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ABSTRACT

This paper presents a general framework for model-based 3D face
reconstruction from a single image, which can incorporate mature
face alignment methods and utilize their properties. In the proposed
framework, the final model parameters, i.e., mostly including pose,
identity and expression, are achieved by estimating updating the face
landmarks and 3D face model parameter alternately. In addition,
we propose the parameter augmented regression method (PARM)
as an novel derivation of the framework. Compared with existing
methods, PARM is able to utilize mature face alignment methods
and use fairly simple features in addition to image appearances for
the reconstruction task. Experiments on three derivation methods
of the framework show that the proposed framework is feasible and
PARM is quite an effective and fast method. With face alignment
method LBF, PARM can run over 90 fps on a desktop.

Index Terms— Model-based 3D face reconstruction, face align-
ment, cascaded regression, supervised descent method

1. INTRODUCTION

3D face models have been widely employed in various research
fields such as performance-driven facial animation [1, 2], pose or
expression invariant face recognition [3, 4] and large-pose face
alignment [5, 6]. In these works, 3D faces are reconstructed from a
given 3D face model and a RGB face image. The widely used face
models, such as 3D Morphable Model (3DMM) [7, 8] and blend-
shapes model [9], are controlled by the parameters, which contains
two parts: rigid parameter (pose) and nonrigid parameters (identity
and expression). Thus the main process of the model-based 3D face
reconstruction is to obtain the model parameter which can drive the
model to simulate real faces, i.e., parameter fitting.

Typically, parameter fitting methods could be divided into two
types, one is solving parameters by fitting 3D point distribution mod-
el to 2D points, the other is obtaining parameters by regression ap-
proaches.

Solving methods usually require online optimization processes.
Generally, they solve parameters after a 2D face alignment method
[1, 2] or iteratively execute face shape regression and parameters
solving [10, 11]. However, these methods have some disadvantages:
(1) because the number of visible landmarks and the spatial distribu-
tion of the landmarks are pose dependent, producing credible land-
marks directly is infeasible for most existing 2D face alignment ap-
proaches; (2) the optimization approaches for parameter fitting are
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usually time-consuming and are hard to utilize the information from
the training set; (3) 2D landmarks provided by a separate method
is inconsistent with the 3D model vertexes, which may conflict the
later solving process.

Recently, researchers [5, 12, 6] tackle large pose face alignment
problem with cascaded parameter regression in an intermediate man-
ner. These methods can be directly used for parameter fitting. With-
out a separate 2D face alignment, these method focus on 3D fitting
and avoid drawbacks brought from 2D face alignment. Besides, ob-
taining parameter regressively can take the whole training set infor-
mation into account. Although possessing these advantages, they are
hard to utilize mature face alignment methods and lack of intuitive
theories to be understood.

In this paper, we present a unified framework for the parameter
fitting problem, which aims to overcome the mentioned shortcom-
ings. Our framework is based on the equation of parameter update
which is an key step in fitting a 3D point distribution model to 2D
points [13] using Gauss-Newton algorithm. In addition, our frame-
work is a cascade model, where any face alignment approach that
has landmark update estimation such as SDM [14], LBF [15], shape
augment regression [16] and Deep Alignment Network [17] can be
incorporated. Under the novel framework, two basic methods and
PARM are proposed. PARM explicitly combines previous estimated
parameters with information come from appearance to better the re-
gression performance. Compared with regression methods, such as
[6] and [12], which add extra time-consuming features for parame-
ter fitting, PARM, supported by our framework, just uses straightfor-
ward parameters as additional feature. Thus makes it a fast method.

The rest of the paper is organized as follows. Section 2 briefly
reviews related works. Section 3 gives a detailed introduction to
our framework and proposed methods. In Section 4, we present the
experiments and the evaluation results. And finally, we conclude the
paper with some discussions of future work in section 5.

2. RELATED WORK

General Face Alignment: 2D/3D face alignment [18, 19, 20] aims
to locate a sparse set of fiducial facial landmarks. Quite a few of
systems have been reported and could be classified into three major
categories: holistic methods [21], constrained local model (CLM)
[22] and the regression based methods [14, 15]. The holistic meth-
ods jointly model the whole face region appearance and global face
shape, while CLM learns a set of local experts or regressors and
constrains them using various shape models. The regression based
methods directly learn the mapping from facial images to landmark
positions. The mapping cascades a list of weak regressors to reduce
alignment error progressively. All these methods that estimate land-
mark updates can be incorporated into our framework.



Face Alignment use 3D Models: Recently, researches on large-
pose, pose-invariant and joint face reconstruction face alignmen-
t methods [5, 6, 12, 23] begin to use 3D face models. These works
are closely related to ours.

[23] proposes a joint face alignment and 3D face reconstruction
method. It applies two sets of cascaded regressors iteratively and al-
ternately, one for updating 2D landmarks and the other for updating
3D face shape, they are correlated via a 3D-to-2D mapping matrix.
This work directly reconstructs 3D face shape while our framework
is focus on parameter fitting. Besides, our framework applies param-
eter updating rather than shape updating and doesn’t need 3D-to-2D
mapping matrix.

[6] and [12] design cascaded Coupled-Regressor to fit projec-
tion parameter and shape parameter iteratively for face alignment.
[5] and [6] adopts CNN to fit parameter directly with specifically
designed input features, such as PNCC in [5], PAWF and D3PF in
[6], for large pose face alignment. All these methods fit parameters
without obvious 2D/3D landmark alignment process. Meanwhile, it
seems that the novel appearance features they designed lack of intu-
itive understanding for parameter fitting. However, our PRAM with
clear theoretical explanation shows that the additional features can
be as simple as the pure parameter.

3. PROPOSED METHOD

In order to better understand our framework, we first introduce 3D
Morphable Model. Then, we give detailed introduction to our frame-
work. Finally, we introduce three kinds of methods derived from the
proposed framework. They are Parameter Constrained Local Model
(PCLM), Parameter Regression Method (PRM) and Parameter Aug-
mented Regression Method (PARM). Among them, PARM is a very
novel method for parameter fitting task. The overview of our pro-
posed framework is shown in Fig. 1.

3.1. 3D Morphable Model

We choose 3DMM [3] represents an individual’s face:

S = S0 +Aidαid +Aexpαexp, (1)

where S is the 3D shape, S0 is the mean shape, Aid is the identity
basis, Aexp is the expression basis, αid is the identity parameter and
αexp is the expression parameter. In our work, Aid and Aexp come
from BFM [24] and FaceWarehouse [9] respectively. The dim of αid

and αexp are 199 and 29 respectively. The 3D face is then projected
onto the image plane with Weak Perspective Projection, i.e.,

V = sR2DS + t2d, (2)

where V is the 2D positions of model vertexes in image, s is the
scale parameter, R2D is the first two rows of a 3× 3 rotation matrix
controlled by Euler angle: [pitch, yaw, row], and t2d is the translation
vector. We denote p = [s, pitch, yaw, roll, t2d, αid, αexp]

T as the
collection of all the model parameter. Let d indicates the indexes
of 3D face vertexes that corresponding to sparse 2D landmarks, then
the 2D landmarks under a given p are represented as U(p) = S(d).
We reshape U(p) as a vector x(p).

3.2. Proposed Framework

For the task of aligning x(p) to ground truth 2D face landmark y,
the following function needs to be minimized:

p? = arg min
p
{‖y − x(p)‖22 + r‖p‖2W }, (3)
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Fig. 1. Workflow of the proposed cascaded framework for model-
based face reconstruction from an single image. It begins with an
initial model parameter p0, then the final parameter is p0 adding a
series of estimated parameter update ∆pk. At stage k, ∆xk standing
for landmark update is first estimated. ”M1” and ”M2” represent
optional methods. ”M1” can utilize part of mature face alignment
methods. ”M2” can be PCLM, PRM or PARM in this paper.

where the notation ‖p‖W is a shorthand for
√

pTWp. Above,
‖p‖2W is the regularization term, which helps avoid overfitting and
W here is usually diagonal matrix to punish p with prior informa-
tion. The r controls the tradeoff between the landmark placement
error and penalising unlikely faces [13].

According to the Gauss-Newton method, given an appropriate
initial p, it is possible to find ∆p in the direction of the optimal
solution. This leads to next estimate of p, which can be used for
next iteration. By use of Taylor expansion, the ∆p which brings us
closer to the solution is:

∆p = arg min
∆p

{‖y − (x(p) + J∆p)‖22 + r‖p + ∆p‖2W }, (4)

where J = ∂x(p)

∂pT is the Jacobian of x(p) evaluated at p. The solu-
tion of ∆p is:

∆p = (JTJ + rW )−1[JT (y − x(p))− rWp]. (5)

In our framework, y is x(p?) essentially. We then rewrite the
equation in a cascaded form. Thus, at each stage k,

∆pk = [(Jk)TJk+rW ]−1[(Jk)T (x(p?)−x(pk))−rWpk, (6)

Therefor, p? can be estimated by an initial p0 adding a series of ∆p.
The remaining issue is that x(p?) is unknown. However, x(p?)

can be seen as the ground truth in face alignment problem, we can
leverage the cascade face alignment methods, which solved face
alignment as:

x? = xinit + ∆x1 + ∆x2 + ∆x3 + ... (7)

Instinctively, we define x(p?) = x(pk) + ∆xk + ∆xk
bias. Then, the

final form of our framework is,

∆pk = [(Jk)TJk +rW ]−1[(Jk)T (∆xk +∆xk
bias)−rWpk] (8)



Equ. 8 shows that the final p can be estimated iteratively. In
each iteration, ∆xk can be obtained firstly utilizing face alignment
method which has landmark update estimation. Fig. 1 visualizes the
workflow of our framework.

3.3. Derivation Methods

Here we introduce the derivation methods, PCLM, PRM and PARM.
PCLM: When we omit the bias term ∆xk

bias, the problem becomes,

∆pk = [(Jk)TJk + rW ]−1[(Jk)T ∆xk − rWpk]. (9)

This is similar to the 3D Constrained Local Model problem and
can be solved using the Gauss-Newton method as in [13, 10, 11].
However, rather than using local experts, ∆xk can be estimated by
any cascade face alignment method with landmark update predic-
tion.
PRM: Just like the Supervised Descent Method [14] in face align-
ment, we propose PRM which tackles the problem by learning a se-
quence of regressors. Thus the form of our framework is a regression
approach,

∆pk = Rk∆xk + bk, (10)
where R and b make up the regressors. The regression approach
merges prior information, such as W and r, into regressors, they are
not needed to be manually setting anymore. Meanwhile, PRM does-
n’t need to compute J , which is possibly time-consuming and even
doesn’t exist. The regressors can be very complex, a more general
form of PRM is,

∆pk = Rk
general(∆xk), (11)

where Rk
general can be a weight matrix or a deep neural network. It

should be mentioned that if ∆xk is merged in theRk
general and doesn’t

estimate obviously, PRM becomes the method similar to [5].
PARM: To have a guide and automatically adjustment for regressors
in PRM, we propose parameter augmented Regression method.

Equ. 8 shows that pk is an essential term for estimating ∆pk.
It’s straightforward to improve the PRM by adding an extra term pk.
This leads to our PARM,

∆pk = Rk

∆xk

pk

1

 , (12)

or a general form, ∆pk = Rk
general(∆xk,pk). Next, we show that

the augmented parameter is supported by our framework.
The framework Equ. 8 can be write as the form:

∆pk = A∆xk +Bpk + C∆xk
bias, (13)

where A, B and C represent matrix. We still adopt the idea in SDM
and handle the problem in a regression manner. Then C∆xk

bias can
be learned as a bias vector, such leads to Equ. 12. What should
be emphasized is that it is the item ∆xk

bias that makes the PARM a
possible methods, this is unrevealed in previous literature.

With the new term added, regressors could change directly ac-
cording to different parameters, which would make better estimation
of PRM. The augmented parameter can be seen as the same function
of PNCC in [5], but it doesn’t need extra calculations.

4. EXPERIMENTS

In this section, we first discuss experiment protocols, followed by
implementation details, and then we evaluate the performance of the
three methods introduced in Sec. 3.3.

4.1. Protocols

Datasets: There are quite a few datasets can be directly used for our
framework. The datasets should at least cover face images and their
corresponding parameters for a chosen 3D face model. However, [5]
constructed some datasets (300W-3D, 300W-LP and AFLW2000-
3D) which are suitable for us. In our experiments, we use dataset
300W-3D as the training set and dataset AFLW2000-3D as the test-
ing set. The 3D face model we used is the same with [5], which is
descripted in Subsection 3.1.

300W-3D is the 300W dataset [25] with its 3D parameters.
300W is original made from multiple alignments datasets with 68
landmarks. Here, the used datasets are LFPW, AFW, Helen and
IBUG, totally 3837 images.

Original AFLW [26] contains in-the-wild faces with large-pose
variations (yaw from −90◦ to 90◦). AFLW2000-3D is constructed
from the first 2000 AFLW samples.
Experiment setup: In our experiments, ∆x is estimated use one
stage of LBF [15]. For PRM and PARM, we use a set of liner re-
gressors to estimate ∆p. All the liner regressors for landmark up-
date and parameter update predictions are trained by the LIBLIN-
EAR [27] package. For PCLM, we use the Gauss-Newton method
the same as [13] to calculate ∆p after landmark update estimation.
We train 20 trees with depth of 5 for every landmark in each stage to
generate local binary feats, details are in [15].
Evaluation Criteria: We choose landmark alignment error as our e-
valuation criteria, where the ground truth landmarks are obtained ac-
cording to the ground truth parameter pgt. We use the 68 landmarks
in AFLW2000-3D for evaluation. The alignment accuracy is the av-
erage of all (visiable and invisiable) landmarks error normalized by
the square root of the face bounding box size, called Normalized
Mean Error with All (NMEA), i.e.,

NMEA =
1

Nt

Nt∑
i

(
1

LiN
)‖x(pgt)− x(pi)‖), (14)

where Nt is the number of testing images, N is the number of land-
mark (here is 68), and Li is the square root of face bounding box
size of image i.

4.2. Implementation Details

Parameter Normalization: Faces in images have considerable dif-
ference in size and location, which possibly damages performance
of the parameter fitting task. To avoid the bad effects, we use face
bounding boxes to normalize the parameters. Specially, assuming
the face bounding box in image is bbox = [xc, yc, w, h], where
(xc, yc) stands for the center position, w and h stand for the weight
and height respectively, the normalized parameter pnorm is similar
with p expect replacing swith s/

√
wh and replacing t2d with (t2d−(

xc
yc

)
)/
√
wh.

Parameter Initialization: We denote s̄ and t̄2d to represent the
mean scale and mean translation of the normalized parameters,
which can be calculated from training set. Then the initial parameter
pinit we used is [s̄, 0, 0, 0, t̄2d,0

T ,0T ].
Estimating Invisible Landmarks: Face has a variety of poses. Part
of landmarks are invisible under a pose, which could generate un-
suitable features for ∆x estimation. In this work, an invisible land-
mark is detected according to the average surface normal around the
landmark in the deformed 3D shape S.



4.3. Comparison Experiments

Experiments on PCLM, PRM, PARM: In this experiment, we aim
to compare the performance of our three implementations (PCLM,
PRM, PARM) based on our proposed framework. The experimental
results are shown in Fig. 2 and Fig. 3.
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Fig. 2. Testing error with PCLM, PRM and PARM on AFLW2000-
3D with the increase of iteration stage.
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Fig. 3. Cumulative distribution curves of facial landmark detection
results about PCLM, PRM and PARM respectively when stage k=7.

The results indicate that our proposed framework are feasible,
because all of the implementations improve the performance with
iteration increasing. There is also an obvious observation that the
performance on PARM is better than others. We owe this to the aug-
mented parameter. The augmented parameter has a guide or provides
an effective information for parameter fitting, while PCLM and PRM
are only depend on the previous predicted landmarks increments.

Table 1. Mean Norm Error on Different Types of Parameters
Pose Identity Expression

PCLM 0.411 3.562 0.130
PRM 0.404 4.079 0.129

PARM 0.398 4.443 0.128

To have a further understanding of the effects brought from the
augmented parameter, we calculate the mean error norm for different
types of face parameters. Tab. 1 shows the results, where the dim of
pose, identity and expression are 3, 199 and 29 respectively. It seems
predicting more accurate pose (euler angles), which has a larger im-
pact on landmarks than other parameters, that makes PARM better
performance.

Some reconstruction results generated by PARM are visualized
in Fig. 4. It shows that PARM has relatively accurate estimation
on pose and expression, but the identity estimation is a little bit un-
satisfied. This may caused by the imprecise face alignment method
and the unconsidered factors that different element in p has different
importance on the reconstructed result.

Fig. 4. Part of reconstruction 3D face model with PARM.

Comparison with face alignment method LBF: To have a com-
parison with methods which focus on 2D face alignment, it is fair to
compare our methods with LBF, for the sake of that they have the
same methods on landmark increments prediction.

Table 2. The NMEA(%) results on AFLW2000-3D
PCLM PRM PARM LBF

stage=5 9.42 9.34 8.63 8.14
stage=7 9.07 8.95 8.53 8.12

Tab. 2 shows that our 3D parameter fitting methods are inferior
to LBF on the performance of landmark alignment error. It should be
noticed that our proposed methods pay more attention to parameter
fitting, which is a more difficult problem, while LBF search the best
landmark positions directly.

We also test reconstruction speeds of five stages PCLM and
PARM with LBF incorporated in. Results show that PARM running
over 90 fps, which is nearly 3 times faster than PCLM running at 35
fps. The methods test on a quad-core Intel Core i7-2600K (3.4GHz)
CPU with not optimized c++ code. That shows our PARM is also a
fast method for the face reconstruction task.

5. CONCLUSION

In this paper, we present a novel framework for model-based 3D face
reconstruction with theoretical support. Under our framework, part
of mature face alignment methods can be integrated in. For instance,
LBF can be use to accelerate the methods based on our framework.
Meanwhile, we introduce three feasible methods: PCLM, PRM and
PARM. Experiments tell that PARM is an efficient method.

In the future, we would employ new technical routes based on
our framework to improve the performance. We should use more ac-
curate method to predict ∆x and more powerful regressors, like deep
neural networks, to predict ∆p. We also plan to take different items
in parameters into account. Specifically, we would use the weighted
parameter distance cost function [5] to optimize the regressors. Fur-
thermore, it is worth exploring the strategy on facial reconstruction
if multiple images with one single person were given.
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