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Together, mitochondria and the endoplasmic reticulum (ER) occupy more than 20% of
a cell’s volume, and morphological abnormality may lead to cellular function disorders.
With the rapid development of large-scale electron microscopy (EM), manual contouring
and three-dimensional (3D) reconstruction of these organelles has previously been
accomplished in biological studies. However, manual segmentation of mitochondria
and ER from EM images is time consuming and thus unable to meet the demands of
large data analysis. Here, we propose an automated pipeline for mitochondrial and ER
reconstruction, including the mitochondrial and ER contact sites (MAMs). We propose
a novel recurrent neural network to detect and segment mitochondria and a fully
residual convolutional network to reconstruct the ER. Based on the sparse distribution of
synapses, we use mitochondrial context information to rectify the local misleading results
and obtain 3D mitochondrial reconstructions. The experimental results demonstrate that
the proposed method achieves state-of-the-art performance.

Keywords: mitochondria, endoplasmic reticulum, electron microscopes, segmentation, 3D reconstruction

1. INTRODUCTION

In eukaryotic cells, mitochondria and the endoplasmic reticulum (ER) together occupy more than
20% of the cell volume. Evidence suggests that mitochondrial and ER morphology changes can
have severe consequences for cell physiological or pathological functions, such as apoptosis, Ca**
homeostasis, and metabolite processing (Karbowski and Youle, 2003; Twig et al., 2008; Bhatti
et al., 2017). Mitochondria-ER plasma membrane (MAM) contacts are particularly abundant
in cell bodies and are also important for multiple physiological functions (Marchi et al., 2014).
Recently, emerging evidence has documented that mitochondria, ER, and MAM abnormalities
or dysfunctions can result in various neurodegenerative disorders, such as Alzheimer’s disease,
Parkinson’s disease, and amyotrophic lateral sclerosis (Manfredi and Kawamata, 2016; Liu and Zhu,
2017; Rodriguez-Arribas et al., 2017).

The three-dimensional (3D) ultrastructure of mitochondria and ER at high resolutions requires
large 3D reconstructions to be generated via electron microscopy (EM) (Vincent et al., 2016;
Hirabayashi et al., 2017; Krols et al., 2018; Delgado et al., 2019). With the rapid development of
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large-scale electron microscopy (EM) technology, the brain
imaging methods have undergone tremendous changes. Manual
contouring and reconstruction of the 3D ultrastructures of these
organelles from high-resolution EM images has previously been
accomplished in biological studies, such as glycogen granules
(Agus et al., 2019) and mitochondria (Cali et al., 2019). However,
manual annotation alone is insufficient to match the speed of
data acquisition and meet the data analysis demands. Hence,
developing an automatic algorithm to detect mitochondria and
ER from EM images is both necessary and urgent.

Unlike ER segmentation, which has been less studied thus
far, the detection and segmentation of mitochondria has
been a hot topic in the neuroscience and computer vision
fields. Nevertheless, the complex textures as well as similar
ultrastructures in EM images have made the segmentation
of mitochondria a challenging problem. Recently, variety of
methods have been developed to automatically detect and
segment mitochondria (Liu et al., 2018; Xiao et al., 2018; Xie
et al., 2018b). GentleBoost classifier was trained for detecting
mitochondria based on textural features (Vitaladevuni et al,
2008). Narasimha et al. (2009) utilized multiple classifiers
to localize and segment mitochondria jointly in 3D images.
Lucchi et al. (2012b) presented an automated approach
with consideration of 3D shape cues for segmentation of
mitochondria, and this method greatly reduced computational
complexity by operating on super voxels instead of voxels.
And then they improved classification accuracy by using
context-based features and modeling the double membrane
that encloses mitochondria (Lucchi et al., 2014). Jorstad and
Fua (2015) iteratively refined the boundaries of mitochondria
surfaces, starting from rough prediction provided by a machine
learning-based method. In addition, there are some methods
introducing graphical models into segmentation of mitochondria
and achieving promising results, such as Markov Random Fields
(MRFs) and Conditional Random Fields (CRFs) (Lucchi et al.,
2012a, 2013; Marquez-Neila et al., 2014).

However, all the aforementioned works require handcrafted
mitochondrial features as the kernel of the algorithm. The
wide success of the convolutional neural network (CNN) when
applied to image processing tasks has proven that these models
can learn powerful feature representations (Huang et al., 2018;
Xie et al, 2018a). In the field of computer vision, instance
segmentation, which involves the automatic detection of all
objects appearing in an image and precise delineation of each
instance, has undergone significant improvements based on deep
learning models in recent years. We briefly review some of
the most significant works below. Mask R-CNN (He et al,
2017) segments objects based on bounding boxes produced
by CNNs. Concretely, Mask R-CNN extends Faster R-CNN by
adding a parallel branch to predict a segmentation mask for
each region of interest (Rol). In addition to the proposal-based
methods, recurrent networks have gradually been introduced to
solve the instance segmentation problem. Reversible Recursive
Instance-level Object Segmentation (R2-I0OS) (Liang et al., 2016)
is composed primarily of two subnetworks. A reversible proposal
refinement subnetwork is used to refine the object bounding
boxes, while an instance-level segmentation subnetwork predicts

the object mask for each proposal. The flooding filling network
(FFN, Januszewski et al., 2018) utilizes a recurrent convolutional
network to delineate a single object; it takes an object image
channel and an object mask channel as inputs. The output mask
channel of the FEN serves as the input mask channel for the
next iteration, providing an explicit snapshot of the current
segmentation state. One major challenge in FFNs is determining
the initial state of the object mask, which is called a seed.

In this paper, we aim to develop an automated pipeline
for detecting mitochondria and ER to seek morphological
characteristics in different domains. The workflow of the entire
pipeline is illustrated in Figure 1. The main contributions of this
work are as follows:

1. We present an efficient, fully CNN to reconstruct the ER from
EM images. To our knowledge, this is the first work that
applies a deep network to ER segmentation.

2. We propose a novel recurrent network that iteratively refines
mitochondrial segmentation. The detection subnetwork
generates bounding boxes that are passed to the segmentation
subnetwork as the initial seeds. Then, the segmentation
subnetwork recursively identifies the mitochondrial
boundaries.

3. For the highly anisotropic EM images, we introduce an
efficient 2D-to-3D approach to reconstruct mitochondria that
first obtains 2D segmentation results utilizing the recurrent
network; then, morphological processing and mitochondrial
context information are used to rectify local misleading
results. Finally, a 3D connection algorithm is applied to obtain
the 3D mitochondrial structures.

4. We reconstructed all the mitochondria and the ER on two EM
image stacks with volumes up to ~ 28,628 um?> and found 4
different structural features of mitochondria-ER contact sites.

2. MATERIALS AND METHODS
2.1. Materials

The mouse cortex sample used in this study was acquired by
the Institute of Neuroscience, Chinese Academy of Sciences.
The tissue block was automatically cut into serial sections with
thicknesses of approximately 50 nm. Then, the sections were
imaged by the Institute of Automation at the Chinese Academy
of Sciences using a scanning electron microscope (SEM) (Zeiss
Supra55) with a resolution of 3 nm x 3 nm and a dwell time of
1.5 pus. The SEM images were acquired using secondary electron
detection (9 kV accelerating potential, and at a working distance
of ~ 6.0 mm). A total of 511 image planes with a size of 15,000 x
8,300 were acquired, yielding 59.25 GB of data.

2.2. Image Preprocessing

As mentioned above, the imaging data were obtained by SEM.
The SEM technique is non-destructive, which means that the
specimens can be imaged more than once. However, because
of the section collection method, arbitrary angle rotations
and some distortions are inevitable. Hence, image alignment
is important to correct these errors and obtain a sequential
image stack. We adopted the method in (Chen et al.,, 2018)
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FIGURE 1 | Workflow of our proposed method. Briefly, there are four main steps in the complete method. (1) Data preparation: First, serial images are obtained by
SEM and then aligned to create 3D image stacks using a non-linear registration method. (2) Model training: From the aligned data, we annotate some images to form
a training dataset, and then separately train two networks to process mitochondria and ER. (3) Ultrastructure reconstruction: 2D mitochondria were predicted using
the trained network and connected to form 3D mitochondria. The ER is segmented by the trained network. Then, we detect mitochondria-ER contact sites from the
above results. (4) Data analysis: We measure the performance of our method and calculate biological measurements to conduct various analyses.

FIGURE 2 | Mouse cortex neural tissue acquired by ATUM-SEM. (A) An example of an aligned image stack that covers approximately 20 x 20 x 10 um through the
ATUM-SEM method. (B,C) Examples of mitochondria and other ultrastructures. The green arrows indicate mitochondria; the red arrows indicate vesicles; the yellow

arrow indicates the Golgi body, and the purple arrow indicates the endoplasmic reticulum. (D-F) Examples of mitochondria segmentation in our training dataset.

for image registration. First, we used the scale invariant feature
transform (SIFT, Liu et al, 2008) to detect corresponding
landmarks across adjacent sections. Then, the wrinkled areas
were annotated manually. Finally, we used a modified moving-
least-squares (MLS, Schaefer et al., 2006) deformation algorithm
to register adjacent sections with wrinkles. This algorithm
reflects the discontinuity around wrinkle areas while maintaining
smoothness in other regions. A registered image stack is shown in
Figure 2.

In addition, some differences exist in the distribution of
grayscale values in the EM images. To reduce the network
training difficulty, we preprocessed the raw images using a
histogram matching method to maintain grayscale consistency.

2.3. Proposed Network for Mitochondria
2.3.1. Network Architecture

Mask R-CNN (He et al., 2017) was proposed to solve the
problem of instance segmentation based on segment proposals.
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FIGURE 3 | The architecture and training scheme of the proposed network for segmenting mitochondria. Left: The three dotted boxes represent the backbone
network (purple), the detection subnetwork (blue) and the recursive segmentation subnetwork (green). The black block, blue blocks, orange blocks, green blocks,
purple blocks, and red blocks indicate the input image, convolution layers, classification layers, regression layers, and the fixed-size feature maps obtained from the
RolAlign and mask channels, respectively. Right: A simplified execution scheme for segmenting mitochondria. The green box indicates the outputs from the detection
subnetwork, which may be smaller than the ground truth. After the first iteration of the segmentation subnetwork, the eight prediction directions are checked, and the
direction is the input for the next iteration. In this example, the position in the orange circle is selected, and then the field of view (FoV) moves to the orange box.

It produces candidate object regions through a region proposal
network (RPN). Based on the proposals from the RPN, R-CNN
conducts further classification and regression. In contrast to
Faster R-CNN (Ren et al., 2015), Mask R-CNN predicts object
masks in end-to-end fashion by adding a mask branch. In
combination with the feature pyramid network (FPN, Lin et al.,
2017) in the backbone network, Mask R-CNN can extract features
from different levels of the feature pyramid based on the scale
of each Rol. This mechanism is able to exploit more detailed
features to obtain finer segmentation results for small objects.

However, mitochondria vary widely in size and shape. In
addition to the common elliptical mitochondria, some are long
and narrow, and some are curly. A Mask R-CNN model with
an FPN backbone is unsuitable for this situation. Specifically,
the bounding boxes that R-CNN predicts are always smaller
than the true bounding boxes for larger mitochondria, which
leads to incomplete segmentation due to the series structure
of the mask branch and R-CNN. Inspired by the scheme
proposed in FEN (Januszewski et al., 2018), we propose to refine
the segmentation results by moving the field of view (FoV)
of the mask branch to extend the detection boxes, which is
implemented by introducing an input mask that preserves the
previous segmentation state. In the following subsections, we
describe the key components of the proposed network (see
Figure 3) in detail, including the detection subnetwork and the
recursive segmentation subnetwork.

2.3.1.1. Detection subnetwork
Due to the relatively simple characteristics of mitochondria, a
very deep network may cause overfitting; moreover, a simpler

network will have considerably lower computational costs.
Therefore, we adopt ResNet50 (He et al., 2016) as the backbone
network. Considering the substantial variance in mitochondrial
size, we utilize a feature pyramid network (Lin et al., 2017) to
explore features at different scales. Concretely, an FPN uses a
top-down architecture with lateral connections to build an in-
network feature pyramid from a single-scale input. The main task
of the RPN is to produce the candidate object regions. At every
feature level of FPN, we use 3 ratios, yielding 3 anchors at each
location of the convolutional layer. The RPN predicts a score and
a bounding-box regression for each anchor. Then, Rol features
are extracted from different levels of the feature pyramid based
on their scales. To avoid misalignments between the Rol and the
extracted features, we use RolIAlign to avoid any quantization
operations. Finally, R-CNN performs further classification and
regression based on the Rol features from RPN. The outputs of
the R-CNN are then used as the initial inputs of the recursive
segmentation subnetwork.

2.3.1.2. Recursive segmentation subnetwork

The main role of the recursive segmentation subnetwork is to
achieve a precise depiction of the mitochondria detected by the
detection subnetwork. The recursive segmentation subnetwork
takes an Rol feature and an object mask as inputs and predicts
the probability map of the object with the focus. The input
object mask is initialized by assigning the center position of the
detection box an active value and assigning the other positions
zero. This serves to show that the center pixel may be part of
the target. Then, the subnetwork runs a forward pass to obtain
a segmentation mask for the current FoV. Due to the existence
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of incomplete detection boxes, we introduce a mechanism for
moving the FoV to extend the object via the subnetwork
iterations. Note that the input object mask in the next iteration
uses the updated probability map based on the output of the
preceding iteration. This approach provides information about
the current focus target.

The specific architecture of the segmentation refinement
subnetwork is shown in Figure 3. Because the detection boxes
have different sizes, we still use RolIAlign to obtain fixed-
size feature maps from the corresponding level of the feature
pyramid; these function as the feature channel of the inputs. In
this study, we set the fixed size to 33 x 33. To combine the two
inputs, we simply concatenate them. The subsequent operation
includes four convolution layers with a ReLU: each convolution
has a kernel size of 3 x 3 and uses the same mode to guarantee
an identical output size. Before each ReLU, we utilize batch
normalization (BN) to accelerate convergence during the training
process. In the final layer, we use a 1 x 1 convolution to reduce
the number of channels to the desired number of classes, which is
one in our case. We do not have many convolution operations in
this subnetwork, and one of the reasons is that the input features
are extracted from the shared feature pyramid, which already
possesses high-level abstract information. Reusing these shared
features greatly simplifies the training process.

2.3.2. Training

The two subnetworks are trained separately to learn
mitochondrial feature representations to obtain the detection
and segmentation results.

For the detection subnetwork, the implementation details are
similar to those of Lin et al. (2017). We obtain the last residual
block of each stage from ResNet50 as one pyramid level of the
bottom-up pathway in FPN, denoted as C,, C3, C4, and Cs. We
upsample the feature maps and leverage lateral connections to
form the top-down pathways Py, P3, P4, and Ps, as shown in
Figure 3. Notably, we also introduce pathway P to enlarge the
range of the scale of anchors by simply subsampling Ps. P¢ is used
only in the RPN to predict candidate regions. From the high-
level to the low-level feature maps, the corresponding anchor
scales are {32%,64%,128?,256%,512}, and each scale has three
ratios, {1:1,1:2,2:1}. The RPN generates Rols of various sizes;
we loop through all the candidate Rols and extract features from
the pyramid levels according to their scales. This strategy helps
ensure that larger objects obtain stronger semantic features and
that smaller objects obtain more detailed features.

This paper defines a multitask loss as

L=L}"+ L2+ L " + Ly <™, (1)

cls box box

Based on the aforementioned settings, we trained the detection
subnetwork with a backpropagation algorithm and saved the
weight parameters of the network. Then, we initialized the
recursive segmentation subnetwork with the trained model to
share the FPN backbone features.

To optimize the segmentation subnetwork, we use cross-
entropy loss, which can be represented as follows:

Lyask = »_, —yi # log(pi) + (1 — yi) % log(1 — pp)],  (2)

i

where y denotes the ground-truth label, and p denotes the
prediction for each pixel, which is the activation value of the
sigmoid. i is the pixel index.

During the second training stage, the training samples are
generated randomly. Specifically, we first generate Rol proposals
to simulate the detection results of the detection subnetwork.
Then, the Rol features are extracted from the corresponding level
of pyramid features according to the scale of the bounding box,
and the Rol mask is extracted from a mask we maintain during
training to update the probability map of the iterative procedure.
To fit the size of the input channel, we resize the Rol mask
using the nearest bilinear interpolation algorithm. Similarly, the
ground-truth mask should be resized to the same size. Here, we
use nearest neighbor interpolation to guarantee a binary value in
the ground truth.

The movement of the FoV is restricted to one step away from
the current position to simplify the training process. After one
forward pass of a training sample, the eight directions relative to
the current position are checked to seek the new positions that
the network will move to next (see Figure 3). We set a movement
step (A, Ay) = (8,8) in the fixed-size (33, 33) object mask to
inform the movement. That is, first, the center position of the
current FoV is denoted as (x,y); then, we sequentially check
the eight new positions (x + Ay, ), (x + A,y + A)), (x,y +
Ay)’(x - AX))/ + Ay)) (X - AX))/)) (X - Ax,)’ - Ay),(%)’ -
Ay),(x + Ay,y — A)). During the inspection, if the predicted
probability is greater than or equal to the moving threshold
(Timove = 0.9), that point becomes the new center of the FoV
in the next iteration. This process is repeated until all possible
positions have been traversed.

2.3.3. Inference
The inference process is also divided into two steps. First, the
proposals (x1, y1,X2,y2) are obtained by running the detection
subnetwork. Then, the recursive segmentation subnetwork
takes these boxes as inputs and refines the segmentation
results recursively.

Compared with training, the inference scheme of the
segmentation subnetwork has the following characteristics. To
extend to the complete mitochondria, the inference is not limited
to only one step in the eight directions; instead, a queue is
maintained to preserve the new positions. Before a new iteration,
a position is popped; then, new positions are computed after a
forward pass and pushed into the queue in descending order.

If we denote the width and height of the current box as (w, h)
and the size of the input object mask as (s, s), then the movement
vector is computed as follows:

Ay-w Ay-h
(Ax’,A/)z(%, Y, 3)

N
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U-Net FFN-2d

FIGURE 4 | Performance comparisons with the baseline approaches. From left to right: comparisons to the manual ground truth from U-Net, FFN-2d, Mask R-CNN
and our proposed network. In each comparison image, green pixels represent true positives (TP), blue pixels represent false positives (FP), red pixels represent false
negatives (FN), and black pixels represent true negatives (TN). The insert at the top right shows enlarged details pointed to by the white arrow. Qualitatively, the
segmentation by the proposed network contains fewer false positives than that of FFN-2d and more true positives than those of U-Net and Mask R-CNN.

Mask R-CNN

512 256 C2
AaWaAYAY 128 C3

D B »

Maxpooling Convolution Upsampling

FIGURE 5 | The architecture of the neural network for the endoplasmic reticulum. The yellow blocks and gray blocks denote two different residual blocks, and the
numbers above the blocks indicate the number of feature map channels. The blue plus signs indicate a sum operation rather than concatenation.

This simple strategy results in the process taking larger steps for
larger objects and smaller steps for smaller objects, which helps
to solve the inefficiency problem to a certain extent.

2.4. Proposed Network for ER

To explore the contact sites between the ER and mitochondria,
we need to obtain the morphologies of the ER. We also observed
that the nuclear membrane was incorrectly detected if we
attempted to segment the ER only. Therefore, we decided to
segment the ER and the nuclear membrane as an auxiliary
task using one deep neural network, which promotes the

ER segmentation performance. Additionally, the inner nuclear
membrane is labeled in the training samples as a third
category used to distinguish the ER and nuclear membrane in
postprocessing. Then, we build a fully convolutional network
based on ResNet50 (He et al., 2016) to classify all the pixels in
one image. The network contains an analysis and a synthesis path
similar to the architecture of U-Net (see Figure 5). The first six
resolution steps in the analysis path are taken from the first six
stages of ResNet50. In the synthesis path, each resolution step
is upsampled first, followed by a 3 x 3 convolution layer and
batch normalization (BN). Then, the layer is merged with the
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equal resolution from the analysis path by a pixelwise addition
operation, followed by a rectified linear unit (ReLU). Using this
strategy, the localization and contextual information can be finely
balanced. In the final layer, a 1 x 1 convolution layer is used to
map the feature channel to the desired number of classes, which
is 3 in our case.

During inference, each pixel is classified with the class that
has the maximum value in the three-dimensional classification
vector. To differentiate ER from the nuclear membrane, we mark
the connected components that are adjacent to the interior of the
nuclear membrane as the nuclear membrane; then, the remaining
components are labeled as the ER. To illustrate this process of
separating ER from the nuclear membrane, Figure 6 shows an
example that includes a prediction from the network and the
corresponding relabeled result in.

2.5. Training and Testing Datasets
As noted previously, we acquired an SEM dataset with a voxel
resolution size of 3 nm X 3 nm x 50 nm.

To create a dataset for ER segmentation, we manually labeled
60 serial sections with sizes of 4,096 x 6,344, used 49 slices as the
training data, and used the remainder as testing data. The pixels
were labeled with three categories: ER, nuclear membrane, and
interior of nuclear membrane or background. Figure 6 shows a
manually annotated sample.

To create a dataset for segmentation of mitochondria, we
extracted 15 slices as a training dataset, each of which has a size
of 7,168 x 7,168; then, 5 slices of the same size were used as a
test dataset to evaluate the algorithm performance. The ground
truth of the mitochondria dataset was annotated by experienced
students using Trakem?2 software (Cardona et al., 2012). Figure 2
shows some specific examples from our annotated ATUM-SEM
dataset. In addition, to ensure a fair comparison with existing
methods, we conducted experiments on the FIB-SEM dataset,
which has been widely used for mitochondrial segmentation.
The FIB-SEM dataset contains a training volume and a testing
volume taken from the CA1 hippocampus region of the brain.
Each volume consists of 165 slices with a resolution of 5 x 5
X 5 nm.

Deep learning requires a considerable amount of training data
to avoid overfitting problems. Therefore, we enlarged the training
dataset using data augmentation techniques, including random
rotation, random flipping and adding random noise. The data
augmentation process was conducted online.

2.6. Experimental Setup

All the proposed networks were implemented using the Keras
open-source deep learning library (Chollet et al., 2015), with
the TensorFlow library as the backend. Due to GPU memory
constraints, the original images were cut into smaller images as
inputs. We trained all the networks using stochastic gradient
descent. However, the related training parameters were slightly
different between the networks for mitochondria and ER. For the
mitochondrial network, the momentum was set to 0.9, the weight
decay was set to 0.0001, and the learning rate was initially set to
0.001 and then decreased by a factor of 10 whenever the learning
process stagnated. The ER network was trained using a learning

rate of 0.01 and a momentum of 0.9. All the training and testing
tasks were conducted on a server equipped with an Intel i7 CPU,
512 GB of main memory, and a Tesla K40 GPU.

2.7. Method for Reconstructing

Mitochondria

Because we employed a refinement subnetwork to obtain more
precise segmentation results, many trivial false segmentations
will appear in the 2D slices. Therefore, a suitable postprocessing
method is necessary to improve accuracy. This section focuses on
how the segmentation results are optimized to further improve
the performance while obtain 3D mitochondria. Note that the
mitochondrial sizes are far larger than the resolution in the z-
direction. We utilize the multilayer information fusion algorithm
proposed by Li et al. (2018) to reconstruct the mitochondria in
3D and discard mitochondria whose “length” (the number of
occurrences in the z-direction) is less than L (e.g., 15).

For completeness, we note that there is no need to conduct
3D connections for the ER and nuclear membrane. We labeled
three cell bodies manually and this analysis is restricted to the
cell body only.

2.8. Measurement of Biological Statistics
To obtain the cross sections, the first task is to obtain the
skeleton of the mitochondrion. We first obtain the main skeleton,
excluding the tiny branches, using Image] software. However,
the anisotropy of the data causes the main skeleton to be a
rough line. We smooth this skeleton by applying polynomial
fitting. Finally, we take some points on this skeleton line and
determine the perpendicular planes. Thus, the cross sections of
one mitochondrion are the intersections of the perpendicular
planes and the 3D mitochondrion. Using this approach, we
measured the area and perimeter of the cross section.

To obtain the minimum distances between mitochondria and
the ER, we simply compute all the point pairs and find the
smallest values. To reduce the computational complexity, we
downsampled the original images by a factor of 4 in the X and
Y directions and a factor of 2 in the Z direction. Additio