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Abstract—Solar power generation with highly variable mode 

brings adverse effects on the grid. In order to reduce the 

negative impact on the grid, we use continuous conditional 

random fields (CCRF) to forecast solar generation. The CCRF 

is a powerful tool for relationship learning, which can capture 

the interaction between predicted solar generation. The 

potential function of the CCRF is designed as quadratic forms, 

which can transform the learning problems of the CCRF to 

convex optimization problems. In addition, it can perform 

probabilistic forecasting. To avoid over-fitting, the 

regularization of the weight is added to the loss function. We 

conduct the experiments on the freely available dataset to 

evaluate the forecasting performance. Experimental results 

show that the CCRF forecasting model can further improve 

the forecasting accuracy, compared with benchmarking 

forecasting method. 

Keywords-continuous conditional random fields; solar 

generation forecasting; regularization. 

I.  INTRODUCTION 

Due to global warming, solar generation, one of 
promising renewable and clean energy, has attracted more 
and more attention in the last decades. Solar generation is the 
process of converting solar irradiance into electricity. Unlike 
traditional power sources, solar generation has highly-
variable patterns because solar irradiance is affected by 
weather conditions. This makes large-scale photovoltaic 
grid-connected system bring adverse effects on the grid. 
Therefore, an accurate solar generation prediction can 
effectively reduce the negative impact on the grid. 

Solar generation can be classified into three types, i.e., 
ultra-short-term forecasting, short-term forecasting, medium-
term forecasting, and long-term forecasting, in terms of time 
horizon. Short-term forecasting refers to predict solar 
generation for one hour, several hours, one day or several 
days. At present, many researchers have done a lot of 

research on short-term solar generation forecasting. The 
main prediction methods include persistence method (PM), 
artificial neural network (ANN), support vector machine 
(SVM) and so on. In [1], a least square support vector 
machine (LSSVM) was proposed for short-term solar 
generation prediction. The forecasting performance was 
verified by using the data obtained from the National Solar 
Radiation Database (NSRDB). The results show that the 
LSSVM outperforms the autoregressive model and the radial 
basis function neural network. The LSSVM with RBF kernel 
function was also used in [2] to predict the next day's solar 
insolation. The simulation results show it is an effective and 
feasible method for estimating solar insolation. ANN is an 
information processing system that is build to mimic the 
structure and function of the brain neural network. It has 
powerful learning capabilities and is adaptable to many 
complex problems. Many modified ANN, i.e., Radial Basis 
Function Neural Network (RBFNN) [3], Extreme Learning 
Machine Neural Network (ELMNN) [4], Wavelet Neural 
Network (WNN) [5], etc., were used for short-term solar 
generation forecasting. Besides the machine learning method 
mentioned above, deep learning is also used to forecast solar 
generation [6]-[11]. These methods have achieved a 
promising prediction performance. However, most of these 
methods do not consider the interaction between predicted 
solar generation. 

To make good use of these interactions, conditional 
random fields (CRF) were proposed in [12]. Originally, CRF 
was used to segment and label sequence data by establishing 
a probability model, which can only be used for discrete 
problems. In order to use CRF to solve regression problems, 
Qin et al. [13] proposed continuous conditional random 
fields (CCRF). Since then, CCRF has been widely used to 
solve various problems and achieved promising results. In 
[14], a CCRF model was used to estimate Aerosol Optical 
Depth (AOD). Guo [15] adopted a CCRF model to load 
forecasting. However, to our knowledge, prediction of solar 



generation using a CCRF model has not been investigated. 
Following this motivation, we use the CCRF to forecasting 
solar generation. In addition, the regularization of the weight 
is added to the loss function to avoid the over-fitting. 

The remainder of this paper is organized as follows. In 
Section II, the basic theory of the CCRF is introduced. The 
designed model for solar generation forecasting is presented 
in Section III. Experimental results are presented and 
discussed in Section IV. Finally, the conclusion of this paper 
is given in Section V. 

II. CONTINUOUS CONDITIONAL RANDOM FIELDS 

Conditional random fields are a probabilistic undirected 
graphical model of random variable Y under a given random 
variable X, which directly models the conditional 
distribution P(Y|X). The Linear chain CRF is a widely used 
CRF. According to the Hammersley-Clifford theorem, it can 
be defined in the following form: 
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where K  is the number of potential function, kw  represents 

a weight vector, ( , )kf Y X  is a potential function, ( )Z X  is 

the normalization factor. 
CRF is first presented to build probabilistic models to 

segment and label sequence data. It has achieved promising 
results in relational learning. Conventional CRF is a discrete 
model since its output variable is discrete. In order to deal 
with continuous regression problems, continuous conditional 
random fields (CCRF) is proposed. In CCRF, conditional 

distribution ( | )P Y X  can be described as: 
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where ( , , )i iH Y X  is a node potential function which is 

used to capture the relationships between output and input, 

( , , , )i jG Y Y X  is a edge potential function which is used to 

model the interactions between outputs iy  and jy ,   is the 

weights of the node potential function,   is the weights of 

the edge potential function. For CCRF, ( )Z X  (the 

normalization factor) is represented as follows: 

~
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Suppose training data are defined as 1{( , )}M

m m mD == X Y  

( M  is the number of training sample). The learning task of 
the CCRF is to determine proper weights of the potential 

function to maximize the conditional log-likelihood of the 
training dataset. It can be written as: 
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where ( , )L    is the conditional log-likelihood of the 

training dataset. 
After obtaining the weights of the potential function, we 

can infer the output Y  with the largest conditional 

probability ( | )P Y X  given an input X . Mathematically, it 

can be defined as: 

 arg max( ( | )).P=
Y

Y Y X   () 

If the potential functions, including the node potential 
function and the edge potential function, are defined as the 
quadratic form of output Y , then the CCRF can be 
transformed to the form of a multivariate Gaussian 
distribution. Thus, we design the potential functions as the 
quadratic form of the output Y . The design process is 
described in detail in the following section. 

III. CCRF FOR SOLAR GENERATION FORECASTING 

A. Potential function design 

We first introduce the node potential function. The node 
potential function aims to capture the interactions between 
target output (solar generation) and information source 
(weather forecast variables). It can be written as: 
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where iY  is the i th target output, ( )k iH X  represents the  

prediction of the i th target output through the k th predictor, 

K  is the number of predictors. 
Next, the design of the edge potential function is 

introduced. The edge potential function is designed for 

capturing the relationships between target output iY  and jY . 

In solar forecasting, the interaction is considered when iY  

and jY  are related. The mathematical formula of the 

designed edge potential function can be described as follows: 
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where 
,

l

i jS  is a Boolean variable, which indicates whether 

the target output is considered in the edge potential function. 
Mathematically, it can be represented in the following form: 
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Finally, the CCRF model can be represented as 
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where N  is the number of target outputs. In our case, we set 

24N =  since the CCRF model is utilized for day-ahead 

hourly solar generation forecasting. 
Due to the quadratic forms of the potential function, we 

can further map (9) to a multivariate Gaussian distribution 
which can be represented as (10). 
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where   is a n -dimensional mean vector,   is a n n  

covariance matrix, | |  represents the determinant of  . 

According to (9) and (10), we can further derive the 
following formula 
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where Q  is a symmetric matrix with element 
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According to (11), we can obtain the following equation 
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In order to make the model feasible, we set the constraint 
that all weights ( ,α β ) have to be greater than zero. This can 

ensure the matrix Q  is positive semi-definite. Thus the 

learning problem of the CCRF model becomes a convex 
optimization problem. In the next subsection, we will 
describe the learning of the CCRF model in detail. 

B. Learning of the CCRF 

In order to improve the computational efficiency, we use 
stochastic gradient descent (SGD) to calculate the parameters 
of the CCRF model. Also, the conditional log-likelihood is 

optimized with respect to ,log k i  and log l , which can 

guarantee that the learning problem of the CCRF is a convex 

optimization problem. In the SGD, the gradient of ,log k i  

and log l  is calculated, which has the following forms 

 

,log ,

, ,

log

log ( | ) log ( | )
,

log

log ( | ) log ( | )
.

log

k i

l

k i

k i k i

l

l l

P P

P P






 


 

 
 = =

 

 
 = =

 

Y X Y X

Y X Y X
  () 

To avoid over-fitting, the L2-norm of the weights is 
added to the conditional log-likelihood. It can be written as 
follows: 

 
,

2

, , log 1 ,

2

log 2

log log ( ),

log log ( ),

k i

l

k i k i k i

l l l





    

    

= +   −

= +   −
  () 

where 1  and 2  are the weight of regularization terms. 

After determining the weights of the CCRF model, the 
solar generation forecasting of new prediction day can be 
easily inferred by the mean vector, which has the following 
forms 

 arg max ( | ) .P= = =
Y

Y Y X μ Σd   () 



IV. EXPERIMENTAL STUDIES 

A. Data Description and Problem statement 

The data in our case are obtained from the Global Energy 
Forecasting Competitions of 2014 (GEFCom14). The 
GEFCom14 provides solar generation and weather forecasts 
with hourly resolution. The solar generation is normalized by 
the nominal capacity of the corresponded solar power plant. 
Fig. 1 shows the hourly solar generation from 1 April 2012 
to 30 April 2012. It depicts that solar generation has highly-
variable patterns. The weather forecasts provided include 12 
weather variables summarized in Table I. In order to verify 
the forecasting performance of the CCRF model, the data 
from 1 April 2012 to 31 July 2013 are selected. More 
specifically, we divide the data into training set and test set. 
Among them, the data from 1 April 2012 to 30 March 2013 
are used as training set to train the CCRF model. The data 
from 1 April 2013 to 31 July 2013 are used as the test set to 
evaluate the forecasting performance of the CCRF model. 

In this work, we use the CCRF model to predict the solar 
generation. More specifically, suppose we are currently at 

day d , we use the hourly weather forecast of the day 1d +  

as the inputs of the CCRF model to predict the hourly solar 

generation of the day 1d + . 

B. Evaluation Metrics 

Three evaluation metrics, namely, nMBE, nRMSE, and 
forecast skill [16], are considered. They are given as follows: 
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where miY  is the i th normalized solar generation (target 

output) of m th sample, ˆ
miY  represents the i th forecast solar 

generation of m th sample, N  denotes the number of the 

solar generation of a day (in our case, N  equals 24), M  is 

the number of samples. 

 
Figure 1.  Hourly solar generation from 1 April 2012 to 30 April 2012. 

TABLE I.  WEATHER VARIABLES AND DESCRIPTION. 

Variable Name Unit  Description 

Total column liquid water (tclw)  kg·m-2  Vertical integral of cloud liquid water content 

Total column ice water (tciw)  kg·m-2 ertical integral of cloud ice water content 

Surface pressure (SP)  Pa  

Relative humidity at 1000 mbar (r)  %  

Relative humidity is defined with respect to saturation of the mixed phase, i.e. with respect 

to saturation over ice below -23℃ and with respect to saturation over water above 0℃. In 
the regime in between a quadratic interpolation is applied. 

Total cloud cover (TCC)  (0-1)  Total cloud cover derived from model levels using the model’s overlap assumption 

10 metre U wind component (10u)  m·s-1  

10 metre V wind component (10V)  m·s-1  

2 metre temperature (2T)  K  

Surface solar rad down (SSRD)  J·m2  Accumulated field 

Surface thermal rad down (STRD)  J·m2  Accumulated field 

Top net solar rad (TSR)  J·m2 Net solar radiation at the top of the atmosphere. Accumulated field. 

Total precipitation (TP)  m  Convective precipitation + stratiform precipitation (CP +LSP). Accumulated field 

 

C. Experimental Results and Analysis 

In order to verify the forecasting performance of the 
CCRF, k-Nearest Neighbor (KNN) and Random Forests (RF) 
are used as the node potential functions, respectively. 

1) Node potential function: KNN: In this subsection, 
KNN is used as the node potential function to verify the 
forecasting performance of the CCRF. The number of 
neighbors of the KNN is set to 25. To avoid over-fitting, we 

set the weight of regularization terms 1  and 2  to 1 and 10, 

respectively. In addition, the learning rate for the gradient 
ascent in the CCRF is set to 0.0001, and the number of 
iterations is set to 300. The iteration process of   and   is 

depicted in Fig. 2. It is clear that the values of   and   

converge at iteration 200. Table II presents the forecasting 
performance of the CCRF (KNN is used as the node 
potential function). According to Table II, the CCRF is better 
than the other two benchmarking method. Thus, we can infer 
that the CCRF can further improve forecasting performance. 

 



 
Figure 2.  Iteration process of   and   (node potential function: KNN). 

 

 
Figure 3.  Iteration process of   and   (node potential function: RF). 

2) Node potential function: RF: Besides KNN, we also 
use RF as the node potential function of the CCRF to 
forecast solar generation. In our experiments, the number of 
trees in the forest is set to 100. The learning rate for the 
gradient ascent in the CCRF, the number of iterations, the 

weight of regularization terms 1  and 2  are set to 0.0001, 

300, 1 and 10 respectively, which is the same as when KNN 
is used as the node potential function. According to Fig. 3, 
we can also conclude that the weight of regularization terms 

1  and 2  are almost unchanged after 200 iterations. The 

forecasting performance of the CCRF (RF is used as the 
node potential function) is shown in Table III. The nRMSE 
of the CCRF is 9.82%  which is the lowest. Thus, we can 

also infer that the CCRF can further improve forecasting 
performance when RF is used as node potential function. 

TABLE II.  FORECASTING PERFORMANCE OF THE CCRF WHEN KNN IS 

USED AS THE NODE POTENTIAL FUNCTION 

Forecasting method nMBE (%) nRMSE(%)  Forecast Skill 

KNN  -2.81  12.45  0.05 
Persistence Model 0.02  13.04  - 
CCRF  -2.81  12.43  0.05 

TABLE III.  FORECASTING PERFORMANCE OF THE CCRF WHEN RF IS USED 

AS THE NODE POTENTIAL FUNCTION.  

Forecasting method nMBE (%) nRMSE(%)  Forecast Skill 

RF  -1.91  9.97  0.24 
Persistence Model 0.02  13.04  – 
CCRF  -1.92  9.82  0.25 

 
The above two experiments verify that the CCRF can 

effectively improve forecasting accuracy. In addition, we can 
use the trained CCRF to perform probabilistic forecasting. 

According to (10) and (11), the 95%  confidence intervals 

can represent as 1.96 ( )Y diag   . This shows that the 

CCRF can provide more information and can help 
photovoltaic power plants operate efficiently. 

V. CONCLUSIONS 

In this paper, we use the CCRF to forecast solar 
generation, which can capture the interaction between the 
predicted solar generation. In order to avoid over-fitting, the 
regularization terms of the weight are added to the loss 
function. And KNN and RF are used as the node potential 
function of the CCRF, respectively, to forecast solar 
generation. The experimental results show that the CCRF 
model can further improve forecasting accuracy. What's 
more it can provide probabilistic predictions. Feature 
extraction is critical for machine learning. In our future work, 
we will perform feature extraction of weather variables and 
solar generation to further improve prediction accuracy. 

ACKNOWLEDGMENT 

This work was supported by the National Natural Science 
Foundation of China under Grant U1701262 and U1801263. 

REFERENCES 

[1] J. Zeng and W. Qiao, “Short-term solar power prediction using a 
support vector machine,” Renewable Energy, vol. 52, no. 2, pp. 118–
127, 2013. 

[2] B. B. Ekici, “A least squares support vector machine model for 
prediction of the next day solar insolation for effective use of pv 
systems,” Measurement, vol. 50, no. 4, pp. 255–262, 2014. 

[3] Z. Yue, M. Beaudin, R. Taheri, H. Zareipour, and D. Wood, “Day-
ahead power output forecasting for small-scale solar photovoltaic 
electricity generators,” IEEE Transactions on Smart Grid, vol. 6, no. 
5, pp. 2253–2262, 2015. 

[4] M. Hossain, S. Mekhilef, M. Danesh, L. Olatomiwa, and S. 
Shamshirband, “Application of extreme learning machine for short 
term output power forecasting of three grid-connected pv systems,” 
Journal of Cleaner Production, vol. 167, pp. 395 – 405, 2017. 

[5] V. Sharma, D. Yang, W. Walsh, and T. Reindl, “Short term solar 
irradiance forecasting using a mixed wavelet neural network,” 
Renewable Energy, vol. 90, pp. 481–492, 2016. 

[6] J. F. Torres, A. Troncoso, I. Koprinska, Z. Wang, and F. 
Martinezalvarez, “Big data solar power forecasting based on deep 
learning and multiple data sources,” Expert Systems, 2019. 

[7] A. Gensler, J. Henze, B. Sick, and N. Raabe, “Deep learning for solar 
power forecasting-an approach using autoencoder and lstm neural 
networks,” in 2016 IEEE International Conference on Systems, Man, 
and Cybernetics (SMC), Oct 2016, pp. 002 858–002 865. 

[8] A. P. Yadav, A. Kumar, and L. Behera, “Rnn based solar radiation 
forecasting using adaptive learning rate,” in Swarm, Evolutionary, 
and Memetic Computing, B. K. Panigrahi, P. N. Suganthan, S. Das, 
and S. S. Dash, Eds. Cham: Springer International Publishing, 2013, 
pp. 442–452. 

[9] K. Wang, X. Qi, and H. Liu, “A comparison of day-ahead 
photovoltaic power forecasting models based on deep learning neural 
network,” Applied Energy, vol. 251, p. 113315, 2019. 

[10] M. Abdel-Nasser and K. Mahmoud, “Accurate photovoltaic power 
forecasting models using deep lstm-rnn,” Neural Computing and 
Applications, Oct 2017. 

[11] H. Wang, H. Yi, J. Peng, G. Wang, Y. Liu, H. Jiang, and W. Liu, 
“Deterministic and probabilistic forecasting of photovoltaic power 
based on deep convolutional neural network,” Energy Conversion 
and Management, vol. 153, pp. 409 – 422, 2017. 



[12] J. Lafferty, A. Mccallum, and F. C. N. Pereira, “Conditional random 
fields: Probabilistic models for segmenting and labeling sequence 
data,” Proceedings of Icml, vol. 3, no. 2, pp. 282–289, 2001. 

[13] T. Qin, T. Y. Liu, X. D. Zhang, D. S. Wang, and H. Li, “Global 
ranking of documents using continuous conditional random fields,” 
2008. 

[14] V. Radosavljevic, S. Vucetic, and Z. Obradovic, “Continuous 
conditional random fields for regression in remote sensing.” in ECAI, 
2010, pp. 809–814. 

[15] H. Guo, “Accelerated continuous conditional random fields for load 
forecasting,” IEEE Transactions on Knowledge and Data 
Engineering, vol. 27, no. 8, pp. 2023–2033, 2015. 

[16] R. Marquez and C. F. Coimbra, “Proposed metric for evaluation of 
solar forecasting models,” Journal of solar energy engineering, vol. 
135, no. 1, p. 011016, 2013. 

 


