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Purpose: Preoperative and noninvasive prognosis evaluation remains challenging for gastric cancer.
Novel preoperative prognostic biomarkers should be investigated. This study aimed to develop multi-
detector-row computed tomography (MDCT)-guided prognostic models to direct follow-up strategy
and improve prognosis.
Methods: A retrospective dataset of 353 gastric cancer patients were enrolled from two centers and
allocated to three cohorts: training cohort (n = 166), internal validation cohort (n = 83), and external
validation cohort (n = 104). Quantitative radiomic features were extracted from MDCT images. The
least absolute shrinkage and selection operator penalized Cox regression was adopted to construct a
radiomic signature. A radiomic nomogram was established by integrating the radiomic signature and
significant clinical risk factors. We also built a preoperative tumor-node-metastasis staging model for
comparison. All models were evaluated considering the abilities of risk stratification, discrimination,
calibration, and clinical use.
Results: In the two validation cohorts, the established four-feature radiomic signature showed robust
risk stratification power (P = 0.0260 and 0.0003, log-rank test). The radiomic nomogram incorpo-
rated radiomic signature, extramural vessel invasion, clinical T stage, and clinical N stage, outper-
forming all the other models (concordance index = 0.720 and 0.727) with good calibration and
decision benefits. Also, the 2-yr disease-free survival (DFS) prediction was most effective (time-de-
pendent area under curve = 0.771 and 0.765). Moreover, subgroup analysis indicated that the radio-
mic signature was more sensitive in risk stratifying patients with advanced clinical T/N stage.
Conclusions: The proposed MDCT-guided radiomic signature was verified as a prognostic factor
for gastric cancer. The radiomic nomogram was a noninvasive auxiliary model for preoperative indi-
vidualized DFS prediction, holding potential in promoting treatment strategy and clinical prognosis.
© 2020 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.14350]
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1. INTRODUCTION

Gastric cancer answers for a worldwide estimated 783 000
deaths in 2018, ranking third among leading causes of cancer

death.1 The primary treatment strategies of gastric cancer
include endoscopic submucosal dissection, radical surgery,
neoadjuvant therapy, chemotherapy, etc. In times of treatment
decision-making, clinicians and patients desperately need
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evidence-based information about risk of recurrence and
death, which is mainly based on preoperative clinical tumor-
node-metastasis (TNM) system. Nowadays, multidetector-
row computed tomography (MDCT) is widely applied in clin-
ical staging owing to its noninvasiveness, convenience, and
stability2 and clinical staging defined on preoperative MDCT
has been proven a prognostic indicator of survival.3,4 Further-
more, some other characteristics on MDCT, for instance,
extramural vessel invasion, have also been proven closely
related to the prognosis of gastric cancer.5,6 However, subjec-
tive and qualitative, conventional interpretation of MDCT
mainly depends on clinical experience and individual per-
spective of radiologists. Therefore, novel means should be
investigated to accelerate individualized prognostic progress
and improve outcomes for gastric cancer patients.

Recent advances of molecular markers are growing impor-
tant for prognostic analysis in gastric cancer. Several stud-
ies7,8 suggested that patients with hypermethylated MDGA2
or exhibiting imbalanced ADAR1/2 demonstrated extremely
poor prognosis. Nevertheless, limited by high cost and com-
plex protocols, most molecular markers are not yet available
for application in clinical medicine.

Particularly, potential of radiomics has been revealed in
recent years’ studies.9–11 The main concept lies in quantita-
tively mining high-throughput medical image traits and cap-
turing tumor heterogeneity via computer-based analysis to
improve diagnosis and prognosis.12,13 In previous researches,
Giganti et al.14 and Yoon et al.15 evaluated the associations
between CT texture features and survival outcomes. However,
their studies merely used a few texture features, which might
underestimate the significance of radiomics in quantifying
tumor morphology and intensity on CT images. Taking a step
forward, Li et al.16 and Jiang et al.17,18 established CT-based
radiomic nomograms combining radiomic signatures and
clinical factors to predict prognosis for gastric cancer and
showed good performance, higher than models with clinical
factors alone. However, the major clinical factors in above
models, such as T/N stage, were determined by postoperative
histopathological analysis of surgical specimens. Thus, the
contribution of their models to preoperative treatment deci-
sion-making is limited greatly.

Under such circumstances, this study aimed to create an
MDCT-guided radiomic signature for preoperative disease-
free survival (DFS) prediction in gastric cancer and verify its
incremental contribution to preoperative radiomic nomo-
gram.

2. MATERIALS AND METHODS

2.A. Enrolled population

This multicenter retrospective study was ethically granted
by the Institutional Review Board of Peking University Peo-
ple’s Hospital (center 1) and Guangdong Provincial People’s
Hospital (center 2) in compliance with the Health Insurance
Portability and Accountability. Informed consent was not
required. In center 1, 249 pathologically confirmed gastric

cancer patients (182 men and 67 women) were recruited. In
center 2, 104 patients (72 men and 32 women) were recruited.
Text S1 and Figure S1 (Supplemental Materials) provided
detailed inclusion and exclusion criteria along with a final
diagram for patient recruitment.

Follow-up information included laboratory testing and
chest/abdominal/pelvic MDCT at 3, 6, 12 months within the
first year, each subsequent annual postoperatively. The pro-
gressive event was defined as local recurrent, metachronous
metastatic disease, or recorded death caused by gastric can-
cer. DFS time was recorded in months from the radical sur-
gery date to progressive date or the last follow-up date
patients were known free of disease. Available clinical risk
factors included age, sex, carcinoembryonic antigen (CEA),
carbohydrate antigen 19-9 (CA19-9), location/growth pattern,
clinical T stage (ctT), clinical N stage (ctN), and extramural
vessel invasion (ctEMVI) defined on MDCT (TableI). Defini-
tions for ctT, ctN, and ctEMVI according to Text S2 were
assessed and confirmed by three radiologists upon consistent
consultation.

Patients in center 1 were randomly allocated to two
cohorts at a 2:1 ratio (training cohort, n = 166; internal vali-
dation cohort, n = 83). Patients in center 2 were used as
external validation cohort. The sample size power analysis
and randomization method are given in Text S3.

2.B. MDCT-guided feature extraction

The contrast-enhanced portal venous phase MDCT images
were used in this study. Detailed procedure for image acquisi-
tion is given in Text S4. The CT scanning parameters for the
two centers are provided in Table S1.

The tumor regions of interest (ROIs) were created by man-
ually delineating along the tumor margin on the slice with the
largest tumor area using ITK-SNAP (version 3.4.0, http://
www.itksnap.org). Two-dimensional radiomic features were
extracted for all the patients based on algorithms provided in
Pyradiomics (version 2.1.1) and implemented by Python 3.6
(https://www.python.org). Final radiomic features were com-
posed of eight groups according to the image biomarker stan-
dardization initiative (IBSI). Specific feature types are
summarized in Figure S2. Image quality control and feature
consistency test are described in Text S5.

Numerical radiomic features were standardized by z-score
method using the mean and standard deviation parameters
calculated from the training cohort. Key feature selection was
conducted in the training cohort using a Cox proportional
hazards regression method with the least absolute shrinkage
and selection operator (LASSO) penalty in ten-fold cross-val-
idation.

2.C. Individualized radiomic signature construction
and validation

The overall radiomics workflow is depicted in Fig. 1.
Radiomic signature construction was conducted within the
training cohort. Cox proportional hazards regression was

Medical Physics, 47 (10), October 2020

4863 Wang et al.: Preoperative prognosis prediction in GC 4863

http://www.itksnap.org
http://www.itksnap.org
https://www.python.org


used for modeling the radiomic signature by examining
the joint effects of selected radiomic features on the risk
of disease progression at a particular survival time.19

Reserved key radiomic features were simultaneously fed
into a multivariate Cox regression to compute the regres-
sion coefficients. Then, radiomic features weighted by cor-
responding regression coefficients posed a linear formula
to calculate an individualized risk score per patient, which
was called a radiomic signature.

Potential contribution of radiomic signature to DFS was
verified in the two validation cohorts. Using median radiomic
signature value calculated in the training cohort as a cutoff
value, patients were separated into high-risk (≥median) and
low-risk (<median) groups in each cohort. Kaplan–Meier sur-
vival curves, along with log-rank tests were conducted to
investigate significant differences in risk stratification. To
evaluate discrimination, concordance index (C-index) was
computed. Also, the time-dependent receiver operating char-
acteristic (ROC) curve analysis20 was conducted to investi-
gate how well the radiomic signature could predict the DFS at
the time point of 1, 2, and 3 yr. To quantify the goodness-of-
fit between actual and predicted survival probabilities, cali-
bration curves along with Hosmer–Lemeshow tests were
measured. In usefulness of clinical trials, decision curve

analysis (DCA) was conducted in internal validation cohort
by calculating the net benefits at some threshold probabilities.

2.D. Subgroup analysis of radiomic signature
according to clinical T and N stage

One remarkable trial was that we moved on to see whether
radiomic signature could still well risk stratify patients with
certain clinical stage. Patients from centers 1 and 2 were both
divided into seven subgroups according to clinical T and N
stage. The risk stratification performance was investigated
using Kaplan–Meier survival curves along with log-rank tests
in these subgroups, including ctT1 group, ctT2 group, ctT3
group, ctT4 group, ctN- group, ctN+ group, and neoadjuvant
therapy group. Herein, recommended by National Compre-
hensive Cancer Network guidelines to receive neoadjuvant
therapy,21 patients with ctT2 or higher ctT and any ctN consti-
tuted the neoadjuvant therapy group.

2.E. Radiomic nomogram development and
performance evaluation

Clinical risk factors in Table I were taken into considera-
tion to build a more powerful radiomic nomogram.

TABLE I. Baseline characteristics of clinical risk factors for enrolled gastric cancer patients.

Clinical risk factors Training cohort (n = 166) Internal validation cohort (n = 83) P External validation cohort (n = 104)

Age, mean � SD, yr 64.1 � 12.3 61.3 � 12.9 0.1061 57.5 � 11.2

Sex, No. (%) 0.8398

Male 122 (73.5) 60 (72.3) 72 (69.2)

Female 44 (26.5) 23 (27.7) 32 (30.8)

CEA, median (IQR) 2.00 (1.17–3.39) 1.57 (0.92–2.70) 0.0656 2.00 (1.00–4.00)

CA19-9, median (IQR) 11.66 (7.86–22.88) 10.74 (5.84–22.80) 0.5287 11.00 (7.00–20.00)

Location/growth pattern, No. (%) 0.7011

Distal nondiffusion 114 (68.7) 55 (66.3) 96 (92.3)

Diffusion/proximal nondiffusion 52 (31.3) 28 (33.7) 8 (7.7)

ctT, No. (%) 0.9104

T1-2 17 (10.2) 10 (12.0) 22 (21.2)

T3 37 (22.3) 18 (21.7) 35 (33.7)

T4 112 (67.5) 55 (66.3) 47 (45.1)

ctN, No. (%) 0.7868

N� 91 (54.8) 47 (56.6) 43 (41.3)

N+ 75 (45.2) 36 (43.4) 61 (58.7)

ctEMVI, No. (%) 0.7836

Negative 99 (59.6) 51 (61.4) 60 (57.7)

Positive 67 (40.4) 32 (38.6) 44 (42.3)

Survival outcomes 0.4290

DFS time, median (IQR), months 25.5 (12.0–46.0) 22.0 (12.0–45.0) 58.0 (33.0–71.5)

DFS event, No. (%)

Disease progression 58 (34.9) 33 (39.8) 40 (38.5)

No disease progression 108 (65.1) 50 (60.2) 64 (61.5)

P values were calculated to verify the balance between the training and internal validation cohorts. Mann–Whitney U tests were used for continuous clinical risk factors,
Chi-squared tests were applied for categorical variables, and log-rank test was conducted for survival outcomes. CEA, carcinoembryonic antigen, CA19-9, carbohydrate
antigen 19-9; ctT, clinical T stage defined on MDCT; ctN, clinical N stage defined on MDCT; ctEMVI, extramural vessel invasion defined on MDCT; MDCT, multidetec-
tor-row computed tomography; DFS, disease-free survival; SD, standard deviation; IQR, interquartile range.
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Significant risk factors were screened out by both univariate
and multivariate Cox regressions in the training cohort. Then
the radiomic signature and selected clinical risk factors were
fed into a Cox regression, giving the final potential prognos-
tic radiomic nomogram. The outputs of the radiomic nomo-
gram were the probabilities of DFS.

Further, a preoperative TNM staging model was estab-
lished based on the training cohort using the multivariate
Cox proportional hazards regression with the ctT and ctN as
the covariates of estimating risk of disease progression at a
particular survival time. Aside from C-index, area under the
ROC curve (AUC), and DCA, comparison of the three prog-
nostic models (radiomic signature, radiomic nomogram, and
TNM staging model) was quantified by integrated discrimi-
nation improvement (IDI)22 (details in Text S6). Thereinto,
IDI is an effective method in quantifying the incremental
improvements by adding some new predictors to the existing
predictors.

2.F. Statistical analysis

To verify the balance between training and internal valida-
tion cohort, Mann–Whitney U tests were used for continuous
clinical risk factors, Chi-squared tests were applied for cate-
gorical variables, and log-rank tests were conducted for DFS.
A two-sided P < 0.05 was deemed an attained statistical sig-
nificance level. All tests were based on R packages (Text S7)
in R software (version 3.4.3; https://www.r-project.org/).

3. RESULTS

3.A. Patient characteristics and radiomic feature
discovery

Baseline characteristics of clinical risk factors for training,
internal validation, and external validation cohorts are sum-
marized in Table I. Patients in the training and internal vali-
dation cohorts were balanced for survival with the median
DFS of 25.5 months (observed: 58/166, 34.9%) and
22.0 months (observed: 33/83, 39.8%), respectively
(P = 0.4290, log-rank test). No significant difference was
captured between these two cohorts in clinical risk factors
(P = 0.0656–0.9104). After univariate and multivariate Cox
regression, only ctEMVI was identified as a significant prog-
nostic factor (Table II).

A total of 924 radiomic features were initially extracted
per image, among which approximately 50% features were
included in the subsequent experiments after data cleaning
consistency test. LASSO Cox method identified four poten-
tial radiomic features (Figure S3). Stratification ability and
prognosis performance of each selected radiomic feature were
revealed univariately in Figure S4 and Table S2.

3.B. Radiomic signature construction and
validation

With the regression coefficients of four selected radiomic
features, formula for radiomic signature is defined in Text S8.

FIG. 1. The overall radiomics workflow. (a) Examples of manual tumor delineation on multidetector-row computed tomography. (b) Feature discovery, including
radiomic feature selection and clinical characteristic analysis. (c) Radiomic signature and radiomic nomogram construction. (d) Model performance evaluation.
AUC, area under the curve; DCA, decision analysis curve; ICC, intraclass correlation coefficient; IDI, integrated discrimination improvement; KM, Kaplan–
Meier; LASSO, least absolute shrinkage selection operator. [Color figure can be viewed at wileyonlinelibrary.com]
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The radiomic signature alone was a risk factor for DFS in the
training cohort (Table II), and this was confirmed in both val-
idation cohorts with the hazard ratio (HR) of 1.825 (95%
confidence interval [CI]: 1.107–3.009) and 1.694 (95% CI:
1.220–2.352).

By the cutoff value 0.109 in the training cohort, patients in
internal validation cohort were separated into high-risk group
(range, 0.155–1.827) and low-risk group (range, �23.865–
0.096). Radiomic signature of high-risk patients in external
validation cohort were from 0.182 to 2.586, whereas low-risk
values were from �20.374 to 0.039. The risk stratification
ability of the radiomic signature was verified in both valida-
tion cohorts (P = 0.0260 and 0.0003, Fig. 2). Normalized
mean values of the four respective radiomic features for high-
risk and low-risk patients are illustrated in a radar map (Fig-
ure S5). The radiomic signature showed a fine distinguishing
ability by a C-index of 0.695 (95% CI: 0.626–0.763) in the
training cohort, 0.646 (95% CI: 0.560–0.731) in internal vali-
dation cohort, and 0.693 (95% CI: 0.617–0.770) in external
validation cohort (Table III).

3.C. Risk stratification ability of radiomic signature
in subgroup analysis

The Kaplan–Meier survival curves with the previous cut-
off value (0.109) are conducted within seven subgroups. In
center 1, patients in ctT4, ctN+, and neoadjuvant therapy

subgroups could be significantly separated into high-risk and
low-risk of DFS (P = 0.0019, 0.0058, 0.0008, Fig. 3), while
for ctT1, ctT2, ctT3, and ctN- patients, the radiomic signature
may fail to well risk stratify them (Figure S6) due to the nat-
ure of early clinical stage. In center 2, radiomic signature was
again verified to work well with patients in ctT3, ctT4, ctN+,
and neoadjuvant therapy subgroups (P = 0.0162, 0.0215,
0.0038, 0.0005, respectively).

3.D. Individualized radiomic nomogram

After univariate and multivariate Cox regression,
ctEMVI and radiomic signature were identified as two sig-
nificant prognostic factors. Considering the significance in
univariate analysis and the great power in clinical progno-
sis prediction, we incorporated ctT and ctN in the radio-
mic nomogram. Thus, the radiomic nomogram combining
the radiomic signature, ctEMVI, ctT, and ctN is presented
in Fig. 4(a). Formula for radiomic nomogram is shown in
Text S8.

Calibration curves [Fig. 4(b)] suggested good agreement
between model predictions and actual outputs at 1, 2, and
3 yr (Hosmer–Lemeshow test: P = 0.6849, 0.9177, 0.9571,
respectively). Decision curves [Fig. 4(c)] indicated that
radiomic nomogram added more benefits when directing
treatment strategies compared with radiomic signature, TNM
staging model, and simple schemes (follow-up of all or none

TABLE II. Univariate and multivariate Cox regression analysis for clinical risk factors and radiomic signature in the training cohort.

Factors

Univariate Cox regression Multivariate Cox regression

HR (95% CI) P value HR (95% CI) P value

Age 1.009 (0.987–1.032) 0.4085 1.076 (0.723–1.601) 0.7176

Sex

Male 1 (reference) 1 (reference)

Female 0.710 (0.382–1.319) 0.2784 0.691 (0.359–1.328) 0.2670

CEA 1.004 (1.001–1.008) 0.0054 1.003 (0.995–1.011) 0.4620

CA19-9 1.001 (1.000–1.002) 0.0154 0.996 (0.977–1.016) 0.6915

Location/growth pattern

Distal nondiffusion 1 (reference) 1 (reference)

Diffusion/proximal nondiffusion 3.005 (1.789–5.048) <0.0001 1.411 (0.722–2.760) 0.3140

ctT

T1-2 1 (reference) 1 (reference)

T3 3.030 (0.365–25.157) 0.3047 1.622 (0.185–14.200) 0.6624

T4 9.889 (1.367–71.569) 0.0233 1.946 (0.234–16.175) 0.5379

ctN

N- 1 (reference) 1 (reference)

N+ 2.583 (1.509–4.421) 0.0005 1.246 (0.680–2.282) 0.4774

ctEMVI

Negative 1 (reference) 1 (reference)

Positive 5.377 (2.982–9.696) <0.0001 2.671 (1.266–5.634) 0.0099

Radiomic signature 2.718 (1.965–3.761) <0.0001 1.543 (1.106–2.155) 0.0108

P values were calculated via Wald tests and bold values represented P<0.05. HR, hazard ratio; CI, confidence interval; CEA, carcinoembryonic antigen; CA19-9, carbohy-
drate antigen 19-9; ctT, clinical T stage defined on MDCT; ctN, clinical N stage defined on MDCT; ctEMVI, extramural vessel invasion defined on MDCT; MDCT, multi-
detector-row computed tomography.
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patients) across a threshold range of 0.00–0.64. Kaplan–
Meier curves for radiomic nomogram are shown in Fig-
ure S7.

In internal validation cohort, the predictive ability of
radiomic nomogram (C-index [95% CI]: 0.720 [0.636–
0.804]; AUCs of 0.696, 0.771, 0.708 at 1, 2, 3 yr) outper-
formed the TNM staging model (C-index [95% CI]: 0.680
[0.548–0.812]; AUCs of 0.644, 0.677, 0.690 at 1, 2, 3 yr).
Time-dependent ROC curves are presented in Figure S8. A
significant difference was found in C-index between radiomic
nomogram and radiomic signature (P = 0.0115), whereas
there was no difference between radiomic nomogram and
TNM staging model (P = 0.1981). In this case, however, an
IDI of 16.6% (95% CI, 6.7%–34.6%; P < 0.0001) did iden-
tify the promotion of radiomic nomogram compared with
clinical prognosis by TNM staging (Figure S9). In external
validation cohort, a C-index of 0.727 (95% CI: 0.662–0.792)
from radiomic nomogram again surpassed 0.712 (95% CI:
0.614–0.810) from TNM staging model. Higher time-

dependent AUCs (0.742, 0.765, 0.762 at 1, 2, 3 yr) for radio-
mic nomogram were also achieved.

4. DISCUSSION

The implementation of individualized strategies of gastric
cancer may be promoted when radiomic approaches are
adopted in preoperative prognostic models. To the best of our
knowledge, few pioneering researches only concentrated on
preoperative risk model construction for DFS in gastric can-
cer based on radiomics. In this study, we explored an MDCT-
guided radiomic signature as an effective prognostic factor
for preoperative risk stratification and verified the assistance
of a radiomic nomogram to the prognosis prediction beyond
ordinal staging system.

For a start, the significant differences of DFS between
high-risk and low-risk groups separated by radiomic signa-
ture were demonstrated in both internal and external valida-
tion cohorts, as reported in previous studies on prognosis

FIG. 2. Kaplan–Meier survival curves indicated the radiomic signature could risk stratify gastric cancer patients in the (a) training cohort, (b) internal validation
cohort, and (c) external validation cohort. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE III. Performance of prognostic models.

Cohorts Prognostic models

Parameters

C-index (95% CI)

HR Time-dependent AUC

AICHR (95% CI) P value 1-yr 2-yr 3-yr

Training Radiomic nomogram 0.760 (0.696–0.824) 2.743 (2.054–3.665) <0.0001 0.725 0.765 0.786 497.22

Radiomic signature 0.694 (0.626–0.763) 2.718 (1.965–3.761) <0.0001 0.650 0.658 0.711 512.07

TNM staging model 0.742 (0.648–0.837) 2.728 (1.687–4.411) <0.0001 0.667 0.688 0.692 523.27

Internal validation Radiomic nomogram 0.720 (0.636–0.804) 2.411 (1.565–3.715) 0.0091 0.696 0.771 0.708

Radiomic signature 0.646 (0.560–0.731) 1.825 (1.107–3.009) 0.1169 0.665 0.695 0.587

TNM staging model 0.680 (0.548–0.812) 1.924 (1.129–3.281) 0.0134 0.644 0.677 0.690

External validation Radiomic nomogram 0.727 (0.662–0.792) 2.060 (1.482–2.863) 0.0014 0.742 0.765 0.762

Radiomic signature 0.693 (0.617–0.770) 1.694 (1.220–2.352) 0.0243 0.656 0.689 0.706

TNM staging model 0.712 (0.614–0.810) 1.913 (1.274–2.873) 0.0012 0.712 0.688 0.709

Lower AIC values represented more generalized models. C-index, concordance index; CI, confidence interval; HR, hazard ratio; AUC, area under the curve; AIC, Akaike
information criterion; TNM, tumor-node-metastasis.
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prediction by radiomics for gastric cancer and other can-
cers.18,23,24 In order to further validate the risk stratification
ability of radiomic signature in patients with certain clinical
stage, subgroup analysis was performed. And similar results
were obtained in both centers that significant differences of
DFS between high-risk and low-risk groups occurred in rela-
tively more advanced clinical stage (ctT3-4, ctN+, and neoad-
juvant therapy groups), probably relevant to tumor
heterogeneity and aggression. It shows the potentiality of
radiomic signature in providing more evidence-based risk
stratification instructions when treatment strategies need to
be made. A gastric cancer patient with ctT4, for instance,
advanced clinical stage is an evidence for accepting neoadju-
vant therapy that may improve prognosis, and now belonging
to high-risk group could be an additional proof.

Prognosis of gastric cancer lies in the interaction with
patient-, tumor-, and treatment-related elements; however, the
preoperative risk model can only be established on the first
two. The radiomic nomogram incorporated a radiomic signa-
ture revealing intratumor heterogeneity, a macroscopic find-
ing on MDCT, and clinical staging information. This

combined model reflected more comprehensive characteris-
tics of gastric cancer and overcame the latent shortcoming of
a single-sided model. The radiomic nomogram outperformed
the conventional TNM staging model manifested by C-index,
AUC, and DCA, indicating that radiomic approaches could
aid preoperative prognosis estimation directly. Thereinto,
though the radiomic signature showed lower C-index values
than the TNM staging model, we conducted further statistical
comparison and confirmed that there were no significant dif-
ferences in C-index values between the two models in train-
ing and internal validation cohorts (student t test; P = 0.1593
and 0.3088). In other words, the radiomic signature had a
similar distinguishing ability to the TNM staging model,
echoing our original intention to combine the radiomic signa-
ture to improve clinical prognostic prediction, rather than
replace the TNM staging system. Moreover, as a preoperative
model, our radiomic nomogram achieved a similar predictive
level to previous postoperative risk models of gastric cancer
(without radiomic method),25–28 and compared to the latter, it
could serve as an effective noninvasive toolkit and
provide substantial basis along with great timeliness for

FIG. 3. Subgroup analysis showed that radiomic signature had good risk stratification ability for patients with more advanced clinical stage. Center 1: (a) ctT4
subgroup, (b) ctN+ subgroup, (c) neoadjuvant therapy subgroup. Center 2: (d) ctT4 subgroup, (e) ctN+ subgroup, (f) neoadjuvant therapy subgroup. ctT, clinical
T stage defined on multidetector-row computed tomography; ctN, clinical N stage defined on multidetector-row computed tomography. [Color figure can be
viewed at wileyonlinelibrary.com]
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preoperative risk stratification, which may further benefit
gastric cancer patients’ initial individualized treatments.

There were three advantages of the proposed methods.
First, we conducted sample size power analysis to ensure an
appropriate study design (Text S3). Though the overall sam-
ple size was not so big, the case size configurations for the
three cohorts were all proper for model construction and vali-
dation, which was the basis of this radiomics study. To the
best of our knowledge, seldom did previous radiomics studies
report the sample size power analysis results. Second, we
investigated the associations of radiomic features extracted
from different MDCT image phases and proved that portal
venous phase images might be more appropriate and stable
for radiomic feature extraction in gastric cancer (Text S9, Fig-
ure S10, Table S3, Table S4), which was partially consistent
with previous studies.29–31 Our results also showed that most
of the selected features from different MDCT image phases
showed close correlations, and morphological features may
be more stable for different MDCT image phases. Third,
clearer than previous studies, we specified ICC calculation
models, making consistency tests by ICC more reasonable.
Moreover, comparative experiments using different feature
selection methods were conducted (Text S10, Table S5,
Table S6), proving that the presented methods were competi-
tive. Also, the proposed methods along with radiomic

signature performance were equivalent to previous studies
(C-index = 0.695–0.700).17,18

The four MDCT-derived radiomic features were consistent
with previous biomarker findings for gastric cancer or sur-
vival.32–34 Given the radiomics hypothesis, greater major axis
length and median intensity values demonstrate larger tumor
size, probably in accord with higher disease occurrence prob-
ability and poorer prognosis. Lower small zone emphasis val-
ues and greater zone size nonuniformity values are possibly
indicative of more intratumor heterogeneity and worse sur-
vival. The interpretations above are in concordance with
radiomic signature formula. For another, although not all the
single radiomic feature could risk stratify patients or achieve
fine C-index, the multi-feature radiomic signature and the
combined radiomic nomogram did predict survival outcomes
well, similar to the common sense that doctors naturally cor-
relate multiple estimations of disease as opposed to focusing
on a single factor to determine therapy in clinical practice.35

For all cancers, the direct relationship between TNM clas-
sification and prognosis is a well-established basis for treat-
ment. In univariate analysis, there were significant
associations between ctT/ctN and DFS, indicating great
power of the two factors in prognosis. Therefore, we incorpo-
rated ctT and ctN in the radiomic nomogram. However, ctT
and ctN were not significantly associated with DFS in

FIG. 4. (a) A radiomic nomogram combined ctT, ctN, ctEMVI, and radiomic signature. (b) Calibration curves. (c) Decision curve analysis for radiomic nomo-
gram (red line), follow-up of all (blue line), follow-up of none (black line), radiomic signature (orange line), and TNM staging model (green line) in internal vali-
dation cohort. ctT, clinical T stage defined on MDCT; ctN, clinical N stage defined on MDCT; ctEMVI, extramural vessel invasion defined on MDCT; DFS,
disease-free survival; MDCT, multidetector-row computed tomography; TNM, tumor-node-metastasis. [Color figure can be viewed at wileyonlinelibrary.com]
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multivariate analysis. This could be induced by inaccurate
preoperative clinical staging. The accuracies of T/N stage
defined on MDCTwere just 62–75% and 75–80% with post-
operative pathological staging as the gold standard.2,36,37

Another reason may be the small sample size of this retro-
spective study, thus failing to detect important clinical find-
ings sufficiently.38 However, considering the clinical
significance of ctT and ctN, the two factors also participated
in the radiomic nomogram construction, the results of which
showed better predictive ability, surpassing the radiomic sig-
nature and conventional TNM staging model.

As for EMVI, the presence of malignant cells within blood
vessels beyond the muscularis propria was confirmed closely
related to poor outcomes of patients with gastrointestinal
tumors6,39,40 and used to develop magnetic resonance imag-
ing (MRI)-based risk stratification models.41,42 However,
MRI has great limitation in diagnosing EMVI accurately due
to motion artifacts.43 In this study, ctEMVI was identified as
a significant predictor, which agreed with several studies5,6,44

that had discovered ctEMVI as an independent risk factor for
the prognosis of gastric cancer.

This study also has some limitations. First, the sample size
for this multicenter retrospective study was still not enough
and a relatively short follow-up period may result in bias.
Second, tumor delineation was not automatically performed,
making it a time-consuming and labor-intensive task. Third,
the differences of DFS between the two centers may account
for the time-dependent AUCs in external validation cohort
being slightly higher than those in the training cohort, which
may be caused by different follow-up strategies in different
centers. Finally, accurate pathological diagnosis of EMVI is
based on pathological large-section technique which can
show the tumors and surrounding tissues in an overall and
comprehensive way. But pathological large-section examina-
tion for gastric cancer is not routinely used in clinical work in
most hospitals, including the centers in our research, there-
fore, ctEMVI cannot be confirmed by pathology universally.
However, we believe our study showed the potential of using
radiomics in daily practice and offering help in individualized
strategies.

5. CONCLUSIONS

The radiomic signature established in this study was a val-
idated independent prognostic factor in gastric cancer. The
radiomic nomogram improved the predictive performance of
preoperative staging model, probably providing a new train
of thought beyond clinical prognosis and risk stratification in
individualized treatment strategies for gastric cancer.
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