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Abstract This paper investigates the performance of the dual mode, namely flipper mode and central

pattern generator (CPG) mode, for controlling the depth of a gliding robotic dolphin. Subsequent to consid-

ering the errors in dynamic models, we propose a depth control system that combines the line-of-sight (LOS)

method with an adaptive control approach (ACA) to deal with uncertainties in the model parameters. First,

we establish a full-state dynamic model to conduct simulations and optimize the parameters used in later

aquatic experiments. Then, we use the LOS method to transform the control target from the depth to the

pitch angle and employ the ACA to calculate the control signal. In particular, we optimize the ACA’s control

parameters using simulations based on our dynamic model. Finally, our simulated and experimental results

demonstrate not only that we can successfully control the robotic dolphin’s depth, but also that its perfor-

mance was better than that of the CPG-based control, thus indicating that we can achieve three-dimensional

motion by combining flipper-based and CPG-based control. The results of this study suggest valuable ideas

for practical applications of gliding robotic dolphins.

Keywords gliding robotic dolphin, depth control, dual motion, adaptive control approach

Citation Wang J, Wu Z X, Tan M, et al. Controlling the depth of a gliding robotic dolphin using dual motion

control modes. Sci China Inf Sci, 2020, 63(9): 192206, https://doi.org/10.1007/s11432-019-2671-y

1 Introduction

Over the recent decades, many researchers have been drawn to exploring bio-inspired robots, thus leading

to the development of a large number of bionic robotic prototypes [1–5]. Among these, robotic dolphins

have recently received great interest, since dolphins have become talented swimmers with excellent loco-

motion abilities after a long natural selection process [6,7]. Robotic dolphins can thus realize astonishing

locomotion patterns and are highly maneuverable. For example, Yu et al. designed two robotic dolphins

that can perform 360◦ frontflips, backflips [8], and leaps [9]. However, robotic dolphins also consume

large amounts of energy due to their propulsive mechanisms that requires motors to create oscillating

motions. In contrast, underwater gliders aim to save energy [10–12]. Many generations of these have

been developed, establishing both theoretical foundations and engineering experience in this research

area [13, 14]. Thus, to reduce energy consumption, the first gliding robotic dolphin, which combines a

robotic dolphin with an underwater glider, has been designed [15], and a 1.5 m-long prototype has been

developed [16], using a sliding-mode observer-based heading control with flippers [17].
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Depth control has always been an important task for autonomous underwater vehicles (AUVs), since

it is the basis of both path tracking and planning and is needed to accomplish trickier tasks in complex

underwater environments. There are many ways to achieve depth control, but they can be divided into

three main categories: adjusting a movable slider inside the robot; changing the flipper deflection angles;

and changing the net buoyancy. Shen et al. [18] controlled the depth of a robotic dolphin using a fuzzy

proportional-integral-derivative (PID) controller to adjust a slider. Ranganathan et al. [19] designed a

hybrid depth controller that combines a PID controller, a linear quadratic regulator (LQR), and a sliding-

mode controller (SMC) with a variablebuoyancy system. Yu et al. [20] proposed a sliding-mode fuzzy

controller (SMFC) for a robotic dolphin, and was able to control its depth with a steady-state error of

less than 0.5 cm by relying on the flippers.

Each of these three methods has its pros and cons. Using slider-based mass adjustment, the pitch

moment is generated by changing the center of gravity, which has the advantages of producing a clear

effect and resisting interference due to the use of internal forces. However, mechanical limitations and

over-reactions may lead to longer transition times [21]. Controlling the net buoyancy has almost the

same disadvantages as using a slider, and produces smaller effects since the generated forces/moments

are relatively small, but it can yield substantial energy savings [22]. Finally, strategies based on changing

the flipper deflection angles have been widely employed in recent years due to their rapid responses and

precise control [23]. However, since the pitch moments are generated by hydrodynamic forces, which are

closely related to the swimming speed, they may not meet the requirements if the forward speed is too

slow. Thus, velocity control is also needed [20], which increases the control system’s complexity. This

makes controlling depth purely through the gliding robotic dolphin’s propulsion mechanism a considerable

problem.

This paper focuses on the issues involved in controlling the depth of a gliding robotic dolphin by

comparing the performance of two motion modes, namely flipper mode and central pattern generator

(CPG) mode. To the best of our knowledge, this has not previously been discussed. Our paper makes

two main contributions.

First, we present a control framework that achieves depth control by combining line-of-sight (LOS)

with an adaptive control approach (ACA), improving the ACA by selecting suitable control parameters.

Specifically, we optimize the controller’s control parameters based on extensive offline simulations of a

full-state dynamic model, and then apply these directly in aquatic experiments.

Second, we use simulations to compare the effectiveness of the two control modes, finding that con-

trolling the CPG offset improves the robot’s performance. We also carry out aquatic experiments, whose

results not only show that we can successfully control the gliding robotic dolphin’s depth with good

accuracy and short transition times, but also confirm that CPG mode is more suitable for depth control.

Our results suggest that we can free the flippers from having to control the pitch moment to focus on

yaw control, potentially enabling us to decouple the control of three-dimensional (3D) motion.

The remainder of this paper is structured as follows. Section 2 describes the gliding robotic dolphin’s

overall mechanical design and prototype. Next, we derive a full-state dynamic model in Section 3. Then,

Section 4 discusses the control systems, including the LOS, CPG, and ACA methods. Section 5 discusses

and analyzes the results of our simulations and aquatic experiments. Finally, Section 6 summarizes our

conclusion and plans for future work.

2 Mechanical design of the gliding robotic dolphin

As illustrated in Figure 1, the gliding robotic dolphin has a streamlined shape, modelled after a killer

whale, to reduce water resistance and obtain a better lift-to-drag ratio. Unlike previous gliding robotic

dolphins [15,17], ours utilizes a more compact design, and replaces the external oil bladder with a water

injector to make net buoyancy adjustments faster. In addition, the robot’s shell is constructed from

polyethylene. Table 1 gives details of our robotic dolphin’s mechanical and electrical parameters. It has

the following three main compartments.
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Figure 1 (Color online) Mechanical structure of the gliding robotic dolphin, showing the (a) conceptual design and

(b) prototype.

Table 1 Technical parameters of the gliding robotic dolphin

Parameter Value

Size (L×W ×H) ∼0.83 m×0.38 m×0.33 m

Total mass ∼8.86 kg

Power supply Li-ion battery (DC 24.6 V, 3200 mAh)

Number of the body joints 4

Drive mode RE13, RE16, RE30, EC16, Hitec HS7980

Onboard sensors IMU (JY901), depth sensor (MS5837)

Controller STM32F407

• Flipper compartment. This mainly comprises an inertial measuring unit (IMU), two flipper servo-

motors, a water injector, and an injector motor. The IMU is a nine-axis inertial sensor that enables us

to acquire the robot’s attitude angles after calibrating the magnetic field. The servomotors (Hitec HS-

7980) can both provide high torque and respond sufficiently rapidly for real-time control. The cylindrical

injector is made of aluminum alloy to prevent deformation. By moving an internal piston, water can be

sucked in or pushed out, effectively changing the net buoyancy. The piston is driven by a DC brush motor

(Maxon RE16). This motor’s small size and strong torque mean it can easily overcome friction between

the piston and the cylinder wall to move the piston. However, its maximum rated speed is relatively low,

which may result in slow responses.

• Battery compartment. This features a motor-driven movable slider, a Li-ion battery pack, a waist

motor, and a depth sensor. The movable slider weighs 350 g, and its center of gravity is slightly higher

than that of the robot, providing a more significant pitch moment. It is driven by a small, high-speed

DC brush motor (Maxon RE13). The battery pack consists of 18 Li-ion batteries, connected in series

and parallel to provide high currents. The waist motor, a 60-W DC motor (Maxon RE30) with a rated

torque of up to 85.6 mNm, is fixed above the battery pack. In addition, a depth sensor (TE Connectivity

MS5837) is affixed to the bottom of the compartment to provide depth data. The electronic control

systems, including the microcontroller unit (MCU) and power management modules, are also installed

in this compartment.

• Tail compartment. This is mainly given over to a brushless caudal motor (Maxon EC16) with a

maximum rated speed of 39400 rpm, enabling the caudal joint to oscillate at very high frequencies.

3 Dynamic model

To provide depth control, we need to analyze the relationship between the control signal and pitch angle.

To do this, we now present a brief derivation of our full-state dynamic model, based on our previous

work [24]. Figure 2 illustrates the coordinate frames used, namely the inertial frame Cg = ogxgygzg,

body frame Cb = obxbybzb, and rotatable surface frames Ci = oixiyizi, where i = w, t, l, r denote the

waist, flukes, left flipper, and right flipper, respectively.
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Figure 2 (Color online) Coordinate systems used in the model, showing the inertial, body, and fin frames.

Next, we define the translational and angular velocities with respect to (w.r.t.) the body frame as

Ub = (Ubx, Uby, Ubz)
T and Ωb = (Ωbx,Ωby,Ωbz)

T, respectively. In addition, we define the full velocity

vector as Vb = (UT
b ,Ω

T
b )

T. Then, the robotic dolphin’s kinematics can be expressed as

gṖb =
gUb =

gRbUb,

gṘb =
gRbΩ̂b,

(1)

where gRb and gPb are the rotation matrix and position vector of Cb w.r.t. Cg, respectively. Similarly,

the rotatable surfaces have their own kinematics, expressed as

Vi =
iHbVb + δi (i = w, l, r),

Vt =
tHwVw + δt,

(2)

where iHb (i = w, l, r) and tHw are 6 × 6 transformation matrices, and the vectors δi denote the angular

velocities. Then, based on Newton’s law, we can derive the full-state dynamic model as

MbV̇b = −Γcb + Γhb + Γwb + Γlb + Γrb +Gb + Γm + Γj ,

bHwMwV̇w = bHw(−Γcw + Γhw + Γbw + Γtw),
bHtMtV̇t =

bHt(−Γct + Γht + Γwt),
bHiMiV̇i =

bHi(−Γci + Γhi + Γbi) (i = l, r).

(3)

Here, Gb = (Gn, τn)
T denotes the net buoyancy force and moment, Γm and Γj are the forces and moments

generated by the movable slider and water injector, respectively, and the Mi (i = b, w, t, l, r) are the total

inertia matrices. In addition, Γhi represents the hydrodynamic force and moment for component i, and

Γbi is the corresponding external body force. Similarly, Γib denotes the external force of component i on

the body, and likewise for Γwt and Γtw. In order to unify all calculations in the body frame, both sides

of the equation should be multiplied by bHi.

To simplify the calculations, we define two new variables ξt and ξi as

ξt =
tḢwVw and ξi =

iḢbVb (i = w, l, r).

Now, we can obtain the speed derivatives of the velocities from (2), substitute them in the left-hand

sides of (3), and obtain the summation. In this way, we obtain the final dynamic model, as follows:

MV̇b = −Πe +Πc +Πh +Πg + Γm + Γj , (4)

where

M =
∑

i=b,w,t,l,r

bHiMi
iHb,
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Figure 3 (Color online) Diagram showing our LOS implementation.

Πc = −
∑

i=b,w,t,l,r

bHiΓci,

Πh =
∑

i=b,w,t,l,r

bHiΓhi,

Πg = Gb,

Γm = mm

(

2 ˆ̇PmΩb − P̈m

P̂m(2 ˆ̇PmΩb − P̈m)

)

,

Γj = mj

(

2 ˆ̇P jΩb − P̈j

P̂j(2
ˆ̇
P jΩb − P̈j)

)

.

4 Adaptive depth control

4.1 LOS method

In this paper, we aim to make the robot swim at the desired depth by relying on dolphin-like motions.

Generally, with sufficient propulsion and a suitable lift-to-drag ratio, such a robot can easily dive with

a stable pitch angle. Thus, we can shift the control target from the depth to the pitch angle. Another

benefit of controlling the pitch angle is that the tracking path becomes smoother, since the robot’s body

attitude cannot change sharply.

In principle, depth control is a two-dimensional issue, and can be simplified for identifying tracking

points at the desired depth. We can then employ LOS guidance to map the desired tracking points to

pitch angles. As shown in Figure 3, given the target depth d, we consider a vector
⇀

a that is perpendicular

to zg. Then, taking the robot’s centroid as the center, we draw a circle with radius R that intersects the

vector
⇀

a at the points A and B. Then, we select the point B as the target point. Based on the real-time

depth z, we can then obtain the target pitch angle as

θd = arctan

(

de

‖
⇀

a‖

)

, (5)

where
{

de = d− z,

d2e + ‖
⇀

a‖2 = R2.

Here, ‖ · ‖ indicates the Euclidean norm.
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Figure 4 (Color online) Illustration of the control system, showing (a) the control signals for both modes and (b) the

control framework.

4.2 Control system

4.2.1 CPG model

In this paper, we use a CPG model to control the robotic dolphin’s swimming mode, as this can effectively

ensure the control signals produce smooth motion transitions, even in the face of sudden parameter

changes. This CPG model can be expressed as [25]



























α̇i = 2πfi +
∑

j∈Υ(i)

ωij sin (αj − αi − φij),

r̈i = ai

(ai

4
(Ai − ri)− ṙi

)

,

xi = ri (1 + cosαi) ,

(6)

where ri and αi denote the amplitude and phase of the i-th oscillator, respectively. In addition, φij and

ωij represent the phase difference and weight between the i-th and the j-th oscillator, respectively, ai
is a strictly positive constant, Ai and fi indicate the intrinsic amplitude and frequency, Υi denotes the

set of oscillators from which the i-th oscillator receives inbound couplings, and xi represents the model’s

output.

Since the CPG model cannot change the offset of the output signals when we employ the one-sided

CPG output to save the start-up times, we should also add an offset angle βi based on the output angle

ϕi calculated by xi, as follows:

xi = ϕi + βi. (7)

4.2.2 Control variables

In order to produce diving and surfacing motions, the robotic dolphin needs to create suitable pitch

moments. We therefore selected two control variables, namely the flipper deflection angle ψ and the CPG

model offset βi. By controlling these two signals, the robot can adjust its pitch moment to float up or

down. Figure 4(a) illustrates the different control options and the corresponding forces.

Specifically, by changing the deflection angle ψ of the flippers, the water flow can result in upward or

downward forces, which can in turn produce positive or negative pitch moments as of the center of gravity

changes. The dolphin can also use the offset βi to change the direction of the propulsive forces from its

body and flukes. Clearly, a non-zero βi means Fwb is no longer horizontal, but rather points obliquely

upward or downward. Therefore, we combine the LOS and CPG control methods to create the proposed

control algorithm framework, as illustrated in Figure 4(b). This enables the depth control target to be

reached via an iterative process.
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4.3 Controller design

Since our control target is the pitch angle, we describe the dolphin’s angular motion by the following

model [26]:

θ̇k+1 = (pk qk)

(

θ̇k

uk

)

, (8)

where














(

pk

qk

)

= χk + ζk =

(

ak

bk

)

+

(

ζ0k

ζ1k

)

=

(

âk + ãk

b̂k + b̃k

)

+

(

ζ0k

ζ1k

)

,

‖ζk‖ 6 ληk.

Here, θ̇k represents the rate of pitch angle change and uk is the control variable that provides the pitch

moment. Here, uk is either ψ or βi. Next, âk and b̂k are adaptive parameters, and ãk and b̃k are the

differences between the real and estimated values. In addition, ζk denotes the parameter perturbation,

which is usually due to external disturbances and is thus generally random. However, it still remains

bounded in a suitable range, so we assume it is less than ληk, where ηk is a positive scalar value that we

will estimate and λ is a positive, manually adjusted parameter that controls the rate at which ηk changes.

We also define qmin as the minimum value of qk, and assume that qk > 0 due to the sign of the variable

uk, i.e., qk > qmin > 0.

The pitch angle is related to its rate of change via

θ̇k+1 = θk+1 − θk, (9)

and substituting this into (8) gives us the final form

θk+1 = (1 + pk)θk − pkθk−1 + qkuk. (10)

By setting the reference pitch angle θrk+1 = θd and inverting (10), we can express the control signal uk
as follows:

uk =
θrk+1 − (1 + âk)θk + âkθk−1

b̂k
. (11)

In addition, due to structural limitations, uk must be bounded, lying within a range uk ∈ [umin, umax]

that is determined by the robot’s design.

Next, in order to develop the adaptation rules, we need to calculate the control error. The tracking

error relative to the control target can be defined as

ek+1 = θrk+1 − θk+1 = θrk+1 − (1 + pk)θk + pkθk−1 − qkuk + b̂kuk − b̂kuk. (12)

When uk is not in the saturation zone, we can substitute (11) into (12) to obtain

ek+1 = −(ãk + ζ0k)(θk − θk−1)− b̂−1
k (b̃k + ζ1k)(θ

r
k+1 − (1 + âk)θk + âkθk−1) = −

(

ãk + ζ0k b̃k + ζ1k
)

δk, (13)

where

δk =

(

θ̇k

uk

)

.

Thus, we can express the expected control error magnitude as

|ek| 6 ‖ζk‖ ‖δk‖ 6 ληk ‖δk‖ .
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4.4 Adaptation rules

Based on the control error, we can now derive the adaptation rules. First, the parameter adaptation rate

should decrease with the error, stopping entirely once the error satisfies |ek| 6 ληk‖δk‖. Since we are

aiming to estimate the parameter ηk, let the estimated value be η̂k. In addition, we define a coefficient

ck that controls the adaptation rate as [26]

ck =

{

(1− λη̂k−1 ‖δk−1‖ |ek|
−1), if |ek| > λη̂k−1 ‖δk−1‖ ,

0, otherwise.
(14)

Note that ck lies within the range [0, 1). Then, we can estimate ηk as

η̂k = η̂k−1 + σ−1
k (λγck |ek| ‖δk−1‖), (15)

where
σk = 1 + δTk−1Λδk−1 + γλ2‖δk−1‖

2
,

Λ =

(

µ1 0

0 µ2

)

.
(16)

Here, | · | denotes the absolute value. In addition, γ is a positive parameter to be set manually, and µ1

and µ2 are positive constants. In this paper, we set µ1 = µ2 = µ and η̂0 = 0. Finally, we can obtain the

adaptation rule for the adaptive model as

(

âk

b̂k

)

=

(

âk−1

b̂k−1

)

−
ckek

σk
∆δk−1, (17)

where b̂k > bmin.

Proposition 1. If the ACA is employed for the above design, the estimated variable values are bounded

as confirmed in [26].

Proof. First, define ỹk = (ãk b̃k) and η̃k = ηk − η̂k. Next, consider the nonnegative Lyapunov function

Vk = ỹTk Λ
−1ỹk +

1

γ
η̃2k. (18)

Then, the change in this function can be expressed as

∆Vk = Vk − Vk−1 = P1 + P2, (19)

where
P1 = ỹTk Λ

−1ỹk − ỹTk−1Λ
−1ỹk−1,

P2 =
1

γ

(

η̃2k − η̃2k−1

)

.

For P2, we can obtain η̃k from (15) as follows:

η̃k = η̃k−1 − σ−1
k (λγck |ek| ‖δk−1‖). (20)

Thus, we can express P2 as

P2 =
c2ke

2
kγλ

2

σ2
k

‖δk−1‖
2
−

2ckλ

σk
‖δk−1‖ |ek| η̃k−1. (21)

In addition, since b̃k > bmin, Eq. (17) can be re-expressed as

mk = ŷk−1 −
ckek

σk
∆δk−1, (22)
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where

ŷk = f (mk) =

{

(

m0
k m

1
k

)

, if m1
k > bmin,

(

m0
k bmin

)

, if m1
k < bmin.

Thus, we can conclude that ‖yk−1 − f(mk)‖ 6 ‖yk−1 −mk‖. As a result, ỹTk Λ
−1ỹk 6 (yk−1 −mk)

TΛ−1

·(yk−1 −mk), and we can derive the following bound on P1:

P1 6
2ckek
σk

ỹTk−1δk−1 +
c2ke

2
k

σ2
k

δTk−1Λδk−1. (23)

In addition, we can obtain the following bound on ∆Vk by adding (21) and (23):

∆Vk 6
2ckek
σk

ỹTk−1δk−1 −
2ckλ

σk
‖δk−1‖|ek|η̃k−1 +

c2ke
2
k

σ2
k

(

δTk−1Λδk−1 + γλ2‖δk−1‖
2)
. (24)

Next, from (12), we can obtain

e2k + ekỹ
T
k−1δk−1 = −ζTk−1δk−1 6 λη‖δk−1‖|ek|.

Substituting this and the definition of ck in (14) into (24) yields the final expression

∆Vk 6 −
2c2ke

2
k

σk
< −

c2ke
2
k

σk
. (25)

This indicates that ŷk and η̂k are bounded. A detailed convergence analysis of the error ek is presented

in [26].

5 Simulations and experiments

In order to evaluate the effectiveness of the proposed method of controlling the depth of a gliding robotic

dolphin, we conducted both simulations and aquatic experiments. The simulations were carried out

in MATLAB/Simulink using the full-state dynamic model. The mechanical parameters used, obtained

by Solidworks, are listed in [24]. The hydrodynamic parameter values were initially obtained using

computational fluid dynamics (CFD) simulations, then adjusted based on practical experience [27]. The

aquatic experiments were conducted in a pool of dimensions 5(L) m× 4(W ) m× 1(H) m, and the whole

process was recorded with an underwater video camera. Importantly, we used the simulation results to

derive optimal control parameter values through offline optimization.

5.1 Control parameter optimization

For the ACA-based controller, we needed to find optimal values for four control parameters, namely qmin,

λ, γ, and µ. Hence, we needed to design a suitable objective function to solve this problem. The most

important factor for depth control is the error (accuracy), followed by the transition time. Thus, we

created an objective function with parameter constraints based on the error |e| and transition time ts, as

follows:

arg min κ1|e|+ κ2ts, (26)

s.t.























κ1 + κ2 = 1,

0 < κ1, κ2 < 1,

0 < qmin, µ < 5,

0 < λ, γ < 10.

Here, since the dimensions of the two optimization goals were different, we used min–max normalization

to normalize the units by setting bounds on their values. In addition, by adjusting the κ1 and κ2 values,

we could focus the optimization process more on the error or transition time. Since the dynamic model
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Figure 5 (Color online) Snapshot sequence for ψ-based depth control. (a) t = 2 s; (b) t = 6 s; (c) t = 8 s; (d) t = 11 s;

(e) t = 14 s; (f) t = 17 s; (g) t = 20 s; (h) t = 22 s; (i) t = 24 s.

was nonlinear, we used MATLAB’s genetic algorithm toolbox to search for an optimal set of control

parameters.

By setting κ1 = 0.9 and κ2 = 0.1, we obtained the following optimal control parameter set: qmin = 1.5,

λ = 3.51, γ = 4.19, and µ = 1.59. Then, we made some minor adjustments to this parameter set based

on the results of the aquatic experiments. The final parameters used were qmin = 0.7, λ = 3.51, γ = 4.19,

and µ = 0.99 for controlling ψ, and likewise for controlling β except that qmin = 1.2. Here, we found that

the control parameters calculated using our full-state dynamic model provided accurate initial values for

actual operation, confirming the model’s accuracy.

5.2 Results for flipper-based control

First, we used the above control parameters to test controlling the dolphin’s depth by adjusting the

flipper deflection angle ψ. Here, we bounded the control signal uk to lie within the range [−45◦, 45◦]

based on mechanical constraints. Then, to generate dolphin-like motion, we set the CPG frequency to

1 Hz, the intrinsic amplitudes of the waist and caudal joints to 20◦ and 30◦, respectively, and the phase

difference between the two joints to 45◦.

In this experiment, we set the target depth to 30 cm. Figure 5 shows a sequence of snapshots taken

during the control process, which lasted for approximately 24 s. Figure 6 shows the real-time depth

data collected by the onboard sensor. Here, we see that the experimental and simulated results are

approximately consistent. In order to better analyze the control accuracy and controller performance,

we calculated both the mean absolute error (MAE) and root mean square error (RMSE) based on the

depth results. Once the robotic dolphin had entered a steady state, the MAE and RMSE of the control

error de were 0.43 and 0.09 cm, respectively, demonstrating that the controller was effective. However,

the transition time was somewhat long, mainly because the dolphin’s forward speed was not high enough

for the flippers to rapidly generate the desired pitch moments.

Figure 7 plots the flipper and pitch angles during the experiment, based on the recorded IMU data

and control signal. The pitch angle has been filtered, since the dolphin’s head generated significant pitch

jitter (approximately ±8◦) due to flapping of the waist and caudal joints, and these oscillations seriously

affected the control process. To combat this, we first performed median filtering on the pitch angle based

on the CPG frequency, and then used the filtered data θ for depth control. Although such filtering can
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Figure 6 (Color online) Depth error for ψ-based depth control.
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Figure 7 (Color online) Control inputs and outputs during the aquatic experiments, showing the (a) flipper angle and

(b) target and actual pitch angles.

introduce a delay into the attitude signal input, this had no obvious impact on the depth control process.

In addition, as Figure 7(b) illustrates, θd decreased as the dolphin approached the target depth. The

control input ψ was fixed at −45◦ until t = 6 s, and then began to increase as the pitch angle θ approached

the target θd. However, we should also note that θ only gradually began to track θd after t = 6 s, and the

maximum pitch angle achieved was only around 5◦, which also explains the insufficient pitch moment.

In addition, we can see a fluctuation at around 18 s, when the actual depth became slightly offset from

the target depth during the depth maintenance phase, as can be seen in Figure 6.

5.3 Results for CPG-offset-based control

The second experiment focused on controlling the depth using the CPG offset βi. Here, we bounded βi to

lie within the range [−18◦, 18◦]. Figures 8 and 9 show a snapshot sequence and depth data recorded during

the control process, respectively. Compared with ψ-based control, this approach had two advantages.

First, the robot was more stable, with no fluctuations after it entered the depth maintenance phase.

Second, the transition time (approximately ts = 10.3 s) was significantly shorter than for ψ-based control

(around ts = 14 s). Again, the experimental and simulated results were in good agreement. In addition,

the MAE and RMSE were 0.40 and 0.08 cm, respectively, both lower than the results for flipper-based

control.

More importantly, Figure 10 shows the changes in the control variable βi and pitch angle during the
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Figure 8 (Color online) Snapshot sequence for βi-based depth control. (a) t = 2 s; (b) t = 4 s; (c) t = 6 s; (d) t = 9 s;

(e) t = 12 s; (f) t = 16 s.
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Figure 9 (Color online) Depth error for βi-based depth control.
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Figure 10 (Color online) Control inputs and outputs during the aquatic experiments, showing the (a) CPG offset and

(b) target and actual pitch angles.

experiment. First, we should note that the actual pitch angle reached a maximum of 25◦, much higher

than the angle seen for flipper-based control, indicating that βi-based control can provide more suitable

pitch moments. In addition, the actual pitch angle curve more closely matched the target pitch angle
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during the diving process, again confirming the controller’s effectiveness. The error remained essentially

small constant after the robot reached the target depth, because we included a control threshold in the

control process. Specifically, the control was not applied when the depth error was below a threshold of

es = 0.8 cm. It is also worth noting that the pitch angle error indicates the robot did not dive in exactly

the direction indicated by the pitch angle, due to mechanical inaccuracies. In addition, compared with

the results in [20], we achieved equal depth accuracy and a similarly short transition time by controlling

βi instead of ψ. However, we were able to use a lower frequency (1 Hz vs. 1.5 Hz), which could save

energy.

5.4 Discussion

We have implemented two methods of controlling the depth of a gliding robotic dolphin, not only con-

firming the feasibility of the platform and control algorithm, but also gathering valuable engineering

experience for ocean exploration. Compared with the method in [26], we were able to calculate the con-

trol parameters more accurately using our full-state dynamic model, and achieved a smaller steady-state

error. In addition, our approach involves fewer control parameters than the method in [20], which not

only needs to consider the SMC model’s parameters, but also fuzzy rules. Our simulations and aquatic

experiments have shown that controlling βi can achieve similar even better performance than controlling

ψ. In particular, controlling βi can free the flippers from having to control the pitch moment, leaving

them to focus on the more important task of adjusting the yaw moment, as the only structure that can

handle this. This potentially suggests new ideas for 3D path tracking.

Nevertheless, our system does have some limitations. First, the robotic dolphin did not swim exactly

along the direction given by the pitch angle, which may affect control accuracy. Improving the robot’s

construction could reduce this effect, and we could also consider using depth data as direct feedback

information for control. Second, robots that adopt dolphin-like motions to control their depth inevitably

consume large amounts of energy due to their propulsion mechanism. A novel way to address this issue

would be to combine gliding and dolphin-like motions to extend the robot’s operational time in practical

applications.

6 Conclusion and future work

In this paper, we have presented a depth control framework based on dolphin-like motion for use with

our gliding robotic dolphin, and compared the performance of two different motion control modes. First,

we established a full-state dynamic model of 3D dolphin-like and gliding motions. Next, we used an

LOS method to convert depth control into a pitch control problem. Then, we employed a parameterized

adaptive control approach to calculate the control signal, and optimized the parameters used. Specifically,

we conducted simulations using the full-state dynamic model, optimizing the control parameters by

devising a suitable objective function. We have also successfully implemented our control framework in a

robotic prototype. Finally, simulated and experimental results regarding the control error and transition

time demonstrated that the proposed control framework is effective. More importantly, comparing the

performance of the two control modes revealed that the dolphin performed better when we controlled

the CPG offset rather than the flipper angle, which will contribute greatly to the goal of achieving 3D

motion.

Our future work will concentrate on controlling depth with gliding motions, aiming to achieve better

performance by combining this with dolphin-like motion. In addition, since the robot can successfully

control its vertical motion using only its waist and caudal joints, we will aim to enable it to follow a 3D

path by controlling the CPG offset and flipper angle simultaneously.
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