∕μax
Muscle 0.038 0.280 7.37 0.028 0.235 8.39
Heart 0.027 0.776 28.74 0.021 0.710 33.80
Lungs 0.083 2.006 24.17 0.060 1.941 32.35
Liver 0.160 0.578 3.61 0.124 0.542 4.37
Kidneys 0.030 1.791 59.70 0.023 1.631 70.91
Stomach 0.0053 1.240 233.93 0.0043 1.167 271.40

Fig. 7. (Color online) Reconstruction comparisons between two sets of optical parameters at z � 16.4 mm. (a) The transverse view of the
result of the optical parameters in case 1. (b) The transverse view of the result of the optical parameters in case 2. The black circles
represent the real target.

Table 6. Quantitative Comparison Between the Two Sets of Optical Properties

Optical
Parameters

Actual Position
Center (mm)

Recon. Position
Center (mm) LE (mm)

Actual Fluo.
Yield (mm−1)

Recon. Fluo.
Yield (mm−1)

Case 1 (11.9, 6.4, 16.4) (11.4, 6.6, 16.2) 0.57 0.05 0.024
Case 2 (11.9, 6.4, 16.4) (12.2, 6.7, 16.5) 0.44 0.05 0.018
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respectively. The initial mesh and the fluorescent
yield were the same as the single target case. The fi-
nal refined mesh for double fluorescent targets con-
sists of 21,482 tetrahedral elements and 4148 nodes.
The reconstructed results for each mesh are pre-
sented in Fig. 8. Table 7 gives the quantitative

results for the third mesh. In the ultima mesh, the
two targets could be resolved clearly, although their
center positions are not centered.

In addition, a group of experiments, which were
performed on two targets with different separated
distances (4, 3, 2.5, 2mm), were implemented to

Fig. 8. (Color online) Reconstruction results for double fluorescent targets embedded in the liver using our method. (a) The isosurface
view of the results from the initial coarse mesh with node values greater than 70% of the maximum value. (b) Transverse view of the
reconstruction at z � 16.5 mm in the samemesh, where the black circle represents the real fluorescent target. (c) and (d) are the results of
the refined, second level mesh. (e) and (f) are the final results of the third level mesh.
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further demonstrate the validity of the algorithm.
Figure 9 shows the reconstructed results on the axial
slice where the center of the real fluorescent targets
were located. Figures 9(a), 9(b), 9(c), and 9(d) repre-
sent the reconstructed results for the distances of 4,
3, 2.5, and 2mm, respectively. It is obvious that our
method can discriminate two targets with the sepa-
rated distances of 4, 3, 2.5mm. In Fig. 9(d), the recon-
structed two targets become one target, namely our
method cannot discriminate these two targets when
the separated distance is smaller than 2mm. It indi-
cates that our method is able to discriminate two tar-
gets 2.5mm apart.

D. Physical Experiments

Physical experiments were also conducted to further
evaluate the proposed algorithm. In our physical ex-
periment, a cubic phantom was utilized with a side
length of 20mm, which is shown in Fig. 10(a). The

phantom was made from polyoxymethylene. The op-
tical parameters for both excitation and emission
wavelengths are illustrated in Table 8 [15]. A small
hole with a 1mm radius was drilled to emplace the
4000nM Cy5.5 solution (with the extinction coeffi-
cient of about 0.019 mm−1 μM−1 and the quantum ef-
ficiency of 0.23 at the peak excitation wavelength of
671nm [30]), which was used as the fluorescent tar-
get. The center of the hole was at (16, 8, 9.5mm) with
a 2mm height, as shown in Fig. 10(b). The fluores-
cent target was excited by point sources from four
different positions at the z � 10 mm plane, and
CCD acquired data at four different views are shown
in Fig. 10(c).

In the experiment, the cubic phantom was discre-
tized into 14,780 tetrahedral elements and 2989
nodes for the coarse mesh during inverse reconstruc-
tion. The CCD camera was adopted to measure the
signal on the phantom surface from four views by

Table 7. Quantitative Results of Our Method for Double Targets on Final Mesh

Fluorescent
Target

Actual Position
Center (mm)

Recon. Position
Center (mm) LE (mm)

Actual Fluo.
Yield (mm−1)

Recon. Fluo.
Yield (mm−1)

Target 1 (11.9, 10.9, 16.4) (10.4, 11.6, 16.7) 1.68 0.05 0.024
Target 2 (11.9, 6.4, 16.4) (11.2, 4.8, 16.6) 1.76 0.05 0.026

Fig. 9. (Color online) Reconstructed results for two targets with different centers distances at z � 16.4 mm plane. (a), (b), (c), and (d) are
the transverse views of reconstructed results using our method with centers distances of 4, 3, 2.5, and 2mm, respectively, where the black
circles denote the real target.
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rotating the phantom with an angular increment of
90°. Figure 11 shows the acquired data on CCD from
four views. From the measured data, we recon-
structed the location of the Cy 5.5 solution using
the presented algorithm. Final results are shown in
Fig. 12(a) and 12(b) with reconstructed coordinate
(16.8, 7.6, 9.5mm) and location error 0.89mm. Fig-
ure 12(a) is the isosurface view of the reconstruction
with top 30% of themaximum value. The red cylinder
represents the real position placed the Cy 5.5 solu-
tion, while the green zone is the reconstructed target
andFig. 12(b) is the transverse view of the reconstruc-
tion at the z � 9.5 mm plane. The reconstructed con-
centration of Cy5.5 dye is about 616.9nM.

4. Discussion and Conclusion

We developed a multilevel, hybrid regularization
technique for FMT reconstruction. This algorithm
combines sparsity regularization and Landweber
iterative regularization for the inverse problem
based on the hp-FEM. To take full advantage of spar-
sity of the fluorescent target in the coarse mesh, spar-
sity regularization was employed to constrain this
problem. In subsequently refined mesh levels, the re-
construction region was largely reduced because it
was comprised of nodes with large values. In addi-
tion, results from the coarse mesh not only guide
the mesh refinement, but also provide a good locali-
zation of the fluorescent target and a good initial va-
lue of the fluorescent yield. These allow subsequent
mesh levels to be different from the first coarse mesh.
The Landweber iterative regularization method was
then utilized for FMT reconstruction, which can
smoothly improve quantification in a small step
length between neighboring iterations.

Both numerical simulation with a digital
mouse and the physical phantom experiment were

Table 8. Optical Parameters of the Homogeneous
Cubic Phantom

Wavelength (nm) μa (mm−1) μ0s (mm−1)

671 0.00029 1.08
710 0.00051 1.11

Fig. 11. (Color online) Surface data acquired by CCD from four views. (a) front view, (b) right view, (c) back view, (d) left view.

Fig. 10. (Color online) Physical phantom. (a) The homogeneous physical phantom. (b) The 3D view of the single fluorescent target in the
cubic phantom. (c) The x–y view on the z � 10 mmplane, where the black dots represent the excitation point source positions. Four degrees
show the direction of the CCD camera during data acquisition.
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conducted to evaluate the potential and feasibility of
the newmethod. First, a simulation experiment with
a single fluorescent target with heterogeneous optical
properties was conducted in a digital mouse. The re-
sult from the presented method was compared to the
results fromusing the sparsity regularizationmethod
at each mesh individually, and our method showed
better performance. However, the latter method ob-
tained a very sparse solution and its fluorescent yield
was a slightly larger than our method. This may be
because sparsity regularizationwas utilized for every
mesh. To further test our method, sparsity regulari-
zation and Landweber iterative regularization were
conducted on a fixedmesh, respectively. The numbers
of nodes and tetrahedral elements in the fixed mesh
were the same as that of the finalmesh in ourmethod.
In the experiment, the sparsity regularization and
Landweber iterative regularization provided location
errors 2.65 and 2.89mm, respectively, and the recon-
structed fluorescent yield values were smaller than
our method. In order to demonstrate the robustness
of the proposed method, we considered the detected
data at different levels (0%, 10%, 20%, and 40%) of
the additive Gaussian noise in the samemousemodel
as described in the first experiment. The results indi-
cated that as the noise level increased, the recon-
structed location was kept invariable and the
fluorescent yield had a minimal fluctuation. We also
investigated the dependence of our target localization
on the optical properties based on two typical sets of
optical parameters. For double targets, our algorithm
wasable to discriminate two targets clearly separated
at 2.5mm distance. In the phantom experiment, a
homogenous cubic phantom with a single target
was studied to further evaluate the proposed algo-
rithm. In all experiments, we have found that the va-
lues of the reconstructed fluorescent yields were
smaller than the actual ones. This may be caused
by the ill-posed and underdetermined nature of the
inverse problem [21].Moreover, Lin et al. showed that

the fluorophore concentration can be accurately re-
covered with a small error only when both the optical
background property and structural a priori informa-
tion were utilized [6,31,32]. The location of the fluor-
escent target was obtained from structural a priori
information (from x-ray computed tomography) and
used to guide FMT reconstruction together with the
diffuse optical tomography (DOT) functional a priori
information; when only the optical background prop-
erty was provided byDOT, the fluorophore concentra-
tion was recovered with a large error [6]. In our
experiments, we localized the fluorescent target and
reconstructed the fluorescent yield simultaneously
only utilizing the optical parameters of tissues as
functional a priori information without structural a
priori information to localize the fluorescent target.
As a result, the reconstructed fluorescent yield values
were smaller than the actual ones. In addition, the
mesh refinement scale and the effectiveness of the op-
timization method may also affect the fluorescent
yield reconstruction.

In conclusion, we have developed an effective
method for FMT. Numerical results in the simulation
experiment and physical phantom experiment both
showed the feasibility and potential of the multilevel,
hybrid regularization technique, especially for a sin-
gle target. Our new method would be applied in in
vivo small animal imaging. In addition, some accel-
erated computation strategy will be used in future
studies to reduce the computation time.
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Fig. 12. (Color online) Reconstructed results of the cubic phantom with a single fluorescent target. (a) The isosurface view of the results
with top 30% of the maximum value. The red cylinder is the real target while the green zone is the reconstructed target. (b) The transverse
view of the reconstruction on the z � 9.5 mm plane. The black circle represents the real target.
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