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Abstract— Motor imagery based brain-computer inter-
face (MI-BCI) has been studied for improvement of patients’
motor function in neurorehabilitation and motor assistance.
However, the difficulties in performing imagery tasks limit its
application. To overcome the limitation, an enhanced MI-BCI
based on functional electrical stimulation (FES) and virtual
reality (VR) is proposed in this study. On one hand, the
FES is used to stimulate the subjects’ lower limbs before
their imagination to make them experience the muscles’
contraction and improve their attention on the lower limbs,
by which it is supposed that the subjects’motor imagery (MI)
abilities can be enhanced. On the other hand, a ball-kicking
movement scenario from the first-person perspective is
designed to providevisual guidancefor performing MI tasks.
The combination of FES and VR can be used to reduce
the difficulties in performing MI tasks and improve classifi-
cation accuracy. Finally, the comparison experiments were
conducted on twelve healthy subjects to validate the per-
formance of the enhanced MI-BCI. The results show that the
classification performance can be improved significantly by
using the proposed MI-BCI in terms of the classification
accuracy (ACC), the area under the curve (AUC) and the F1
score (paired t-test, p <0.05).

Index Terms— Brain computer interface, functional elec-
trical stimulation (FES), virtual reality, enhanced motor
imagery, rehabilitation training.
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I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) can be used to pro-
vide communication pathways between human brains and

the external devices, and have been widely studied in neurore-
habilitation and motor assistance [1]–[3]. Motor imagery (MI)
is a typical brain activity, which is often used in BCI and can
be defined as the mental rehearsal of limb movements without
actual execution [4], [5]. The motor cortex region activated
by MI is similar to that activated by actual execution. Motor
imagery based brain-computer interface (MI-BCI) has been
designed for reconstructing the damaged neuro-pathways [6],
[7] and improving patients’ motor function [8]–[10]. However,
there are significant individual differences in the MI capability
for different subjects, and it is very difficult to perform MI
tasks for some subjects. Meanwhile, due to that EEG signals
arose from brain activities during performing MI are relatively
weak and easily affected by noises, it is difficult to obtain
the high recognition accuracy. These difficulties limit the
applications of MI-BCI.

Many methods have been proposed for improvement of the
classification accuracy [11], [12]. For instance, denoising and
feature extraction algorithms have been applied to enhance
the signal to noise ratio and improve the discriminability of
MI patterns [13], [14]. Since the recorded electroencephalog-
raphy (EEG) data usually consists of multi-channel signals,
the channel selection methods have been studied for select-
ing the key channels that have significant contributions to
improvement of recognition accuracy [15], [16]. Recently, the
generalization capability of EEG classification models was
improved by using deep learning (DL) methods, where signal
preprocessing, feature extraction, and classification were inte-
grated in one model [17], [18]. Especially for the large-scale
MI database, DL methods have shown the superior perfor-
mance and promising potential in improvement of the clas-
sification accuracy than conventional approaches [19]. From
the results mentioned above, these state-of-the-art methods are
indeed helpful for overcoming the difficulties in MI pattern
recognition tasks. However, it is still difficult to obtain high
recognition accuracy since subjects usually cannot perform MI
tasks well [20], and the EEG signal quality of MI has a critical
effect on the recognition accuracy. Therefore, many attentions
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have been paid to help subjects perform MI effectively and
improve subjects’ MI capability for obtaining the high quality
EEG signals.

In traditional MI experiment paradigms, arrows or texts are
often used as the cues for the imagery tasks. For example,
subjects imagined the left or right-hand movement according
to the arrow direction [21]. However, the cues given by arrows
or texts were usually very abstract, so that it is difficult for
subjects to imagine the movements. According the subjects’
feedback in [22], using the traditional experiment paradigm
made them feel tired and distracted easily.

The vivid visualization scenarios have been suggested to
replace the arrow or text cues to instruct subjects for per-
forming MI relatively effectively [23], [24]. Bian et al. [25]
found that dynamic video guidance was more helpful than
static photo guidance for improvement of classification per-
formance. From [26], it can be seen that the discriminability
of imagined patterns could be enhanced significantly by using
the object-directed scenario as the guidance, and the average
recognition accuracy based on the object-directed scenario
was 7% higher than that based on the non-object-directed
scenario. Sollfrank et al. [24] investigated the advantages of
the 3D limb movement guidance over the 2D limb movement
guidance. From the comparison experiment results, it can be
found that the 3D movement guidance was more effective
than the 2D movement guidance in enhancing motor cortex
activation. Qiu et al. [22] designed a novel MI paradigm
for guiding subjects to modulate brain activity effectively,
where subjects were required to imagine writing Chinese
characters according to the picture cue. As shown in the
experiment results of [22], higher motor cortex activation and
classification accuracy could be obtained by imaging writing
Chinese characters, as opposed to the traditional paradigm
(i.e., the arrows). However, for some subjects, the vivid visual
guidance may make them concentrate on the moving objects
instead of performing MI tasks.

To help subjects modulate brain activity effectively, various
kinds of feedback have been adopted in the MI-BCI systems.
In [27], Dariusz et al. investigated the impact of different types
of feedback provided in training on the MI-BCI’s performance.
Bhattacharyya et al. [28] found that the functional electrical
stimulation (FES) based feedback was more effective than the
visual feedback for cortical learning and improving classifica-
tion accuracy. In [29], the kinesthetic feedback provided by a
robotic orthosis and visual feedback were used and compared
in the online control. As shown in the comparison results,
the online classification accuracy were improved significantly
by the kinesthetic feedback. However, it has been proven that
the feedback can have inhibitory as well as facilitory effects
on EEG control [30]. The performance of feedback could be
affected by the initial classifier, which is generally modeled
based on calibration data without feedback [22]. For the
subjects who are unfamiliar with MI, the excessive unintended
or inaccurate feedback/control may frustrate them [31]. The
suitable imagination guidance paradigms would help subjects
reduce frustration. In addition, the enhanced MI-BCI have
been studied mostly on the upper limb MI. While the number
of studies on the lower limb MI is relatively small [32], [33],

Fig. 1. The enhanced MI-BCI system. The FES device and virtual reality
scenario are controlled by commands from the control center. TCP/IP
protocol is used for data and command transmission.

due to the particular difficulties in implement of motor imagery
for lower limbs.

In this study, an enhanced MI-BCI based on FES and virtual
reality (VR) scenario is proposed to improve subjects’ MI
abilities and the recognition accuracy. The VR scenario is
designed to provide the visual guidance, where the advantages
of dynamic video guidance [25] and object-directed scenario
[26] are combined effectively. In addition to the visual guid-
ance, FES technology is adopted as an additional enhancement
mode to improve subjects’ attention on the associated lower
limb. By the comparison experiments carried out in this study,
it is verified that the classification accuracy and the subjects’
motor cortex activation can be improved by using the proposed
MI-BCI.

The remainder of this paper is organized as follows. The
design of the enhanced MI-BCI system is introduced in
Section II. The EEG data processing, the feature extraction
method, the classification algorithm, and data analysis methods
are described in Section III. Section IV presents the compar-
ison experiments and the results. Finally, the discussion and
conclusion are given in Section V and VI, respectively.

II. DESIGN OF THE ENHANCED MI-BCI

An enhanced MI-BCI based on FES and VR is designed
in this study, where the FES device (MotionStim8), the EEG
acquisition system (NeuroScan system including Quick-cap,
Grael amplifier, and Curry8 software), the virtual reality sce-
nario based on Unity3D, and the control center (one computer
installed MATLAB) are used, as shown in Fig. 1. Firstly,
according to the commands from the control center, the right
lower limb’s muscles are stimulated by the FES produced
from MotionStim8. Then, the virtual reality scenario is showed
on the screen for providing the guidance to subjects during
performing MI. Meanwhile, the brain activity is recorded by
NeuroScan system and transferred to the control center for
data processing and analysis. The data transmission between
each part and the control center is achieved via TCP/IP,
by which the reliability and low delay of communication can
be guaranteed.

A. EEG Signal Recording

EEG signals were recorded at the sampling rate of 256Hz
by the NeuroScan system. There are 32 channels on the
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Fig. 2. The channel (or electrode) distribution of the Quick-cap. EEG
signals from the salmon channels were used for recognition and the
subsequent analysis, and the signals from the white channels were not
considered in this study.

Quick-cap, and the channels are placed according to the
International 10/20 System. The signals from channels M1
and M2 have little relationship with the MI brain activities
and are usually used as the reference signals. Meanwhile,
since the signals from channels Fp1 and Fp2 are affected
significantly by the eye-blink and have little relationship with
the MI brain activities as well. Therefore, the signals from
these four channels were not considered in this study, and
the signals from 28 channels (i.e., the salmon channels in
Fig. 2) were further processed and analyzed. Additionally, the
common average reference has been used as the reference
method in this study, which was recommended by [34] for MI
analysis and can be used to improve the signal-to-noise ratio.
It has been proven that the EEG signals in the low-frequency
band (8-32Hz) have a high correlation with the brain activity
of MI [35], and the EEG signals below 50Hz are usually used
for the classification and analysis [36], [37]. Thus the raw EEG
signals were filtered by bandpass filter (0.1-50Hz) in this study,
which was implemented in Curry 8.

The channels on Quick-cap are connected to the scalp
through the conductive gel. To guarantee the quality of the
collected EEG signals, the impedance between the channels
and the scalp should be stable and as low as possible. Hence,
after the channels were injected with the conductive gel,
subjects were required to wait a few minutes to make the
impedance table and drop below 10 K�.

B. The Design of Virtual Reality Scenario

To provide an effective visual guidance, a ball-kicking
movement (BKM) scenario is designed based on the Unity3D
development software, as shown in Fig. 3. The first-person
perspective is adopted in the scenario to provide an immersive
environment to subjects. The lasting time of the BKM scenario
is four seconds, which is composed of three seconds for the
action and one second for the static posture. In addition,
an interaction pathway is established via TCP/IP between the

Fig. 3. The designed ball-kicking scenario based on unity3D. The right
lower limb of avatar can be controlled by the external commands to kick
the ball.

scenario and the external devices, and the avatar in the scenario
can be controlled by the external commands.

C. The Design of FES-Enhancement

FES technology has been widely applied in motor rehabil-
itation for restoring patients’ motor function [38], [39]. The
muscle contraction caused by FES can make subjects produce
the kinesthesia illusion, which is an effective guidance for
subjects to perform MI. Moreover, the muscle contraction
feeling is helpful to improve the subjects’ attention on the
associated limbs. Based on the above reasons, it is supposed
that the subjects’ MI effects can be improved by using the
FES as the guidance.

In this study, MotionStim8 (MEDEL company, Germany)
device was used to provide the current stimulation, which is
a biphasic rectangular pulse shape and can effectively prevent
muscle fatigue. The current, pulse width and interval times
can be programmatically adjusted. In the actual ball-kicking
movement, the relatively obvious contraction can be found in
the tibialis anterior muscle (TA) and rectus femoris muscle
(RF). Therefore, the TA and RF muscles of right lower
limb are selected to give the FES, by which the subjects
can experience the similar muscle contraction sensation pro-
duced by the actual BKM. The muscle contraction strength
is depend on FES’s current amplitude, and the high current
value can induce the limb’s actual movement [40]. However,
the discomfort caused by the high current value may lead to
the reduction of subjects’ active participation. Hence, FES’s
current amplitude should be set to an appropriate value, which
can only induce slight muscle contraction and cannot induce
the limb movement.

The pre-experiments were conducted to decide the current
amplitude according to the subjects’ feedback. In this study,
th stimulation current amplitudes of TA and RF muscles were
set to 24∼26 mA and 10∼12 mA, respectively; moreover, the
pulse width and stimulation frequency were set to 100μs and
30Hz, respectively. The stimulation time was set to 3s to be
in harmony with the BKM scenario. The stimulation period
and the current change process are shown in Fig. 4.
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Fig. 4. The current curve of FES. Three line-segments are respectively
corresponding to three phases of the BKM scenario, i.e., start, keep and
relax. The stimulation current amplitudes, Ckeep, for TA and RF muscles
are 24 ∼ 26 mA and 10 ∼ 12 mA, respectively.

III. DATA PROCESSING, FEATURE EXTRACTION,
CLASSIFICATION AND ANALYSIS METHODS

A. EEG Signal Processing

In this paper, each MI task lasts four seconds (i.e., 1024
sampling points) in one trial. In order to obtain more
training samples and improve classification performance, the
sliding-window method is adopted to process EEG signals.
At the beginning of EEG signals, a window with the length
of 512 sampling points was placed and slid along the time axis
at intervals of 256 sampling points. Hence, four-second EEG
signals were divided into three segments, and every segment
contains 28 × 512 sampling points.

Then, EEG signals in every window are regarded as a
sample, which is used to extract the features for classification.
Due to that there is some overlap among the three windows
from one trial, the correlation between them is relatively
high. Therefore, to evaluate the classification performance
accurately, it should be noted that when dividing the training
and testing set, the division of samples should be based on the
trial rather than the sample, i.e., the three samples from the one
trial can only put into training or testing set at the same time.

B. Feature Extraction and Classification Algorithm

The common spatial pattern (CSP) algorithm [41] has been
adopted widely in EEG signal feature extraction for its good
performance [42], [43]. It has been proven that the EEG
signal frequency is a key factor affecting the performance
of CSP [44]. Therefore, EEG signals can be divided into
sub-frequency band signals by adopting multiple bandpass
filters and then using CSP to extract the features of each
sub-frequency band signals. As shown in the results of [37],
[45], [46], the classification accuracy could be improved
significantly by extracting features from the sub-frequency
band signals. Hence, the sub-frequency band division and CSP
methods are combined to extract the EEG features in this
paper.

Let Sk denotes an EEG signal sample, where k = 1, 2
represents the imagined pattern. The dimensions of Sk are
M × N , where M and N are the numbers of channels and
sampling points, respectively. Firstly, Sk are filtered into ten
sub-frequency bands at the intervals of 4Hz (i.e., [1-4Hz],
[5-8Hz], …, [37-40Hz]). The i -th sub-frequency band signal

is represented by Sk
i ∈ R

M×N (i = 1, . . . , 10). Then the
normalized covariance matrix of Sk

i can be calculated by:

Ck
i = Sk

i (Sk
i )T

trace(Sk
i (Sk

i )T )
, (1)

where T denotes the transpose. For the multiple samples,
the matrices Ck

i denotes the mean of all sample covariance
matrices.

The goal of CSP is to find a transformation matrix Wi ∈
R

M×M , by which the discrimination between two patterns can
be maximized. The transformation matrix Wi can be calculated
by maximizing the following equation:

J (Wi ) = W T
i C1

i Wi

W T
i C2

i Wi

. (2)

More details of solving Eq. (2) was given in [41]. After the
transformation matrix Wi is obtained, the EEG signals Sk

i can
be transformed by:

Zk
i = Wi Sk

i . (3)

The most discrimination information between S1
i and S2

i can
be obtained from the variances of the transformed signals Zk

1
and Zk

2. Generally, the first m and last m (m < M
2 ) rows of

the transformed signals Zk
i , i.e. Zk

i,r (r = 1, . . . , 2m) are used
to extract features, as follows:

f k
i,r = log

( var
(
Zk

i,r

)
∑2m

j=1 var
(
Zk

i, j

)
)

, (4)

In this paper, m = 2 is adopted for high classification accu-
racy and low calculation load. Therefore, for each transformed
sub-frequency band signals Zk

i , 4 features ([ f k
1,1, . . . , f k

1,4])
can be calculated by Eq. (4) to form a vector f k

i . Due to that
Sk are filtered into ten sub-frequency bands, the features of ten
sub-frequency bands are integrated into Fk = [ f k

1 , . . . , f k
10 ]

(Fk ∈ R
1×40) as the feature vector of Sk . Finally, all feature

vectors F were used to train the classifier. The flow chart of
the feature extraction and classification is given in Fig. 5.

Support vector machine (SVM) has great advantages in
the classification of small samples and binary classification
problem [47]. Since the number of samples in this study
is relatively small, SVM has been adopted as the classifier.
Libsvm tool [48] of MATLAB platform was used to construct
the SVM model and the radial basis function (RBF) was used
as the kernel function. Meanwhile, parameter “C” in the cost
function and parameter “γ ” in the RBF are determined by the
grid optimization method.

C. Data Analysis Methods

In this study, there are two MI tasks: imaginations of the
BKM and the idle states. The BKM state is regarded as the
positive label, and the idle state is regarded as the negative
label. To compare the performance of classification models,
several metrics are adopted: accuracy (ACC), F1 score, and
area under receiver operating characteristic curve (AUC).
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Fig. 5. The flow chart of MI pattern classification using sub-frequency band information, CSP and SVM. The pre-processed EEG signals are filtered
into ten sub-frequency band signals by ten band-pass filters. Each feature vector fi (i=1,…,10) is extracted from the associated sub-frequency band
signals using CSP. Ten feature vectors are combined to form a single vector as the input of the SVM classifier.

The calculations of ACC and F1 score are as follows:
ACC = TP + FN

TP + FP + TN + FN
, (5)

F1 score = 2 · TP/(TP + FP) · TP/(TP + FN)

TP/(TP + FP) + TP/(TP + FN)
, (6)

where TP, FP, TN, and FN are the sample numbers of
true positives, false positives, true negatives, and false neg-
atives, respectively. In this study, ten fold cross-validation
was adopted and repeated ten times; then, the average of all
accuracy values was used as the final accuracy.

The activation of the motor cortex induced by MI can result
in the reduction of EEG signal power [35], [49]. The power
spectral density (PSD) method is usually applied to analyze
the changes of EEG signal power and further evaluate the
activation intensity of the motor cortex.

The signals of channels C3, Cz, and C4 are from the motor
cortex region, and they have a relatively high correlation with
the limb movement imagery. Hence, these signals are usually
used for the activation intensity analysis in the statistic. The
changes of activation intensity are significant in the 8-30Hz
frequency region, which mainly includes α (8-13Hz) and β
(14-30Hz) rhythms. To obtain the detailed analysis, the PSD
changes of EEG signals in α, β, and α + β rhythms are
calculated for the comparison.

The distribution normality of the experimental metrics (i.e.,
ACC, AUC, F1 score, and PSD values) was validated using the
lilliefors test algorithm of MATLAB (2016b). Then, one-way
analysis of variance (one-way ANOVA) and the paired t-test
method were adopted to analyze the significant difference
between the experiment results for the VR and FES+VR
paradigms.

IV. EXPERIMENT AND RESULTS

A. Experimental Design

In order to validate the performance of the proposed
MI-BCI, two experiment paradigms were designed according

Fig. 6. (a) VR, and (b) FES+VR experiment paradigms. In each trial,
the fixation cross was used to remind subjects to stay focused. Subjects
were required to perform the BKM or Idle imagery task according to the
cue; meanwhile, a corresponding virtual reality scenario was shown on
the screen to provide the visual guidance. In the FES+VR paradigm,
FES was given to subjects from 2s to 5s.

to whether there is FES-enhancement, as shown in Fig. 6. The
experiment process is described in more detail below.

Due to the difference of each subject’s physical situation,
the maximum FES current amplitude was slightly adjusted
within 3 mA according to the subject’s feedback. Then sub-
jects were instructed to sit in a comfortable chair about 70 cm
away from the display screen. All subjects were informed and
familiar with the procedures before the experiment. During the
experiment, subjects were required to avoid the movements
and keep quiet.

Each experiment paradigm consists of two tasks: imagina-
tions of the BKM and the idle states. As shown in Fig. 6,
each trial lasts about 12s. At the beginning (t = 0s) of
each trial, a fixation cross was displayed on the screen to
remind subjects to stay focused. In the experiment paradigm
with FES-enhancement (i.e., FES+VR), subjects were given
three-second FES at t = 2s, and not required to perform
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Fig. 7. The experimental scheme. For subjects of group A, the FES+VR
and VR paradigms were used in experiment 1 and 2, respectively. For
subjects of group B, the VR and FES+VR paradigms were used in
experiment 1 and 2, respectively.

Fig. 8. A subject was performing BKM task based on the FES+VR
paradigm. Subject’s TA and RF muscles were attached with the FES
electrodes; and EEG signals were recorded using the NeuroScan system
and transmitted to the control center (PC) for data processing.

any tasks during this time. After that, there is a one-second
interval to reduce the possible delayed impacts from FES.
Then the task text cue was displayed at t = 6s, and subjects
were required to imagine the corresponding state for four
seconds according to the cue. When subjects imagined BKM,
the designed BKM animation was shown to subjects synchro-
nously. When subjects imagined the idle state, the avatar was
removed and there was only the background on the screen.
After the imagination (t = 10s), the rest cue was displayed to
remind subjects that there were two seconds to rest. Finally,
subjects were asked to continue with the next trial, where the
task was random.

Two comparison experiments were conducted based on two
experiment paradigms (FES+VR and VR) to investigate the
contribution of the FES-enhanced method to improve subjects’
MI abilities. Twelve healthy subjects (age 20-27 years, mean
24±1.6 years) without a history of neurological problems par-
ticipated in the experiments. All subjects are right-handed, and
only two of them have MI experience. The experiments were
approved by the ethics committee of Institute of Automation,
Chinese Academy of Sciences. All subjects were informed of
the experiment contents and signed the consent forms before
the experiment. Then, these twelve subjects were randomly

Fig. 9. The classification accuracies for 12 subjects in (a) experiment 1,
and (b) experiment 2.

divided into two groups: groups A and B, and each group
included six subjects. In experiment 1, the FES+VR paradigm
was adopted by group A, and the VR paradigm was adopted
by group B. In experiment 2, the FES+VR paradigm was
adopted by group B, and the VR paradigm was adopted by
group A. The scheme of the two experiments is shown in
Fig. 7. To avoid the possible learning effects, the interval
time between two experiments was more than thirty minutes.
In each experiment, all subjects were asked to conduct thirty
trials for each task. Since the signals of each trial were split
into three samples by the sliding window method mentioned
above, the sample number of each MI task for one subject was
raised to ninety.

B. Classification Results

The classification accuracy results of experiment 1 and 2 are
shown in Fig. 9. For the experiment 1, it can be seen that the
relatively high classification accuracy was obtained for group
A. The mean accuracy of group A is 84.48%, which is 6.31%
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TABLE I
THE CLASSIFICATION PERFORMANCE COMPARISON BETWEEN FES+VR GROUP AND VR GROUP

higher than that of group B (78.17%). For the experiment 2,
the mean classification accuracy of group B (85.17%) is
higher 7.14% than group A (78.03%). Compared with the
results of experiment 1, the classification accuracy of group
A was reduced by the VR paradigm, and the classification
accuracy of group B was improved by the FES+VR paradigm
in experiment 2. For both groups, it can be found that the
relatively high classification accuracy was achieved based on
the FES+VR paradigm. Further, the paired t-test method
was used to analyze the statistic difference of classification
accuracies for each group between two paradigms. From the
results, it can be found that there are significant improvement
of classification accuracy in each group (group A: p =
0.0263<0.05; group B: p = 0.0431<0.05). However, for each
experiment, the ANOVA results between two groups didn’t
show significance difference in statistics (experiment 1: F =
2.66, p = 0.1337; experiment 2: F = 2.03, p = 0.1846;).
The reason may be that the relatively low number of subjects
and the high individual variances in the MI capabilities have
negative effects on the ANOVA analysis.

From the comparison results, it can be found that the
classification accuracy based on FES+VR paradigm is higher
than that based on VR paradigm, which was not influenced
by the order of paradigms. Therefore, for further analysis, the
experiment data are regrouped into the FES+VR group and
VR group according to the paradigm.

The classification results of two experiments are shown
in TABLE I. The best classification results and the biggest
improvement are obtained by subject s10 through using the
FES+VR paradigm. Significant improvement in accuracy is
also found in subjects s2, s3, s4, s10, and s11. There are
ten subjects with above 80% accuracy in FES+VR group,
while there are only five subjects with 80% accuracy in VR
group. The paired t-test results also indicate that there is a
significant improvement based on FES+VR paradigm in term
of ACC (p = 0.0014<0.05), F1 score (p = 0.0021<0.05),

TABLE II
THE PAIRED T-TEST RESULTS OF CHANNELS C3, CZ AND C4

and AUC (p = 0.0012<0.05). Besides, there are three subjects
(s2, s4, and s7) with below 75% classification accuracy in VR
group, which may be caused by “BCI Illiteracy” problem [50].
Fortunately, using the FES+VR paradigm help these subjects
obtain improvement of classification results and alleviate “BCI
Illiteracy” problem.

Additionally, it can be found that classification metrics are
highly negatively correlated with their standard deviations.
In the FES+VR group, the Pearson correlation coefficients
between the metrics and the standard deviation are −0.79,
−0.93, and −0.90, and those in the VR group are −0.73,
−0.82, and −0.95. As shown in above results, the model with
high classification performance also has better stability.

C. Analysis of Activation Intensity in the Motor Cortex

In order to analyze the activation intensity change of the
motor cortex based on the different paradigms, the average
PSD topographical maps for each MI state were calculated
and drawn in Fig. 10. As shown in Fig. 10, the PSD of motor
cortex region in the BKM state is lower than that in the idle
state, which indicates that the MI indeed induced the activation
of the motor cortex.

Meanwhile, by comparing the PSD in the BKM state
between two groups, it can be seen that the PSD of the motor
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Fig. 10. The brain average PSD topographical maps for the FES+VR
group and VR group during imagining BKM and idle.

cortex region in FES+VR group is lower than that in VR
group. Moreover, for the idle state, there is no significant
difference of PSD levels between two groups. Based on
these results, it is demonstrated that the FES-enhancement
only induced the differences of PSD for the BKM state
between two groups. To further verify the contribution of FES-
enhancement, the p value of PSD at channels C3, Cz and C4
between two groups are calculated by the paired t-test method.

The paired t-test results in α, β, α + β rhythms are shown
in TABLE II. For the idle state, all p-values are far bigger
than 0.05, which demonstrates there is no significant difference
between the two groups. In other words, the brain activity for
the idle state were not influenced by FES-enhancement. For the
BKM state, there are significant difference (p=0.0115<0.05
and p=0.0244<0.05) in α rhythm at channels C3 and C4,
and a significant difference (p=0.0245<0.05) in β rhythm at
channel Cz can be found. For the whole 8-30Hz frequency
band, i.e. α + β rhythms, there are significant differences at
channels C3 and Cz. Based on the results mentioned above,
it is verified that using FES+VR paradigm could help subjects
perform MI task effectively and further enhance the subjects’
motor cortex activation. In addition, it can be found that the
frequency band with significant differences may be in α band
or β band. Therefore, α+β band signals (i.e., 8-30Hz) contain
the frequency band with significant differences and are more
suitable for MI analysis and classification.

From the Fig. 10, it can be found that the PSD of channel
C3 is lower than that of channel C4 for the BKM state.
Meanwhile, as shown in TABLE II, the significant difference
at channels C3 and Cz between two groups is more obvious
than that at channel C4. Based on these results, it is demon-
strated that the activation intensity at channels C3 and Cz (i.e.,
the middle and left region of motor cortex) were significantly
enhanced by FES+VR paradigm.

V. DISCUSSION

Compared with the single-mode guidance (i.e., VR), using
the FES-enhanced paradigm not only help subjects obtain
higher classification accuracy but also improve the classifi-
cation stability. Meanwhile, based on FES+VR paradigm, the
activation intensity of the motor cortex region can also be
improved, particularly in channels C3 and Cz. The results of
the paired t-test (p<0.05) between VR group and FES+VR
group indicate that the null hypothesis should be rejected, i.e.,
that the statistically significant improvement of classification
accuracy and activation intensity can be obtained by the
FES-enhancement.

There are two possible reasons for improving the MI effects
with the FES+VR paradigm. One is that the subjects’ attention
on the limb related to MI was improved by FES, which was
consistent with the subjects’ feedback. Most of the twelve
subjects reported that it was not easy to lose their focus
with the FES+VR paradigm. Meanwhile, it has also been
demonstrated that the attention is a crucial factor in influencing
the MI effects [22], [51]. Another one is that the kinesthesia
illusion evoked by FES was an effective guidance for per-
forming MI. In the study of [52], the vibrotactile stimulation
was applied to the wrist toward a hybrid-modality BCI, and
the high classification accuracy was obtained by imaging the
motor and sensation. Compared with the mechanical vibration,
the FES can induce muscles to contract and make subjects feel
the deeper kinesthesia experience. When subjects performed
MI tasks based on the FES+VR paradigm, the kinesthesia
illusion was relatively effective guidance.

In the previous studies, it is still difficult to classify the
MI patterns of the right and left lower limbs. It has been
proven that movement and sensation on one side of the
body are controlled by the hemisphere on the opposite side.
However, the motor cortex region related to the lower limbs
is relatively small and the cortexes for the right and left lower
limbs are very close to each other [53]; moreover, the regions
activated by imaging the left and right lower limbs are usually
overlapping and located in the middle of the motor cortex;
therefore, the separability between two MI patterns of the
lower limbs is weak. However, from the data analysis results in
Fig.10 and TABLE. II, it can be found that during imaging the
right lower limb movement, the region with the high activation
was located in the middle and left of the motor cortex, i.e.,
at channels C3 and Cz. In particular, the activation intensity at
channels C3 and Cz in FES+VR group was higher than that
in VR group. It is indicated that the spatial resolution of MI
patterns for the lower limbs may be improved by using the
FES+VR paradigm. We hypothesize that if subjects imagine
the left lower limb, the high activation region may be located
in the middle and right region of the motor cortex, which is
beneficial to distinguish the MI patterns of the right and left
lower limbs. In future work, this hypothesis is to be verified
by the experiment.

Additionally, it is worth noting that the PSD for the BKM
state is lower than that for idle state in the frontal lobe region.
The PSD in the frontal lobe region is related to the subjects’
attention state [54]. In our previous work [55], an attention
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classifier was built by calculating the PSD in the frontal lobe
region. Therefore, the attention mechanism can be integrated
into the MI-BCI to build a hybrid-modality BCI.

Although the effectiveness of the proposed FES+VR par-
adigm has been validated on twelve subjects, more subjects,
including patients, are need to be involved in the experiments
for further analysis in the future. Meanwhile, in order to make
the muscle contraction feeling produced by FES more similar
to that in the actual movement, the current change of FES
should be further optimized, and more associated muscles can
also be given FES.

VI. CONCLUSION

In this study, an enhanced MI-BCI based on FES and VR
was proposed to help subjects perform MI effectively. The
performance of proposed MI-BCI was validated through the
comparison experiments on twelve subjects. The experiment
results showed that the classification performance was
significantly improved (p<0.05) by using the FES+VR
paradigm; meanwhile, the activation intensity of the motor
cortex based on the FES+VR paradigm was higher than that
based on the VR paradigm, especially at channels C3 and Cz.
Furthermore, the proposed MI-BCI will be combined with
the rehabilitation robot to provide effective rehabilitation
strategies in our future work.
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