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With the emergence and popularity of identity verification means by biometrics, the biometric system
which can assure security and privacy has received more and more concentration from both the research
and industry communities. In the field of secure biometric authentication, one branch is to combine the
biometrics and cryptography. Among all the solutions in this branch, fuzzy commitment scheme is a pio-
neer and effective security primitive. In this paper, we propose a novel binary length-fixed feature gen-
eration method of fingerprint. The alignment procedure, which is thought as a difficult task in the
encrypted domain, is avoided in the proposed method due to the employment of minutiae triplets. Using
the generated binary feature as input and based on fuzzy commitment scheme, we construct the biomet-
ric cryptosystems by combining various of error correction codes, including BCH code, a concatenated
code of BCH code and Reed–Solomon code, and LDPC code. Experiments conducted on three fingerprint
databases, including one in-house and two public domain, demonstrate that the proposed binary feature
generation method is effective and promising, and the biometric cryptosystem constructed by the feature
outperforms most of the existing biometric cryptosystems in terms of ZeroFAR and security strength. For
instance, in the whole FVC2002 DB2, a 4.58% ZeroFAR is achieved by the proposed biometric cryptosys-
tem with the security strength 48 bits.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Biometrics has emerged as a convenient and reliable technology
to verify the identities of people, in place of traditional passwords
or ID cards. As physical or behavioral characteristics, biometrics
(such as fingerprint, iris, gait and so on) are not subjected to the
worry of being forgotten or lost. And they are difficult to forge.
However, the great drawback of biometrics, compared with pass-
word or ID cards, is its variational and noisy nature in the process
of capturing (Jain, Flynn, & Ross, 2008b). This characteristic makes
biometrics can not be authenticated, like the passwords or keys, by
means of direct encryption or hashing. Usually pattern recognition
methods are utilized in biometrics authentication, and conse-
quently a raw version of biometric data extracted from a sample,
named template, must be stored into the template database for
the purpose of performing the matching process.

The raw storage of templates may bring serious security and
privacy issues, because biometric traits can not be reset or replaced
ll rights reserved.
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like passwords or ID cards (Jain, Nandakumar, & Nagar, 2008a). For
an individual, the biometrics resources are limited, such as one
face, ten fingers and two eyes. Once one’s biometric sample is ob-
tained by others of ulterior motives, the corresponding biometric
trait is lost forever. Given most existing biometric systems
equipped without liveness detection module, the lost biometric
trait may bring terrible consequences. Biometric cryptosystem
(Uludag, Pankanti, Prabhakar, & Jain, 2004) is proposed to solve
the above problem. Biometric cryptosystems (Dodis, Reyzin, &
Smith, 2004; Juels & Sudan, 2002; Juels & Wattenberg, 1999) utilize
cryptographic technology or other particular technologies to ‘‘en-
crypt’’ the original biometric features into the encrypted domain
and then store the ‘‘encrypted’’ templates into the database. Such
‘‘encryption’’ process is irreversible, that is to say, the original bio-
metric features can not be directly obtained from the ‘‘encrypted’’
template. Meanwhile, usually one key of a certain length is in-
volved in the process of designing the ‘‘encryption’’ method and
ultimately it is concealed in the ‘‘encrypted’’ template. Only the
query sample from the same trait with the template sample is in-
put and the authentication is claimed successful, the right key is
released and then used in the cryptographic circumstances. Never-
theless biometric cryptosystems are of single factor security mech-
anism, and it can not prevent from the attackers obtaining the
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user’s biometric sample by other means other than tampering the
template database. Cancelable biometrics (Bolle, Connell, & Ratha,
2002; Lee, Choi, Toh, & Lee, 2007; Ratha, Chikkerur, Connell, &
Bolle, 2007; Savvides, Vijaya Kumar, & Khosla, 2004), a two-factor
authentication mode, is also proposed to solve the losing problem
of biometrics. An irreversible transformation (Ratha et al., 2007) is
the most important element for cancelable biometrics, and usually
the transformation involves a personal key. Only both the right
biometric sample and the right key are input, a positive verification
signal is possible to be output. If one transformed template is lost,
the user can promptly cancel it and replace it with another trans-
formed version. The differences between biometric cryptosystems
and cancelable biometrics lie in: (1) the former is a single-factor
authentication method, but the latter is a two-factor one; (2) the
former outputs a key but the latter just outs a Yes/No signal. Some-
times combining biometric cryptosystems with cancelable biomet-
rics is necessary to make use of both of their advantages and
construct more effective and secure biometric authentication
system.

Fuzzy commitment scheme (FCS) (Juels & Wattenberg, 1999) is
a smart biometric cryptosystem framework which can deal with
hamming errors happening between different biometric samples.
It demands for the binary length-fixed biometric feature b input
into the system. Then a codeword c from error correction codes
(Moon, 2005) is randomly selected. The XOR operation is con-
ducted to obtain the ‘‘encrypted’’ template: e = b � c. Meanwhile,
the hash value of c, h(c)(h denotes a hash function), is computed
and stored together with e. In the decoding phase, a noisy biomet-
ric sample b0 is presented and XORed with e to get e0:
e0 = b0 � e = b0 � b � c. Then the decoding algorithm is performed
on e0 to get codeword c0. If b and b0 are both from the same biomet-
ric trait and within a certain thresholding in terms of hamming
measure, we can have c = c0. This can be validated by checking if
h(c) = h(c0).

In this paper, we attempt to extract discriminating binary
length-fixed features from fingerprint images and combine them
with various of error correction codes to construct an effective
biometric cryptosystem based on FCS. As is well known, minutiae
features, which are the most distinguishable among all the finger-
print features, is of set features and do not accord directly with
the fuzzy commitment naturally. We propose to generate a binary
string from the minutiae triplet set of a fingerprint image, with
the assistance of user-specific question sets. The usage of minutia
triplet, a translation and rotation non-variant feature, could avoid
the procedure of aligning two fingerprint images, which is thought
as difficult in the encrypted domain. And then various of coding
algorithms are tested to find the best code to construct the effective
biometric cryptosystem. The rest of this paper is organized as fol-
lows. In Section 2, related works on biometric cryptosystems and
relevant feature extraction algorithms of fingerprints are reviewed.
Section 3 presents the proposed binary length-fixed fingerprint fea-
ture generation method. Various coding strategies, including BCH
code, a two-layer coding algorithm and LDPC code, are illustrated
to construct an effective biometric cryptosystem in Section 4.
Section 5 reports the experimental results on three fingerprint
databases (one in-house and two public domain) to compare the
performance of different coding strategies, as well as the security
strength analysis. And we conclude this paper in Section VII.
2. Related works

Many previous works have been done in the biometric crypto-
system field. Fuzzy commitment scheme (Juels & Wattenberg,
1999) is a pioneer theoretical contribution to combine
cryptography and biometrics in the sense of Hamming measure.
Hao, Anderson, and Daugman (2006) applied FCS to iris pattern
and derived 140-bit keys from iris images at FRR = 0.47% and
FAR = 0%. Zhang, Sun, Tan, and Hu (2009) concatenated Reed–Sol-
omon code and Convolution code to construct iris cryptosystem
based on FCS. They obtained the result of FRR = 0.52%(FAR = 0)
with the key length of 938 bits. Bringer, Chabanne, Cohen, Kindarji,
and Zemor (2008) deduced the theoretical boundary of binary se-
cure sketch and developed a 2-D iterative Min–Sum decoding algo-
rithm to obtain the practical boundary, which is close to the
theoretical one. The experiments were conducted on both iris
and fingerprint databases in their paper. Soutar, Roverge, Stojanov,
Gilroy, and Kumar (1998) proposed to bind a private key with a fin-
gerprint by Fourier Transform and derive it when the fingerprint
identification succeeded. Juels and Sudan (2002) proposed a classi-
cal framework, named fuzzy vault, to bind a key to a biometric
trait. Nandakumar, Jain, and Pankanti (2007) implemented the fuz-
zy vault for fingerprint and got encouraging results. Li et al. (2010)
proposed an alignment-free version of fuzzy fingerprint vault and
also obtained promising results. Dodis et al. (2004) generalized
most of previous methods and gave a theoretical framework of
generating robust key from biometric data and analyzed the secu-
rity in the information theory sense. Many other researches (Boy-
en, 2004; Boyen, Dodis, Katz, Ostrovsky, & Smith, 2005; Bringer
et al., 2008; Buhan, Doumen, Hartel, & Veldhuis, 2007; Li, Sutcu,
& Memon, 2006; Sheng, Howells, Fairhurst, & Deravi, 2008; Sutcu,
Li, & Memon, 2007) also concentrated on generating a key from
biometric data. However, there are not encouraging experimental
results reported in these literatures because of some implementa-
tion difficulty. Feng, Yuen, and Jain (2010) proposed to generate
cancelable face template based on both biometric cryptosystem
and transformation. Fu, Yang, Li, and Hu (2009) analyzed three
structures of multibiometric cryptosystem and gave their perfor-
mance comparison. Ignatenko et al. (2009) discussed the privacy
and security issues of biometric systems from the viewpoint of
information theory.

It can be found that few literatures reported the results of
applying the FCS to fingerprint. The reason that it is a difficult task
to extract a global length-fixed feature of high distinguishability
from fingerprints. However, many researchers are working to-
wards this task. Xu et al. (2009) proposed to generate length-fixed
fingerprint feature from minutiae map by performing 2-D continu-
ous Fourier Transform. But the resultant feature vector is in real
number field, thus it can not be directly applied to template pro-
tection schemes, including FCS. Chen, Veldhuis, Kevenaar, and
Akkermans (2008) proposed an optimal bit allocation method
(OBA) to generate a binary string from face biometrics, at a pre-de-
fined length with maximized overall detection rate. This method
assumes the original biometric features are in the form of length-
fixed real-value vector and this condition can not be easily satisfied
for fingerprints. Cappelli, Ferrara, and Maltoni (2010) proposed a
novel local binary string generation method of minutiae, called
MCC, but it calls for special design of cryptographic framework to
accommodate itself. Chang and Roy (2007) proposed a simple
but illuminating method to extract binary strings from minutia
sets. But only the minutiae locations are utilized and 8 � 10 secret
bits are extracted. One drawback of their work is that the algo-
rithm employs the core points of fingerprints to align two corre-
sponding fingerprints, which may lead to alignment inaccuracy
because of core point detection errors or noise existing in the fin-
gerprint images. Sutcu, Rane, Yedidia, Draper, and Vetro (2008) im-
proved Chang and Roy (2007)’s method and took use of the
minutiae’s orientation information. More importantly, they pro-
posed the desired property which need to be satisfied by a binary
biometric string transferred in Binary Symmetric Channel (BSC).
Nagar et al. (2010) extended Sutcu et al. (2008)’s work and
integrate ridge orientation and ridge wavelength features into
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the feature transformation process and obtain longer binary fea-
ture and better performance. Moreover, in Sutcu et al. (2008), a
user-specific cuboid is employed to partition the minutiae set into
two parts: the ones inside the cuboid and the ones outside it. And
Principle Component Analysis (PCA) is performed on the computed
feature vectors to weaken the correlation between the ones from
different fingers. However, there are still several imperfections
existing in Sutcu et al. (2008) and Nagar et al. (2010), which will
be improved in this paper. They are listed as follows:

1. Still a core point is used to compute the alignment parameters.
In this paper, we will employ the minutiae triplets as the basic
input features, which are not sensitive to rigid transformation
and do not need the alignment procedure.

2. The crossover probability p of BSC is still large. And it will be
made smaller in this paper by several means, including: (1)
replacing PCA with Linear Discriminant Analysis (LDA); (2) stor-
ing user-specific thresholding information. As well, the usage of
the minutiae triplets accounts for the dropping of p to some
extent.

3. Lacking performance comparison between different Error Cor-
rection Codes (ECC). Various of effective ECCs are examined to
find the best one which adapts to the proposed binary string
generation method in this paper.

4. Experimental results reported is on an in-house fingerprint
database. The proposed method in this paper will be tested on
two more public fingerprint databases to show its good
performance.

3. Binary length-fixed fingerprint feature generation

Minutiae triplet is a kind of fingerprint feature with high distin-
guishability (Bhanu, Tan, & Member, 2003; Chen, Tian, Yang, &
Zhang, 2006), as is illustrated in Fig. 1. It will be employed as
the basic feature in this paper. A six-dimension vector,
(l1, l2, l3,h1,h2,h3), is computed for each triplet. The first step is to se-
lect the relatively reliable minutiae triplets from all the combina-
tion of 3-minutia tuples in a fingerprint image. The selection
criteria is shown as follows:

li P tside; ði ¼ 1;2;3Þ
Sðm1;m2;m3ÞP tarea

�
ð1Þ

where, tside denote the thresholding of side length and S denotes the
thresholding of the area of the triangle formed by m1, m2, m3. It is
obvious that the six dimension feature is a relative feature, which
means the alignment procedure can be avoided when it is employed
as the input of feature transforming process, just as the way Chang
and Roy (2007) and Sutcu et al. (2008) did.

Before describing our proposed feature transformation method,
we have to point out that one main contribution of Sutcu et al.
(2008) is the concept of transforming minutiae map to feature
1m
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Fig. 1. A fingerprint minutiae triplet. Where, mi(i = 1,2,3) denotes three arbitrary
minutiae in a fingerprint; li(i = 1,2,3) denotes the ith side opposite the correspond-
ing minutia; and hi (i = 1,2,3) denotes the ith angle. Taking h1 as an example, it is the
smaller angle formed by m1’s direction and l2, other than l3.
vectors explicitly matched with error correction codes for BSC.
The corresponding properties desired by BSC are summarized in
Sutcu et al. (2008) and elaborated as: (1) a bit is equally likely to
be 0/1; (2) different bits in a given feature vector are independent
of each other; (3) feature vectors from different fingers are inde-
pendent of each other; (4) two feature vectors from the same finger
are statistically related by a BSC-p.

In this paper, we follow the above defined rules, but propose a
feature vector generation method which is more compact with the
rules. In Sutcu et al. (2008), the authors used two smart tech-
niques: user-specific questions and 0/1 decision by Bernoulli tries.
We borrow the concept of ‘‘questions’’ which stands for the oper-
ation of counting the number difference between the minutiae in-
side a cuboid and the minutiae outside it. But the ‘‘question’’ in this
paper refers to a super plane according to the MT feature vector
V = (l1, l2, l3,h1,h2,h3). The ‘‘question’’ vector can be defined as
Q = (s1,s2,s3,a1,a2,a3). The MT feature vector V is ‘‘asked’’ a question
Q as the way Eq. (2) shows.

QðVÞ ¼
X3

i¼1

li

si
þ hi

ai

� �
ð2Þ

meanwhile, the following empirical equation must be satisfied:

0 < si 6 8:6� ðw2 þ h2Þ; i ¼ 1;2;3;
0 < ai 6 1105; i ¼ 1;2;3;

(
ð3Þ

where, si(i = 1,2,3) are parameters for side length li(i = 1,2,3), and
ai(i = 1,2,3) for angles hi(i = 1,2,3); w and h denotes the width and
height of fingerprint images, respectively; 8.6 and 1105 are empir-
ical values and these two values can ensure the generated random
super planes are relatively discriminating and uncorrelated. Given a
minutia triplet set V = {vi, i = 1,2, . . . ,n} and a random question q, we
compute the numbers of feature vectors, num1 and num2, which
make q(vi) P 1 and q(vi) < 1, respectively. Thus the output of the
question q is the resultant difference d = num1 � num2.

It is obvious that some random questions could be more reliable
than others. Given a question for one fingerprint, if the resultant
difference d is removed far from the average value of this question
on many fingerprints from the same finger, it is thought as reliable;
otherwise it is unreliable. Considering that the final feature vector
should be a binary string, another immediate issue is how to de-
cide the output real-value of a question to be binarized to 0 or 1.
As Sutcu et al. (2008) did, the selection of reliable questions and
the expected 0/1 decision of a question are also considered in this
paper. But the methods we developed are different. The difference
will be detailed in the following paragraphs.

The overall feature generation process comprises two parts:
training process and feature generation process.

3.1. Training process

The overall flowchart of the training process is illustrated as
Fig. 2. The detailed steps of the training process are as follows.

1. For the ith user in the training process, its p fingerprint samples
are input and processed by fingerprint enhancement algorithms
like (Jain, Hong, & Bolle, 1997). Then the minutiae are extracted
from the enhanced images and the minutiae triplet sets

Tt
ij; j ¼ 1; . . . ; p

n o
are obtained by Eq. (1), where

Tt
ij ¼ tt

ij1; t
t
ij2; . . . ; tt

ijn

n o
and n denotes the number of triplets in

the jth training sample of the ith user, and the superscript t

denotes that the sets Tt
ij are from template fingerprints.

2. Corresponding to user i, a set of random questions
Qi = {Qikjk = 1, . . . ,q} are generated according to Eqs. (2) and
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Fig. 2. The overall flowchart of the training process of binary length-fixed feature generation. The red items need be stored in the central database or user’s personal token
and will be used in the verification process.

P. Li et al. / Expert Systems with Applications 39 (2012) 6562–6574 6565
(3). Using one question Qik to ‘‘ask’’ the minutiae triplet set Tt
ij,

the ‘‘answer’’ is the number difference of the triplets locating
different sides of the super plane. Therefore applying Qi to Tt

ij

will yield a vector Dt
ij of dimension q.

3. Calculate the variation vector Vari of user i by the difference

vectors Dt
ij; j ¼ 1; . . . ; p

n o
. Then select the r smallest values in

Vari as what we want to reserve and record their indexes in
the vector. These indexes correspond the most reliable ques-
tions in Qi, which compose of Q �i Q �i

�� �� ¼ r
� �

, a reliable question

set corresponding to the user i. The entries of Dt
ij in the corre-

sponding positions are picked out to constitute reliable differ-
ence vectors Rt

ij of dimension r. Note that we call the feature
generation process by the way of selecting reliable user-specific
questions ‘‘user-specific question way’’. Correspondingly, the
way that a set of common questions are used by all the users
is named as ‘‘common question way’’.

4. Here we can fix a certain number of users among all the N users,
say n, taking part in the training process, i.e., n 6 N. After the
resultant reliable difference vectors

Rt
ijji ¼ 1; . . . ;n; j ¼ 1; . . . ; p

n o
are obtained, the linear discrimi-

nant analysis (LDA) is used to reduce the vector dimension
and eliminate the correlation between the feature vectors from
different users. The dimension reduction matrix obtained is

denoted as Rr �s. And then Rt
ijji ¼ 1; . . . ;n; j ¼ 1; . . . ; p

n o
of

dimension r is transformed to Wt
ijji ¼ 1; . . . ;n; j ¼ 1; . . . ; p

n o
of

dimension s, by multiplication with Rr�s. Here the fixed n, smal-
ler than N, can make the dimension reduction matrix Rr�s keep
relatively unchanging, eliminating the need of updating it with
the increase of the number of users, N, in the training process.

5. The next step is to binarize Wt
ijji ¼ 1; . . . ;n; j ¼ 1; . . . ; p

n o
using

a certain thresholding value. To make the probability of 0/1
happening in the resultant binary vectors as equal as possible,
we propose to set the user-specific thresholding for each user.

First, for the user i, the mean vector Mi of Wt
ijjj ¼ 1; . . . ; p

n o
is

computed. Then s times of Bernoulli tries are conducted to get
the expected binary vector Ei = {Eij, j = 1, . . . ,s}. Thus, the binari-
zation thresholding Thrij of user i is defined as:
Thrij ¼

1
2 Mij; Eij ¼ 1 and Mij P 0;
2Mij; Eij ¼ 1 and Mij < 0;
2Mij; Eij ¼ 0 and Mij P 0;
1
2 Mij; Eij ¼ 0 and Mij < 0;

8>>><
>>>:

ð4Þ

where, j covers 1, . . . ,s.
6. Wt

ij can be binarized to obtain Bt
ij by the following equation:
Bt
ij ¼

1; Wt
ij P Thrij;

0; Wt
ij < Thrij:

(
ð5Þ

Given Thrij � 1, Eq. (5) yields to the binarization method by com-
mon thresholding. We call these two binarization methods as
‘‘user-specific thresholding way’’ and ‘‘common thresholding
way’’, respectively.

It is worth note that after the training process is finished, three
parts of important user-specific helper data (i.e., HD in Fig. 4) are
stored into the central database or personal token, including Reli-
able Question Set Q �i , Dimension Reduction Matrix Rr�n and
Thresholding vector Thri, which are emphasized using red color
in Fig. 2.

3.2. Feature generation process

The overall flowchart of the feature generation process is illus-
trated as Fig. 3. Its detailed steps are described as follows.

1. Given z query fingerprint samples of user i, the same fingerprint
pre-processing, enhancement and minutiae extraction algo-
rithms as in the training process are performed to obtain the

query minutiae maps. Then minutiae triplets Tq
ij; j ¼ 1; . . . ; z

n o
are selected by using Eq. (1), where Tq

ij ¼ tq
ij1; t

q
ij2; . . . ; tq

ijz

n o
and

z denotes the number of triplets in the jth query sample of
the ith user, and the superscript q denotes that the sets Tq

ij are
from query fingerprints.

2. Apply the user-specific Reliable Question Set Q �i Q �i
�� �� ¼ r
� �� 	

,
obtained in the training process, to Tq

ij and then obtain the resul-

tant reliable difference vectors Rq
ij of dimension r.
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3. Multiply Rq
ij with Rr�n to obtain dimension-reduced vectors Rq

ij

of dimension s.
4. Binarize Rq

ij using user-specific thresholding Thri by Eq. (5) to
output binary feature vectors Bij of dimension s.

Please note that, if the common question set or/and the com-
mon thresholding are adopted, the above steps need to be modified
according to the real scenario.
4. Biometric cryptosystem construction using ECCs

After the binary length-fixed feature vectors are obtained, the
following task is to construct a biometric cryptosystem using the
proposed feature generation method. We base this task on the
known scheme of fuzzy commitment (Juels & Wattenberg, 1999),
which is designed specifically for binary biometric feature vectors
and the Hamming measure. The overall block diagram of the bio-
metric cryptosystem based on FCS is shown in Fig. 4. The operation
details of FCS have been depicted in Section 1. In the overall oper-
ation process, error correction code (ECC) is the important factor to
construct an efficient and robust biometric cryptosystem. There
have been several effective ECCs developed or investigated by
the researchers (Bringer et al., 2008; Hao et al., 2006; Sutcu
et al., 2008). Because it is difficult to find the exact error pattern
of our proposed feature generation method, we will implement
several biometric cryptosystems using different effective ECCs
and compare their performances based on large scale experimental
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4.1. BCH code

A BCH code is a polynomial code over a finite field with a par-
ticularly chosen generator polynomial. It is a cyclic code. Here
we adopt the narrow sense BCH code (Moon, 2005).

A narrow sense BCH code over GF(q) of length n capable of cor-
recting at least t errors is specified as follows:

1. Determine the smallest m such that GF(qm) has a primitive nth
root of unity b.

2. Write down a list of 2t consecutive powers of b:
b; b2; . . . ;b2t :

Determine the minimal polynomial with respect to GF(q) of each
of these powers of b.

3. The generator polynomial g(x) is the least common multiple
(LCM) of these minimal polynomials. The code is a
(n,n � deg(g(x)) cyclic code. Where, deg(g(x)) denotes the
degree of polynomial g(x).

When it comes to decoding, there are many methods, for exam-
ple, calculating the syndrome values for the received vector and so
on.
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Table 1
Error correcting success rates of LDPC codes of 10000 random binary vectors with
various amounts of random bit errors.

Random error number 42 45 50

LDPC (255,75) 0.6882 0.4118 0.0870
LDPC (255,70) 0.8452 0.6639 0.2355
LDPC (255,65) 0.9143 0.8046 0.4970
LDPC (255,55) 0.9898 0.9723 0.8651
LDPC (255,50) 0.9959 0.9911 0.9540
LDPC (255,45) 0.9981 0.9964 0.9846
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Usually we use BCH(n,k, t) to denote a BCH code, where n is the
code length of bits, k the message length of bits and t the error cor-
rection capability.

4.2. Two-layer concatenated code

Hao et al. (2006) proposed a two-layer concatenated code
(‘‘Conc. code’’ for short) of Hadamard code and Reed–Solomon code
to correct the random errors happening on IrisCode. And they
claimed to have achieved good results on an in-house iris database.
Here we propose to employ the similar method to correct the er-
rors of our proposed binary fingerprint features. The difference lies
in that the BCH code, instead of Hadamard code, is used in the in-
ner layer. In the outer layer, we still employ Reed–Solomon code.

Reed–Solomon code is a kind of linear block code. It is a special
case of BCH code (Moon, 2005). Let a be a primitive element in
GF(qm) and let n = qm � 1. Let m = (m0,ml, . . . ,mk�1) 2 GF(qm)k be a
message vector and let m(x) = m0 + m1x + � � � + mk�1xk�1 2 GF(qm)[x]
be its associated polynomial. Then the encoding is defined by the
mapping q:m(x) ´ c by

ðc0; c1; . . . ; cn�1Þ , qðmðxÞÞ , ðmð1Þ;mðaÞ;mða2Þ; . . . ;mðan�1ÞÞ:
ð6Þ

That is, q(m(x)) evaluates m(x) at all the non-zero elements of
GF(qm). We use RS(n,k) to denote a Reed–Solomon code, and the
corresponding error correction capability t = (n � k)/2.

In practice, we need to use the Reed–Solomon code specially
according to the limitation of the dimension of binary feature vec-
tors. For example, for binary feature vectors of dimension 255, one
designed method of concatenated code is BCH(15,7) plus
RS(17,11). But RS(17,11) does not exist indeed. We need to use
RS(127,121) at least, because RS(n,k) over GF(27) must satisfy that
n P 127. The special usage of RS(17,11) requires padding a 110-
zero block in the error correcting process. In fact, we only use a
part of the whole Reed–Solomon code, which is called RS code after
deletion.

4.3. LDPC code

LDPC codes are capacity-approaching codes, which means that
practical constructions exist that allow the noise threshold to be
set very close (or even arbitrarily close on the BEC) to the theoret-
ical maximum (the Shannon limit) for a symmetric memory-less
channel. The noise threshold defines an upper bound for the chan-
nel noise up to which the probability of lost information can be
made as small as desired. Using iterative belief propagation tech-
niques, LDPC codes can be decoded in time linear to their block
length. LDPC codes are defined by a sparse parity-check matrix.
This sparse matrix is often randomly generated, subject to the
sparsity constraints. These codes were first designed by Gallager
in 1962.

We use some specially designed Quasi Cyclic LDPC code (QC-
LDPC) (Qiao, Guan, Dong, & Xiang, 2008) to construct biometric
cryptosystems in this paper. These QC-LDPC codes are designed
Table 2
Summary of databases used in our experiments.

FX3000

Resolution 569 dpi
No. of fingers 720
No. of impression per finger 12
Sensor Biometrika FX3000 (Optical)
Image Size 400 � 560
Image Quality Good
based on circulant permutation matrices. The method chooses
the position of each non-zero sub-matrix in the bipartite graph
based on blocks. Then the circulant permutation value of each
sub-matrix is decided. It can be seen as structural construction
method of LDPC codes. Unlike BCH code and Reed–Solomon code,
LDPC code is a probability coding strategy to some extent.
LDPC(n,k) represents an LDPC code with code length n and infor-
mation bit length k. To examine the error correction capability of
the LDPC codes used in this paper, we randomly generate 10000
binary vectors of dimension 255 and randomly produce a certain
amount of bit errors. Afterwards, we use the LDPC codes to correct
these binary vectors with random errors and get the error correct-
ing success rates, which are shown in Table 1.
5. Experimental results and analysis

5.1. Databases and evaluation indicators

We select three fingerprint databases to evaluate the perfor-
mance of the proposed biometric cryptosystems, including: (1)
FX3000 database (FX3000 for short), a subset of Fingerpass
Cross-matching Database; (2) FVC2002 DB1 (DB1 for short) and
3) FVC2002 DB2 (DB2 for short). FX3000 is an in-house database
with 720 fingers and 12 samples for each finger, and it is adopted
for the convenience of training and showing the promising results.
DB1 and DB2 are both public-domain databases. Their characteris-
tics are summarized in Table 2. With regard to the partition of
training set and test set, for FX3000, the first 8 samples of each fin-
ger are used for the training purpose and the first 4 ones of DB1
and DB2 for training. Then the remaining samples of each finger
for these three databases are utilized for the testing purpose.

To evaluate the distinguishing ability of the binary feature, we
use Equal Error Rate (EER) of matching them in the term of ham-
ming distance. Moreover, like Sutcu et al. (2008), the crossover
probability p is used to assess the applicability to BSC of the binary
feature. And the histogram of numbers of 1’s in the features is em-
ployed to show the statistical independence of the bits. When it
comes to the overall biometric cryptosystem, the False Reject Rate
(FRR), when False Accept Rate (FAR) equals 0 i.e., ZeroFAR, is the
main indicator to assess its performance. In addition, the system
security strength, in terms of bit length, is employed to assess
the probability of the system being attacked successfully by brute
force.
DB1 DB2

500 dpi 569 dpi
110 110
8 8
Identix TouchView II (Optical) Biometrika FX2000 (Optical)
388 � 374 296 � 560
Medium Medium
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5.2. Analysis of the binary length-fixed feature

According to the way of selecting questions and thresholding,
we categorize the feature generation process into four types: (1)
the type of User-specific Questions and User-specific Thresholding
(UQUT way); (2) the type of User-specific Questions and Common
Thresholding (UQCT way); (3) the one of Common Questions and
User-specific Thresholding (CQUT way); (4) the one of Common
Questions and Common Thresholding (CQCT way). In the following
experiments, we will compare the EER results under these four
hypothesis and show the advantage of the proposed feature gener-
ation method.

5.2.1. Feature length issue
Due to the difference of sensors and fingerprint image quality,

the optimal binary feature lengths for different databases vary cor-
respondingly. Without loss of generality, we select the UQUT
hypothesis for determining the optimal feature length for three
databases. Fig. 5 shows the EERs of the resultant binary feature
vectors of different length in the terms of hamming distance. From
the first figure, i.e., the FX3000 database, it can be seen that the
EERs with feature length smaller than 400 almost equal. For conve-
nience, the length 255 is selected for the experimental test and
comparison. In fact, feature vectors of length equalling other num-
bers smaller than 400 are also applicable in the practical system.
For the second and third figures, the optimal feature lengths are
230 and 220 for DB1 and DB2, respectively; because the corre-
sponding EERs are lowest. In the following experiments, we will
fix the feature lengths to these optimal numbers.

5.2.2. Classification performance comparison under four hypothesis
and performance under attack scenario

In this sub section, we will select the FX3000 database to
conduct EER comparison experiments under four decoding
hypothesis: UQUT, CQUT, UQCT and CQCT, as well as the attack
experiment, which is based on the hypothesis that the user’s per-
sonal helper data is stolen by the attacker who knows our system
and method very well. Please note, as is depicted in Section 3.1,
that just 200 fingers are used in the phase of training the dimen-
sion reduction matrix. It is out of consideration for the practical
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Fig. 5. EERs of the resultant binary feature vectors of different length in the terms of
hamming distance. The first figure, i.e., the red line, denotes the results of FX3000
database. And the second and the third denote the results of DB1 and DB2,
respectively. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
application. In fact, if all the fingers of the database are used for
training the matrix, the results will be better.

Fig. 6 shows the distributions of genuine and imposter match-
ing under four hypothesis: (a) and (b) are training results and test
results respectively under UQUT, (c) and (d) are subjected to CQUT;
while (e) and (f) are under UQCT, (g) and (h) are subjected to CQCT.
The vertical dashed lines denote the thresholding point where the
value of EER is computed. And at the top of the dashed lines, we
give the EER value, and the crossover probability p which is com-
puted on the genuine matchings. The EER values can be used to
qualitatively speculate the FAR value of the constructed biometric
cryptosystem. The crossover probability can be defined as the
number of bit errors happening in the binary vectors from the
same finger to the vector length. And the value of p can be qualita-
tively used for estimating the FRR value. Given appropriate error
correction codes, lower EER and smaller p make the FAR and FRR
low, respectively. The details about the crossover probability will
be depicted in the next sub section.

In particular, from Fig. 6, we can see that both the user-specific
question set and user-specific thresholding strengthen the distin-
guishability of the binary feature at the same time. That is because
the performances under both UQCT and CQUT are much better than
CQCT. Take the test EER for instance, CQCT’s EER is 22.7%, and UQCT’s
EER and CQUT’s EER are 0.63% and 5.06%, respectively. Moreover, the
performance improvement by UQCT is larger than CQUT. This is can
be explained by that the user-specific question set plays a more
important role in augmenting the distinguishability of the obtained
binary feature than the user-specific thresholding.

Fig. 7 illustrates the EERs in the attack scenario, in which it is
assumed that the legal user’s personal question set and threshold-
ing are stolen by the attacker. From Fig. 7, we can see that the at-
tack distribution curve shifts towards the right. That is to say that
the difficulty for the attacker with the stolen helper data is similar
with the attacker without the legislated user’s helper data. Even if
the user’s helper data is lost, the performance of the system has
just a tiny decrease, which can assure the user’s privacy from leak-
ing to a large extent.

5.2.3. 1’s Number and the crossover probability
As stated in Sutcu et al. (2008), the resultant binary feature vec-

tors should have approximately equal numbers of 1s and 0s. Thus
the vectors can accord with the ECCs working on the BSC more
tightly. Here we examine the 1’s number under four decoding
hypothesis: UQUT, UQCT, CQUT, and CQCT. Fig. 8 gives the training
and test distribution of the 1’s numbers, under those four hypoth-
esis above respectively. Note that the length of the feature vector is
255, that is to say, the most ideal distribution is like that, in which
overwhelming majority of the 1’s locate near 127 or 128. It is easy
to see that the UQUT test distribution performs the best among the
four test scenarios. And both the UQCT test distribution and the
CQUT test distribution perform better than the CQCT test distribu-
tion. It can be inferred that both the user-specific question technol-
ogy and the user-specific thresholding technology helps to make
the 1’s number well-distributed, and their combination can pro-
duce the best distribution.

From Fig. 6, we can see that the crossover probability p’s of test
scenarios under UQUT, UQCT and CQUT are 0.06, 0.024 and 0.074,
respectively. It can be inferred that the user-specific is of great help
in decreasing the cross probability, which is very useful for lower-
ing the FRR of the biometric cryptosystem. Because the crossover
probability of UQCT is more smaller than that of UQUT, it can be
found that the personal thresholding technology goes against low-
ering the crossover probability. However, the smaller crossover
probability only affects the FRR. And the user-specific thresholding
technology is beneficial to obtain lower FAR. Therefore, based on
comprehensive consideration, the user-specific question technol-
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Fig. 6. EER comparison under four hypothesis. (a) and (b) are training EER and test EER, respectively, under UQUT; (c) and (d) under UQCT; (e) and (f) under CQUT; (g) and (h)
under CQCT.
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Fig. 7. EER comparison between normal scenario and attack scenario. Fig. 6(a) denotes the training case and Fig. 6(b) the test case. EER_GI denotes the EER of the genuine
distribution and the imposter distribution, while EER_GA denotes the one of the genuine distribution and the attack distribution. Due to the difference of the hamming
distance normalization and the step selection in EER computation, the EER_GI here has a little difference from the EER in Fig. 6(a) and Fig. 6(b).
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Fig. 8. 1’s number distributions of training set and test set under four different hypothesis. The horizontal axis is the 1’s number, and the vertical axis is the number of the
feature vectors of a certain length. (a) UQUT hypothesis; (b) UQCT hypothesis; (c) CQUT hypothesis; (d) CQCT hypothesis.
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Table 3
Experimental results of biometric cryptosystems by BCH code on FX3000 database.

BCH (n,k, t) (255,63,30) (255,55,31) (255,47,42) (255,45,43) (255,37,45)

FRR (%) 9.51 8.37 2.76 2.43 1.82
UQUT FAR (%) 0 0 0 0 0

FRR (%) 18.4 18.2 8.67 8.52 7.58
UQCT FAR (%) 0 0 0.01 0.01 0.02
BCH (n,k, t) (255,139,15) (255,123,19) (255,91,25) (255,55,31) (255,37,45)

FRR (%) 14.10 8.23 3.31 1.63 0.24
CQUT FAR (%) 2.624 6.87 18.98 37.12 78.64
BCH (n,k, t) (255,215,5) (255,179,10) (255,139,15) (255,123,19) (255,91,25)

FRR (%) 80.6 56.3 42.7 34.8 10.9
CQCT FAR (%) 5.72 11.6 16.9 22.8 30.5
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ogy and user-specific thresholding technology are both employed
in the biometric cryptosystem.

Based on the above experiments and analysis, it can be con-
cluded that the user-specific question technology plays a more
important role in improving the classification ability of the binary
feature, and the user-specific thresholding technology contributes
more in lowering the crossover probability of the features and
making 1’s numbers of the features well-distributed.
Table 4
Experimental results of biometric cryptosystems by concatenated code of RS code and
BCH code on FX3000 database.

BCH (n1,k1, t) (15,7,2) (15,5,3)

RS (n2,k2) (17,11) (17,11)
FRR (%) 13.0 2.94

UQUT FAR (%) 0 0
FRR (%) 22.5 9.37

UQCT FAR (%) 0 0
FRR (%) 2.96 0.317

CQUT FAR (%) 10.38 48.36
FRR (%) 43.7 31.6

CQCT FAR (%) 21.2 20.8
5.3. Performance comparison of biometric cryptosystems constructed
by different ECCs

In this section, we will conduct intensive experiments to test
the performances of the biometric cryptosystems constructed by
the methods described in Section 4, and compare them according
to the results. Several ECC coding strategies described previously
are adopted, including BCH code, concatenated codes of RS code
and BCH code, and LDPC code. In the performance test experi-
ments, FX3000 database, as well as two public-domain databases,
DB1 and DB2, are employed. The main indicator used here is
False Reject Rate (FRR) and False Accept Rate. But note that usually
the measure of FRR (when FAR = 0), i.e. ZeroFAR, is used to assess
the performance of a biometric cryptosystem. In fact, the main pur-
pose of this section is to find a relatively optimal coding scheme
which can satisfy the error correction need of the proposed binary
feature extraction method. Taking Fig. 6(b) for instance, the nor-
malized hamming distance, where the EER line locates, is around
0.38. That is to say, the optimal ECC is one EEC of code length
n = 255 and error correction capability c 	 0.38. Compounded by
the security consideration, i.e., the code rate r of the ECC should
not be too small, so it is a difficult task to find such an optimal
ECC. For those ECCs working on BSC, for example BCH code, the er-
ror correction capability depends on the length of information bits.
Therefore the resultant performances after error correcting are
fixed, if given binary feature vectors. But for those on Gaussian
channel, for example LDPC code, the error correction capability is
not only determined by the information bit length, but also by
the distribution of errors in the vector. For a certain amount of
errors, whether an LDPC can decode them successfully is a proba-
bility problem. This can be seen in Table 1.
Table 5
Experimental results of biometric cryptosystems by LDPC code on FX3000 database.

LDPC (n,k) (255,75) (255,70)

FRR (%) 4.27 3.35
UQUT FAR (%) 0 0

FRR (%) 11.4 9.72
UQCT FAR (%) 0 0
LDPC (n,k) (255,159) (255,151)

FRR (%) 1.63 2.08
CQUT FAR (%) 18.93 11.45

FRR (%) 5.68 7.36
CQCT FAR (%) 35.23 28.31
5.3.1. Results on FX3000 database
Tables 3–5 detail the FAR and FRR results of the biometric cryp-

tosystems constructed by the four kinds of ECCs mentioned before
on FX3000 database, respectively. In each table, four decoding
hypothesis, UQUT, UQCT, CQUT and CQCT, are considered and com-
pared. It is obvious that the performances under UQUT hypothesis
are the best, and the ones under UQCT the second best. With the in-
crease of the length of the message bits of ECCs, FAR decreases and
FRR increases. However, in all the cases under UQUT and most cases
under UQCT, FAR remains 0. The FRRs under CQUT and CQCT are
much larger than UQUT and UQCT. That is because the hamming
distances of imposter matches are relatively small, according to
Fig. 6(f) and Fig. 6(h). Like what we expects, the experimental re-
sults under UQUT perform best among all the cases. It is can be ex-
plained by that both the proposed user-specific question
technology and user-specific thresholding technology account for
the outstanding performance. Moreover, LDPC codes perform best
among the three coding strategies. The best result under UQUT
hypothesis is obtained by LDPC (255,45) and achieved Zero-
FAR = 0.9%. Although the image quality of FX3000 is indeed good,
it is still an excellent result, whether for traditional fingerprint rec-
ognition algorithm or biometric cryptosystems of fingerprint. This
can also be validated in the experiments conducted on DB1 and
DB2, which are two public domain databases.

5.3.2. Results on DB1 and DB2
Based on the results on FX3000 database, we only consider the

UQUT and UQCT hypothesis in the experiments conducted on DB1
(255,65) (255,55) (255,50) (255,45)

2.57 1.69 1.20 0.90
0 0 0 0
8.31 6.41 5.40 4.50
0 0 0 0
(255,143) (255,135) (255,119) (255,103)
2.94 4.09 8.23 12.9
8.47 3.62 0.44 0.23
8.06 10.5 21.28 34.21
20.54 14.23 8.26 6.27



Table 6
Experimental results of biometric cryptosystems by BCH code on DB1 and DB2.

BCH (n,k, t) (255,63,30) (255,55,31) (255,47,42) (255,45,43) (255,37,45)

FRR (%) 37.1 35.6 20.0 18.6 16.7
DB1 UQUT FAR (%) 0 0 0 0 0

FRR (%) 49.2 47.7 35.3 34.1 33.2
DB1 UQCT FAR (%) 3.32 3.67 9.44 10.19 11.59

FRR (%) 22.0 20.5 8.79 8.03 6.82
DB2 UQUT FAR (%) 0 0 0 0 0

FRR (%) 35.0 33.6 21.5 20.5 19.2
DB2 UQCT FAR (%) 0.37 0.53 3.27 3.79 4.60
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and DB2. The The optimal feature lengths for DB1 and DB2 are 230
and 220, respectively. And the corresponding EER values on DB1
and DB2 under UQUT hypothesis are 1.08% and 0.54%. And the
crossover probability values of these two databases are 0.202 and
0.156, both of which are larger than FX3000 database. It is because
that the fingerprint quality in DB1 and DB2 is worse than FX3000.
Tables 6–8 give the performances of the biometric cryptosystems
constructed by BCH code, concatenated code of RS code and BCH
code, and LDPC, respectively, on DB1 and DB2. For the convenience
of experiments and analysis, we adopt the same ECCs as in the
experiments on FX3000 database. However, the ECCs for FX3000
database are designed for the codewords of length 255, which is
longer than the optimal feature lengths of DB1 and DB2. So we
need to perform zero padding to make a 255-bit codeword both
in the encoding and decoding phases.

The results on DB1 and DB2 are accordance with the ones on
FX3000. The UQUT case performs better than the UQCT case, for
all three coding strategies. And LDPC code performs the best,
BCH code the second and the concatenated code of RS code and
BCH code the last. The best ZeroFARs obtained on DB1 and DB2
are 4.85% and 10.3%, respectively, both under UQUT hypothesis
and by LDPC code. These results are promising in the field of bio-
metric cryptosystem.
5.4. Security analysis

We will analyze the security strength of the proposed biometric
cryptosystem in this subsection. Here we assume that the attacker
Table 7
Experimental results of biometric cryptosystems by concatenated code of RS code and
BCH code on DB1 and DB2.

BCH (n1,k1, t) (15,7,2) (15,5,3)

RS (n2,k2) (17,11) (17,11)
FRR (%) 45.0 23.5

DB1 UQUT FAR (%) 0 0
FRR (%) 54.1 37.4

DB1 UQCT FAR (%) 2.752 9.358
FRR (%) 30.9 12.3

DB2 UQUT FAR (%) 0 0
FRR (%) 43.6 24.7

DB2 UQCT FAR (%) 0.05 2.10

Table 8
Experimental results of biometric cryptosystems by LDPC code on DB1 and DB2.

LDPC (n,k) (255,75) (255,70)

FRR (%) 24.5 22.3
DB1 UQUT FAR (%) 0 0

FRR (%) 39.4 38.3
DB1 UQCT FAR (%) 7.76 8.74

FRR (%) 13.0 11.7
DB2 UQUT FAR (%) 0 0

FRR (%) 25.3 23.2
DB2 UQCT FAR (%) 1.62 2.59
can obtain all the personal information stored in the template of
the legal user, i.e., the user-specific questions, the user-specific
threshold values, the XORed binary vector and the hash value of
the random codeword, as well as the dimension reduction matrix.

It is impossible for the attacker to guess the original fingerprint
minutiae information from the stored XORed template. Even if
from the original binary feature vector, such guessing task is not
feasible at all either, because the proposed feature generation pro-
cess is inreversible. Therefore, the attack through the normal input
of the system, i.e., inputting guessed minutiae template, can be
thought infeasible.

The masquerade attack which would happen inside the system
should be considered primarily. According to the flowchart shown
in Fig. 4, the most possible attack could happen in the points of b0

and c0. The attack on b0 means to find a feature vector bg, subjected
to the hamming distance between it and the template feature vec-
tor b within the error correction capability t of the ECC. Before
computing the attack strength on the point b0, we must calculate
the entropy of the binary feature. We adopt the method used in
Daugman (2003) to simulate a fractional binomial distribution
employing the imposter normalized hamming distances. Then
the mean value p and variation r2 are computed according to the
fractional distribution. The entropy N of the binary feature can be
computed by N = p(1 � p)/r2. For instance, experimentally the en-
tropy of the binary feature of length 255 from FX3000 database is
computed to be 188 bits, correspondingly the entropy of the binary
feature from DB1 and DB2 of the optimal length is 96 bits and 128
bits respectively.

For a biometric cryptosystem constructed by the proposed bin-
ary feature and ECC(n,k, t), according to the sphere-packing bound,
the strength of the brute force attack on this system can be com-
puted as:

s ¼ 2N

Pt
i¼0

N

i

� � ’ 2N

N

t

� � ; ð7Þ

where N denotes the entropy of the binary feature and t the correc-
tion capability of the ECC.

In addition, the attack on c0 means to find such a codeword that
its hash value equals the stored one h(c). Therefore the brute force
(255,65) (255,55) (255,50) (255,45)

20.6 15.0 13.6 10.3
0 0 0 0
35.3 30.8 30.6 28.3
11.0 14.1 15.3 17.0
9.24 6.52 4.85 4.39
0 0 0 0.02
22.3 17.6 15.6 15.0
3.85 5.56 7.86 9.32



Table 9
Summary of performances and security strength values of different databases equipped with different coding strategies.

FX3000 DB1 DB2

BCH Conc. codes LDPC BCH Conc.codes LDPC BCH Conc. codes LDPC

ZeroFAR (%) 2.43 2.94 0.90 18.6 23.5 10.3 8.03 12.3 4.85
Security (bits) 45 55 45 39 55 39 45 55 48

Table 10
Comparison between the proposed biometric cryptosystem and the state-of-the-art.

Modality Database type Key length (bits) Security (bits) FRR (%) FAR (%)

Hao et al. (2006) iris in-house 140 44 0.47 0
Maiorana (2010) signature public domain 29 21 6.95 6.95
Feng et al. (2010) face public domain – – 3.34 3.34
Bringer et al. (2008) fingerprint FVC2000 42 – 2.73 5.53
Nandakumar et al. (2007) fingerprint FVC02 DB2 Sample 1 and 2 16(n + 1) 33 14 0
Nagar et al. (2008) fingerprint FVC02 DB2 Sample 1 and 2 16(n + 1) 47 7 0
Li et al. (2010) fingerprint FVC02 DB2 Sample 1 and 2 32(n + 1) 53 7 0
Sutcu et al. (2008) fingerprint in-house 30 30 11 0.01
Nagar et al. (2010) fingerprint FVC02 DB2 Sample 1 and 2 – – 11 0.01
Proposed method fingerprint FVC02 DB2 50 48 4.85 0
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attack strength is 2k. Overall, the attack could select the minimum

one between 2N=
N
t

� �
and 2k. For instance, for a biometric crypto-

system equipped with LDPC(255,45), whose error correction capa-
bility can be approximately thought as 50 bit errors according to
Table 1, the strength values of attacks on b0 and c0 are 272 and
245, respectively. So the system security strength is measured by
the minimum one 245, i.e., 45 bits.

Particularly, for the concatenated codes of BCH(n1,k1, t) and
RS(n2,k2), the length of information bits is k1 � k2. The concate-
nated codes can correct for (n2 � k2)/2 block errors and up to t er-
rors in the other blocks. Thus the error correction capability is
about t(n2 + k2)/2 + n1(n2 � k2)/2, but the errors must be subjected
to some certain distribution, which is suitable to be corrected by
the concatenated codes. We can see that the experimental results
of concatenated codes are inferior to the ones of BCH codes and
LDPC codes. Although the concatenated codes have strong error
correction capability, they do not adapt to the error patterns of
the proposed binary feature generation method.
5.5. Comparison with other biometric cryptosystems

Here we first summarize the performance and security strength
of the proposed biometric cryptosystems equipped with different
coding strategies, just as detailed in Table 9. We can see from that
both the performance and security strength values achieved by
the proposed cryptosystem can satisfy the current security mecha-
nism. Table 10 compares the performance and security strength of
the proposed biometric cryptosystems with the state-of-the-art.
Our proposed biometric cryptosystem outperforms others in terms
of ZeroFAR and security strength, except Hao et al. (Hao et al., 2006).
6. Conclusion

Information security receives great challenges in modern soci-
ety and becomes more and more important. Both cryptographic
authentication method and biometrics-based identification have
their shortcomings, yet biometric cryptosystem, which combines
biometrics and cryptography, may provide another effective meth-
od to protect people’s sensitive information. In this field, fuzzy
commitment scheme is a pioneer and effectively theory in the
hamming space, therefore it calls for binary and length-fixed input.
Unfortunately, as the most wide used biometric trait, fingerprint is
not suitable to extract binary length-fixed feature. The most repre-
sentative feature, minutiae, is a kind of of set feature. And more-
over, for the minutiae as the basic feature, the alignment in the
encrypted domain is also an unavoidable and difficult task. This pa-
per proposes a new method to effectively transform the minutiae
set to the binary length-fixed feature vectors in an alignment-free
manner. The proposed user-specific question technology and user-
specific thresholding technology make the resultant binary feature
more random and applicable to the binary symmetric channel
(BSC). The experimental results verifies this point. Afterwards,
the binary feature is used to construct biometric cryptosystem
based on FCS, combining three kinds of ECCs, BCH code, concate-
nated codes of BCH code and Reed–Solomon code, and LDPC code.
It is worth note that the LDPC code we employ is specially designed
Quasi Cyclic LDPC code (QC-LDPC) based on circulant permutation
matrices. We conduct extensive experiments on three fingerprint
databases, including one in-house and two public domain. The re-
sults show that the hypothesis of UQUT outperforms the others
among all the four hypothesis, and LDPC code performs the best
among all the three kinds of ECCs. For example, in the whole
FVC2002 DB2, the proposed system achieves ZeroFAR = 4.85%,
which is a leading performance in the biometric cryptosystem
field. And security analysis indicates that the security strength of
the proposed biometric cryptosystem can satisfy the need of cur-
rent security circumstances.

Considering that LDPC code is more suitable to the longer code-
word (e.g., 1024, 2048 and so on), the future direction is to enlarge
the code length of the binary feature vectors and test the perfor-
mance combining them with LDPC codes or more effective ECCs.
Moreover, smarter attack methods which can explore the charac-
teristic of the binary feature are also in the future consideration.
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