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Abstract—The lower upper bound estimation method is an
important probabilistic prediction method and has been applied
to the solar generation forecasting. However, when the input
dimension of the lower upper bound estimation method is large,
its performance will be seriously affected. To overcome this
challenge, a novel probabilistic prediction of solar generation
based on stacked autoencoder and lower upper bound estimation
method is proposed. In this method, stacked autoencoder is first
used to obtain highly compressed features, which are utilized as
the input of the lower upper bound estimation method. Besides,
to make the target value in the center of the prediction interval as
much as possible, inspired by the idea of support vector machine,
the mean squared error of prediction interval is introduced to
the loss function, which keeps the target value as far as possible
from the lower and upper bounds of the prediction interval. To
verify the performance of the proposed method, a large number
of experiments have been carried out on the freely available
dataset. The results show that the proposed method has better
forecasting performance.

Index Terms—stacked autoencoder, lower upper bound esti-
mation, solar generation forecasting, probabilistic prediction

I. INTRODUCTION

Recently, in order to cope with global climate change,
countries around the world actively carry out emission reduc-
tion actions [1], [2]. This has led to a significant increase
in the percentage of photovoltaic (PV) in annual electricity
consumption [3]. However, solar generation has randomness,
volatility, and intermittence. Its large-scale integration into the
grid will bring great challenges to the safe and stable operation
of the grid [4]. Solar generation forecasting, as an important
way to overcome these challenges, has become the focus of
academia and industry.

Most previous works in solar forecasting have mainly fo-
cus on the deterministic prediction (point forecast) [5]–[7].
However, due to the influence of meteorological factors, solar
generation has strong randomness. When the weather changes
greatly, the deterministic prediction accuracy is poor. Prob-
abilistic prediction can provide all possible solar generation
conditions and corresponding probabilities at the next moment,
which can provide more comprehensive prediction informa-
tion. Therefore, the probabilistic prediction is more conducive

to the safe and stable operation of power systems, which has
attracted more and more attention. Quantile regression [8],
quantile regression forests [9], Gaussian process [10], lower
upper bound estimate (LUBE) [11], and other probabilistic
prediction methods, have been proposed and applied in solar
forecasting.

LUBE method is a probabilistic prediction method based
on a neural network. Its output layer has two nodes, which
are the upper bound of the prediction interval and the lower
bound of the prediction interval. Ni et al. [12] proposed a
novel ensemble approach based on extreme learning machines
(ELM) and LUBE for short-term PV power forecasting. In
[13], the LUBE method was used to quantify potential un-
certainties of electrical demands and wind power generation.
Because the objective function of the LUBE method is not
differentiable, it is usually solved by evolutionary algorithm,
such as particle optimization (PSO), ant colony algorithm
(ACA), genetic algorithm (GA) and so on [14], [15]. Taking
PSO algorithm as an example, when the dimension of particles
is too high, the solution speed of the LUBE method will be
reduced, and it may lead to a complex loss function and fall
into a local optimum. Reducing the dimension of particles is
an important way to improve the performance of the LUBE
method.

Deep learning, a powerful machine learning method, has
been widely used in computer vision [16], [17], natural
language processing [18], [19], robotics [20], [21], and other
fields, and achieved accepting results. As an efficient algorithm
of deep learning, stacked autoencoder (SAE) is made up of
several autoencoders (AEs). The basic idea of AE is to use
neural networks for unsupervised learning, that is, samples are
used as input and output of neural networks at the same time.
In essence, it is hoped that it can obtain the representation of
input samples. SAE uses multiple AEs to improve its ability
to learn the representation of input samples, and has been
successfully applied in wind speed prediction [22], image
classification [23], drug-target interactions prediction [24],
synthetic aperture radar target recognition [25] and other fields.
In [26], the combination of Deep Belief Network (DBN),



AE, and LSTM shows the predictive advantage in predicting
the energy output of 21 solar power plants compared to
standard Multi-Layer Perceptron (MLP) and physical predic-
tion models. However, SAE has not been combined with the
LUBE method to conduct the probabilistic prediction of solar
generation.

Following the motivation above, we propose a novel method
of solar generation probabilistic prediction based on SAE and
LUBE. In the proposed method, highly compressed features
obtained by SAE are used as the input of the LUBE method,
which can quickly and efficiently constructs the prediction
interval of solar generation. Besides, the mean squared error of
prediction interval is added to the loss function of the LUBE
method to make the target value in the center of the prediction
interval as much as possible.

The remainder of the paper is organized as follows. In
Section II, the proposed method is described in detail. The
experimental results and analysis are presented in Section III.
Finally, the conclusion of the paper is summarized in Sec-
tion IV.

II. PROPOSED METHOD

The flowchart of the proposed method is shown in Fig. 1.
In the proposed method, we first use a stacked autoencoder to
transform the raw data to obtain highly compressed features.
Then, highly compressed features are used as the input of the
LUBE method to construct the prediction interval, and particle
swarm optimization is used to find the optimal parameters of
the LUBE method. In the following section, we will describe
the main content of the proposed method in detail.

A. Autoencoder and Stacked Autoencoder

AE is a three-layer network model, which consists of the
encoder and the decoder, as shown in Fig. 2. Suppose X is
the input vector, h is the hidden vector, and Y is the output
vector (i.e., reconstructed data). The encoder maps the input
layer data X to a hidden vector h, which can be represented
as follows:

h = fθ(WiX + bi), (1)

where θ is the parameters of encoder, including Wi and bi, Wi

is the weight matrix between the hidden layer and the input
layer, bi is the bias vector of hidden layer.

The decoder maps the hidden vector h to the reconstruction
vector y of the input vector X . This process can be defined
as follows:

Y = gθ′ (Woh+ bo), (2)

where θ
′

is the parameters of decoder, including Wo and bo,
Wo is the weight matrix between the hidden layer and the
output layer, bo is the bias vector of output layer.

As defined in Eq (3), the learning task of AE is to find the
optimal parameters to minimize reconstruction errors.

(θ, θ
′
) = arg min

(θ,θ′ )
L(X,Y ), (3)

where L is the loss function of AE, which can be represent
as:

L(X,Y ) =
1

2N

N∑
i=1

||X − Y ||2, (4)

where N is the number of samples, || ◦ ||2 is the Euclidean
norm.

When the reconstruction error between input vector X and
output vector Y is small enough, the hidden vector h can be
regarded as the feature representation of the input vector X .
Therefor, we can set the dimension of hidden layer less than
that of input vector to achieve the purpose of feature extraction.

SAE is a typical deep learning model, which is composed
of multiple AE. By increasing the hidden depth of SAE,
the ability of feature extraction and training effect can be
improved. The training process of SAE can be divided into two
parts: pre-training and fine tuning. The pre-training process is
to train the parameters of each AE, and fine tuning process is
to train the parameters of the SAE.

B. Lower Upper Bound Estimation

LUBE based on neural network is an important and effective
method to directly construct prediction intervals. As shown
in Fig. 3, it has two outputs, i.e., upper bound and lower
bound. The learning task of LUBE is to find the optimal
parameters of neural network to minimize its loss function and
obtain the acceptable forecasting performance. In the LUBE
method, its loss function comprehensively consider reliability
and sharpness.

In probabilistic prediction, reliability can be evaluated by
the average coverage error (ACE), which can be defined as

ACE = PINC − PICP, (5)

where PINC (prediction interval nominal confidence) repre-
sents the expected confidence level that target values lie in
the prediction intervals, PICP (prediction interval coverage
probability) gives the actual probability that target values will
be covered by the predicted intervals. PICP can be defined as
follows:

PICP =
1

N

N∑
i=1

εi, (6)

where N is the number of samples, εi is a Boolean variable,
which indicates the coverage behavior of prediction intervals.
Mathematically, εi can be calculated as follows:

εi =

{
1 if Yi ∈ [L

(α)
i , U

(α)
i ]

0 if Yi /∈ [L
(α)
i , U

(α)
i ]

, (7)

where α is the nominal confidence level associated with
prediction interval, L(α)

i and U
(α)
i are the lower bound and

upper bound of the prediction interval, respectively.
The Winkler score can be used to evaluate the sharpness of

prediction interval. It can be defined as follows:

S
(α)
i =


−2αϑ(α)i − 4(L

(α)
i − Yi), if Yi < L

(α)
i

−2αϑ(α)i , if Yi ∈ ϑ(α)i

−2αϑ(α)i − 4(Yi − U (α)
i ), if Yi > U

(α)
i

, (8)
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Fig. 1. Flowchart of the proposed method.

where ϑ(α)i is the prediction interval width, as shown in Eq (9).

ϑ
(α)
i = U

(α)
i − L(α)

i . (9)

Then, the Winkler score on the whole dataset can be
represented as

S(α) =
1

N

N∑
i=1

S
(α)
i . (10)

In [15], the loss function combining ACE and Winkler score
was defined as follows:

Loss = γ|ACE|+ λ|S(α)|. (11)

However, it may face a problem that the target value is not
in the center of the prediction interval, when the loss function
mentioned above is used to train the LUBE method. Thus, the
target value that changes drastically is easily not included in
the prediction interval. In order to avoid this problem, inspired

by the idea of support vector machine (SVM), we introduce
the mean squared error of prediction interval (PIMSE) to the
loss function. This keeps the target value as far as possible
from the lower and upper bounds of the prediction interval.
Mathematically, PIMSE can be calculated as follows:

PIMSE =
1

N

N∑
i=1

[(U
(α)
i − Yi)2 + (L

(α)
i − Yi)2]. (12)

Finally, the loss function of LUBE can be derived as
follows:

Loss = γ|ACE|+ λ|S(α)|+ ηPIMSE, (13)

where γ, λ, and η are the controlling weights.
From the form of the loss function of the LUBE method,

it can be seen that the LUBE method can not be optimized
by the error backpropagation algorithm. Therefore, the PSO
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described in the next section is used to solve the optimal
parameters of the LUBE method.

C. Particle swarm optimization

PSO was first proposed in [27]. It is a population-based
optimization technique inspired by predatory behavior of birds.
The basic core of PSO is that individual swarm members have
establish social networks that can benefit from the discoveries
and prior experience of other swarm members.

Suppose particles are located in D-dimension space, and
the ith particle position is Xi = (Xi1, Xi2, · · · , XiD), ith
particle velocity is Vi = (Vi1, Vi2, · · · , ViD). In addition, we
define the optimal position of the ith particle as pbesti, the

optimal position of particle swarm as gbest. Then, the position
and velocity of the particle will be updated by the equation
defined as follows:

Vi = wVi + c1r1(pbesti −Xi) + c2r2(gbest−Xi)

Xi = Xi + Vi
, (14)

where w is the inertia weight, r1 and r2 are random numbers
between 0 and 1, c1 and c2 are the cognitive and social
coefficient, respectively.

In our work, we set the position of particles as the parame-
ters of the neural network in the LUBE method, including the
weights and biases of the input layer to the hidden layer and
the hidden layer to the output layer. At the same time, we set
the optimization goal of the PSO (i.e., fitness function) as the
loss function of LUBE method, defined as Eq (13).

III. CASE STUDY

A. Data

The Desert Knowledge Australia Solar Centre (DKASC)
[28] is an open platform for sharing high-quality solar related
data and knowledge in the Northern Territory, Australia and
beyond. The diverse arrays installed in DKASC are shown in
Fig. 4. In our case, the dataset from site 31 TDG, DKASC
is used to verify the performance of the proposed method. Its
installation parameters are described in Table I. The provided
dataset contains solar generation and weather information with
a resolution of 5-min. The weather information includes six
variables, namely, wind speed, weather temperature, weather
relative humidity, global horizontal radiation, diffuse horizon-
tal radiation, and wind direction. Due to the large number
of outliers in the wind direction, this weather information is
discard in our case. Here, the data from 1 April 2014 to 31
October 2015 are used in our work.

In this work, we aim to use the past sequence of solar
generation and weather information to quantify the predic-
tion interval of solar generation in the next 5-min. To that
end, sliding window is used here to construct the dataset.
The window length should be first determined. According to
Fig. 5, we can find that the first four lags have larger partial
correlation coefficients, and subsequent lags are less than 0.1.
Thus, the window length is set to four. It means that we
use the solar generation and weather information (include five
weather variables) at time t− 3, t− 2, t− 1, t to forecast the
prediction interval of solar generation at time t+ 1. Thus the
input dimension of the proposed method is 24. Besides, there
some missing data in some days, for convenience, we delete
these days directly. Finally, we use the 443 days data from 1
April 2014 to 30 June 2015 as training set, the 61 days data
from 1 July 2015 to 31 August 2015 as validation set, and the
61 days data from 1 September 2015 to 31 October 2015 as
test set. Because the solar panels do not have power output
during night, the solar generation at 5:30-19:00 is predicted in
our case. Hence, we can obtain the size of training set is 71766
(443 ∗ 162, 162 is the number of samples can be construct in
one day), the size of validation set is 9882 (61∗162), the size
of test set is 9882 (61 ∗ 162).



TABLE I
INSTALLATION PARAMETERS OF SITE NUMBER 31 TDG.

Parameter Value
Array Rating 5kW
Panel Rating 250W
Number Of Panels 20
Panel Type TDG T250M606
PV Technology mono-Si
Array Structure Fixed: Ground Mount
Array Area 33.5m2

Inverter Size / Type APS Micro-inverter YC500 (x 10)
Installation Completed Wed, 7 Aug 2013
Array Tilt/Azimuth Tilt = 20, Azi = 0 (Solar North)

Fig. 4. The DKASC is located at the Desert Knowledge Precinct in Alice
Springs, a town in the Northern Territory that enjoys one of the country’s
highest solar resources in an arid desert environment.

B. Experimental Results and Analysis

To verify the performance of the proposed method, a large
number of experiments are carried out and analyzed in this
section. In our case, all experiments are implemented with
Python 3.7 on a standard i7 3.4-GHz computer.

1) Hyperparameter Setting: In the proposed method, the
purpose of the SAE is to obtain highly compressed features.
Therefore, we set the number of AEs in the SAE to 2, and set
the number of nodes in the hidden layer of the first AE to 15,
and the number of nodes in the second hidden layer to 4. That
means the first AE compresses the feature with dimensions
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Fig. 5. Partial autocorrelation graph of the solar generation.

TABLE II
PARAMETERS USED IN THE EXPERIMENTS.

Parameter Numerical value
SAE input size of SAE 24

number of hidden layer 2
number of nodes (1st hidden layer) 15
number of nodes (2nd hidden layer) 4
optimizer Adam
learning rate 0.001

LUBE input size of LUBE 4
number of hidden layer 1
number of nodes (hidden layer) 3
output size of LUBE 2
controlling weight γ, λ, η 1, 0.05, 0.05

PSO size of particle 23
number of particles 60
inertia weight w 0.5
cognitive coefficient 2
social coefficient 2
number of iteration 300

24 to 15, and the second AE compresses the feature with
dimensions 15 to 4. According to Fig. 6, we can find that pre-
training loss and fine tuning loss converge at 600 iterations.
Besides, we can observe that the MSE loss of the first AE is
closer to 0, compared with the MSE loss of the second AE
and the fine tune. It is evident that the feature compression of
data inevitably brings losses.

Once obtain the highly compressed features, the PSO algo-
rithm is adopted to find the optimal parameters of the LUBE
method to construct the prediction interval. The forecasting
performance of the LUBE method depends on the structure
of the neural network. In this paper, the single hidden layer
neural network is considered. In addition, the number of
nodes in the hidden layer is set to 3. According to the data
representation obtained by the SAE and the neural network
structure of the LUBE method, there are 23 parameters to
be trained in the LUBE method. Thus, the size of particle
is set to 23. According to Eq (13), γ, λ, and η are three
important hyperparameters of the LUBE method. To determine
the proper hyperparameters, the grid search method on the
validation set is adopted. After many experiments, the three
hyperparameters, namely, γ, λ, and η, are set to 1, 0.05, and
0.05, respectively. As shown in Fig. 7, the LUBE loss of
gbest drops sharply at the beginning and simply converges
in 50 iterations. After several iterations, the LUBE loss of
gbest makes little changes, which implies that the optimal
parameters of the LUBE method are found. Finally, the typical
hyperparameters of our case for SAE, LUBE, and PSO are
summarized in Table II.

2) Method comparison: To verify the forecasting perfor-
mance of the proposed method, we compare it with the
persistence ensemble (PeEn). The PeEn is widely used as
a referenced model in solar probabilistic forecasting, which
assumes that the forecast error is a random normal distribution
[12], [29], [30]. Table III shows the probabilistic prediction
performance of the proposed method (denoted as SAE-LUBE)
and the compared method in terms of PICP, PIMSE, Winkler
score, and loss. For PICP, the proposed method can meet the
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TABLE III
PROBABILISTIC PREDICTION PERFORMANCE AT DIFFERENT CONFIDENCE

LEVELS.

PINC Method PICP PIMSE Winkler score Loss
85% PeEn 70.8% 16.13 -9.28 1.41

SAE-LUBE 92.2% 4.79 -4.05 0.51
90% PeEn 75.8% 16.17 -9.30 1.42

SAE-LUBE 94.8% 0.91 -2.07 0.20
95% PeEn 81.5% 16.26 -9.33 1.41

SAE-LUBE 96.3% 1.03 -2.28 0.18

requirements of different confidence levels. For example, when
the confidence level (i.e., PINC) is 90%, the PICP of our
method is 94.8%, which meets the requirement of confidence
level (i.e., PINC). However, the PICP of the PeEn is 75.8%,
which does not meet the requirement of PINC. This shows that
the proposed method has better reliability. In addition, at this
confidence level, the Winkler score of the proposed method
is −2.07, which is better than the compared method (Winkler
score: −9.30). This indicates that the proposed method has
better sharpness. Combing the reliability and sharpness, we
can conclude that the proposed method has better forecasting
performance. By analyzing the reliability and sharpness at
different confidence levels, similar results can be obtained.

Fig 8 and Fig 9 show the prediction interval of solar
generation constructed by the LUBE method with and without
PIMSE in the loss function, respectively. It is clear that the
target values are well covered by the prediction interval.
Moreover, the target values are more in the center of the
prediction interval constructed by the LUBE method when
PIMSE is introduced to the loss function. This shows that
the introduction of PIMSE in the loss function makes the
LUBE method more robust. From the solar generation of 16
September 2015 and 17 September 2015, it can be seen that the
solar generation has highly variable patterns, which indicates
that it is difficult to accurately predict the PV power generation
by deterministic prediction. This also reflects the importance
of the probabilistic prediction of solar generation.

IV. CONCLUSION

In this paper, we propose a novel probabilistic forecasting
method based on the SAE and LUBE. In the proposed method,
SAE is first utilized to obtain the highly compressed represen-
tation of the input data. Then highly compressed features are
used as the input of the LUBE method. In addition, PIMSE is
introduced to the loss function of the LUBE method to ensure
the target value can be located in the center of the prediction
interval of solar generation. The proposed method is evaluated
by the real solar generation data from DKASC. In terms of
PICP, PIMSE, Winkler score, and loss of LUBE, the proposed
method has better performance than the compared forecasting
method.

The future research work includes the following two as-
pects: (1) Denoising stacked autoencoders (DSAE) is a variant
of AE, which adds noise to the original sample to improve its
generalization ability. We will use the DSAE to get highly
compressed features to verify the prediction performance of



Fig. 8. Prediction interval constructed by the proposed method (PINC=95%, PIMSE is introduced to the loss function of the LUBE method).

Fig. 9. Prediction interval constructed by the proposed method (PINC=95%, PIMSE is not introduced to the loss function of the LUBE method).

the proposed method. (2) The proposed method only optimizes
a specific trade-off between interval coverage and width. We
will use a multi-objective optimization [31] to determine the
prediction interval.
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