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Abstract

The relation between semantics and syntax and where they
are represented in the neural level has been extensively de-
bated in neurosciences. Existing methods use manually de-
signed stimuli to distinguish semantic and syntactic informa-
tion in a sentence that may not generalize beyond the experi-
mental setting. This paper proposes an alternative framework
to study the brain representation of semantics and syntax.
Specifically, we embed the highly-controlled stimuli as ob-
jective functions in learning sentence representations and pro-
pose a disentangled feature representation model (DFRM) to
extract semantic and syntactic information in sentences. This
model can generate one semantic and one syntactic vector for
each sentence. Then we associate these disentangled feature
vectors with brain imaging data to explore brain representa-
tion of semantics and syntax. Results have shown that seman-
tic feature is represented more robustly than syntactic feature
across the brain including the default-mode, frontoparietal,
visual networks, etc.. The brain representations of semantics
and syntax are largely overlapped, but there are brain regions
only sensitive to one of them. For instance, several frontal and
temporal regions are specific to the semantic feature; parts of
the right superior frontal and right inferior parietal gyrus are
specific to the syntactic feature.

Knowing the meanings of individual words (semantics) and
understanding how these words can combine (syntax) to
create new, complex meanings are core components of our
language knowledge. Neuroimaging studies have evidenced
that our brains process semantic information differently
from syntactic information (Dapretto and Bookheimer 1999;
Friederici, Opitz, and Von Cramon 2000; Matchin et al.
2019). However, at present, there is still a poor understand-
ing of whether and where this distinction is represented at
the neural level, especially outside of controlled experimen-
tal settings.

Due to the complexity of language processing in the brain,
most existing neuroimaging studies employ the hypothesis-
based method and investigate the brain language representa-
tions with highly-controlled stimuli. Generally, they design
different experimental conditions and employ the subtrac-
tion method to explore the brain process for each language
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feature. For instance, subtracting neuron activations of ran-
dom word-lists from natural sentences to study syntactic
representations in the brain; subtracting neuron activations
of jabberwocky sentences (which are created by replacing
the content words including nouns, verbs, adjectives, and
adverbs in the sentences by pronounceable nonwords) from
natural sentences to study semantic representations in the
brain (Fedorenko, Nieto-Castanon, and Kanwisher 2012).
This paradigm with controlled stimuli is extensively applied
in neurosciences, making precise conclusions with care-
fully designed materials. However, it is not clear whether
fake sentences would introduce agnostic factors to brain
processing and whether this paradigm can generalize be-
yond the experimental setting (Hasson and Honey 2012;
Wehbe 2015).

This paper proposes an alternative framework to study the
brain representation of semantics and syntax. Drawing on
the ideas of controlled-stimuli methods, we propose a disen-
tangled feature representation model (DFRM) that can ex-
tract the semantic and syntactic information in a sentence,
generating one semantic and one syntactic vector for each
sentence. To disassociate semantics from syntax in a sen-
tence, we utilize word average encoder and Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber 1997)
encoder to represent semantic and syntactic information re-
spectively. Then by introducing objective functions of learn-
ing paraphrases and jabberwocky sentences, the semantic
and syntactic vectors tend to accumulate semantic and syn-
tactic knowledge respectively. To improve the quality of syn-
tactic vectors, we also utilize the word position loss to cap-
ture more syntactic information.

Based on the learned disentangled feature vectors, we ex-
plore the brain representation of semantics and syntax by as-
sociating these vectors with brain imaging data. We find that
both semantic and syntactic features are involved in several
frontal and temporal regions, with the semantic feature dis-
tributed more robustly and widely across the brain. There are
also specific brain regions only sensitive to the semantic or
syntactic features. For instance, several frontal and temporal
regions are specific to the semantic feature; parts of the right
superior frontal and right inferior parietal gyrus are specific
to the syntactic feature.



To summarize, our main conclusions include:

e We propose a novel framework to study brain language
representation by using computational models to disasso-
ciate semantics and syntax in sentences, which can easily
be extended to explore cognitive questions of brain repre-
sentations of visual, auditory, emotional features, etc.

e We propose a disentangled feature representation model
that can, to a certain extent, separate semantic and syn-
tactic information in a sentence efficiently and generate a
semantic and a syntactic vector for a sentence.

e From the computational perspective, our results provide
new evidence for the brain representations of semantics
and syntax in a sentence, hopefully helping promote re-
lated neuroscience studies.

Related Work

Language representation in the brain

The relation between semantic and syntactic represen-
tation in the brain is core to the human language un-
derstanding mechanism. Neuroimaging studies of sentence
processing reliably activate a set of brain regions in the
frontal and temporal lobes (Mazoyer et al. 1993; Pallier, De-
vauchelle, and Dehaene 2011). However, the specific role
each region plays in sentence processing, particularly con-
cerning semantics and syntax, remains unclear (Dapretto
and Bookheimer 1999; Friederici 2012; Fedorenko, Nieto-
Castanon, and Kanwisher 2012).

The advent of computational approaches has allowed us to
supplement the hypothesis-driven science with data-driven
science. A pioneering study by Mitchell et al. (2008) uses
corpus-derived word representations, in which each dimen-
sion corresponds to a specific semantic feature, to predict
the neural activations when subjects are exposed to a stim-
ulus word. Through analyzing regression weights in the
trained model, they give detailed brain representations of
each semantic feature. Recent studies have shown that such a
method can be applied to natural sentences and stories (We-
hbe et al. 2014; Anderson et al. 2016; Pereira et al. 2018;
Sun et al. 2019).

Different from these pioneering works, this paper focus
on the question of how the brain represents the semantics
and syntax in sentences. The main difficulty of such re-
search lies in the complex relationships between semantics
and syntax, thereby making it challenging to disentangle the
two features from each other. To solve this problem, we pro-
pose a disentangled feature representation model to encode
semantic and syntactic information into continuous vectors
separately. The resulting feature vectors can capture more
abundant information and better portray the relationships be-
tween sentences than traditional discrete features (Le and
Mikolov 2014; Kiros et al. 2015).

Computational sentence representation

High-quality sentence representation is fundamental for
machines to discriminate and understand sentence mean-
ings. Recently, neural-network-based sentence representa-
tion models have shown a significant advantage over tradi-
tional methods (Le and Mikolov 2014; Kiros et al. 2015;
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Hill, Cho, and Korhonen 2016; Conneau et al. 2017; Wang,
Zhang, and Zong 2017) However, most of these works fo-
cus on learning sentence representations that are effective in
downstream tasks.

To improve the quality of sentence representations or
achieve the goal of generating texts based on the controlled
syntactic structure, there has been a surge of recent work on
learning the disentangled semantics and syntax representa-
tions in various NLP applications, including sentence rep-
resentation (Chen et al. 2019b), sentiment and style trans-
fer (Zhao et al. 2018), text generation (Iyyer et al. 2018;
Chen et al. 2019a), etc.

In contrast to these works, our goal is to disentangle se-
mantic and syntactic information in sentences at the utmost,
to explore the brain semantics and syntax processing by the
learned vectors. The most similar work to our method is the
vMF-Gaussian Variational Autoencoder (VGVAE) model
proposed by Chen et al. (2019b). The VGVAE model is a
generative model with two latent variables, with one repre-
sents the semantics of the sentence and the other to represent
its syntax. This model learns the semantic variable by ex-
ploiting the loss of learning aligned paraphrastic sentences
and learns the syntactic variable using the loss of learning
word-order information. Inspired by neurosciences studies,
we introduce jabberwocky stimuli, sentences with the same
syntactic structure, to learn syntactic information. This con-
straint is introduced as the jabberwocky loss in our DFRM
method, further disentangling the semantic and syntactic in-
formation in sentences.

Probing Method

To investigate how semantic and syntactic features associ-
ated with each brain region, we propose a new framework as
illustrated in Figure 1, which includes two steps: 1) encoding
sentences’ semantic and syntactic information into continu-
ous vectors respectively, and 2) exploring the relationships
between disentangled feature vectors and brain activations.
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Figure 1: Architecture of the probing method, including (1)
building disentangled feature representation model, and (2)
conducting similarity-encoding analysis.



Disentangled feature representation model

To extract the semantic and syntactic information in sen-
tences and encode them into vectors, we propose a disentan-
gled feature representation model (DFRM) which is a gener-
ative model with neuropsychology-inspired objective func-
tions. Our model is based on the vMF-Gaussian Variational
Autoencoder (VGVAE) model (Chen et al. 2019b). The VG-
VAE model uses two latent variables to extract semantic and
syntactic information from sentences respectively. We fol-
low Chen et al. (2019b) and use the von Mises-Fisher (vMF)
distribution for the semantic variable and the Gaussian dis-
tribution for the syntactic variable.

semantic variable

A
ON

syntactic variable

sentence
variable

sentence
variable

Figure 2: Graphical model of VGVAE. Dashed lines indicate
inference model. Solid lines indicate generative model.

As shown in Figure 2, VGVAE assumes that a sentence is
generated by independent semantic and syntactic variables,
i.e., y and z. Formally, following the conditional indepen-
dence assumption in the graphical model, the joint probabil-
ity can be factorized as:

po(2,y,2) = pa(y)pe(2)pe(ly, 2)

1
= popo(2) [[po(arlarervnz),

where x; is the tth word of x and T is the sentence length.
The probability pg(x¢|z1.4—1,y,2) is given by a softmax
over a vocabulary of size V.

When applying neural variational inference, VGVAE
uses a factorized approximated posterior g4 (y|x)qq(2|z) =
q4(y, z|x) with objective function of maximizing a lower
bound of marginal log-likelihood:

q¢(z\$)
i)
% o) ]
=By 1oy 10220212 )] — K L0 (21170 (2))
zrvqg(2|@)

— KL(qg(ylz)|pa(y)),
(2

where ¢g4(y|x) and g4 (2|z) follows a vVMF distribution and
a Gaussian distribution respectively. The prior py(y) and
po(z) follows the uniform distribution vVMF(+, 0) and a stan-
dard Gaussian distribution respectively.

To further guide the two latent variables to encode se-
mantic and syntactic information separately, we employ
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paraphrase and jabberwocky losses and propose a DFRM
method. We also adopt word position loss used in Chen et
al. (2019b) to enhance syntactic information accumulation.
As shown in Figure 3, given a sentence x;, we have its para-
phrase sentence x, and jabberwocky sentence ;. We also
generate the jabberwocky sentence xo; of sentence .

LSTM encoder |- @D\‘ jabberwocky loss

jabberwocky _
sentence

mraphraie loss

paraphrase 4@* MLP encoder @
@ LSTM encoder |- @)/' jabberwocky loss

Figure 3: Architecture of our DFRM method. Solid lines on
the right denotes jabberwocky loss while red dashed lines
denote paraphrase loss.

jabberwocky
sentence

The DFRM utilizes two different encoders, a word av-
erage encoder (i.e., Multilayer Perceptron, MLP) and an
LSTM encoder, to represent semantic and syntactic infor-
mation respectively in a sentence. Specifically, the MLP en-
coder only utilizes word semantic information, simply aver-
aging all word embeddings in a sentence and then feeding
the results into one feed-forward layer. The LSTM encoder
utilizes sentence structure information, employing a recur-
rent neural network to sequentially encode each word in a
sentence. The final sentence representation by LSTM is the
averaging of all hidden embeddings. In this way, the seman-
tic variable y contains mainly word semantic information,
while the syntactic variable z contains both semantic and
syntactic information.

To exclude semantic information and accumulate syntac-
tic information for the syntactic variable z, we introduce
Jabberwocky loss (JLoss). The key assumption is that for
sentence x and its jabberwocky sentence x;, the syntactic
information is the same and only the semantic information
varies. For instance, by generating sentence x; with seman-
tic variable y; and syntactic variable z;, variable z; will
learn the syntactic information of x; and abandon the se-
mantic information of x1; which are useless to generate ;.
To impose such constraints, JLoss is defined as:

By, ~go(ylon) [—logPo(@1]y1, 21)]+
z1~qg (2|21)

]Ey2~q¢(y|x2) [—logpg(22|yz, 22)].
za~qe(z|T2)

3)

We have also tried a constraint of directly minimizing the
distance between two semantic variables of paraphrases z;
and x2 and that of two syntactic variables of jabberwocky
sentences x and x;, but gets worse performance.

To enhance the semantic varibale to learn more seman-
tic information, we adopt paraphrase loss (PLoss). Assume
that for a paraphrase pair (z1, x2), the semantic information



(which is encoded in y; and y9) is equivalent and only the
syntactic information (which is encoded in z; and z7) varies.
Therefore, a pair of variables y» and z; can be used to gen-
erate sentence x1, while the other pair of variables y; and
zo cab be used to generate sentence x» in the training phase.
Similar to JLoss, PLoss is defined as:

By o (ylos) [T108PO (212, 21)]+
z1~qg (2|T1)

By ao(ylan) [—108P0 (@2]y1, 22)],

22~y (2|T2)

“

To guide the syntactic vectors to capture more syntac-
tic information, we also employ the word position loss
(WPLoss) on both syntactic encoder and decoder as in
(Chen et al. 2019b). The WPLoss is parameterized by a
three-layer feedforward neural network f(-) with input from
the concatenation of all hidden vectors of LSTM encoder or
decoder. We then attempt to predict a one-hot-vector repre-
senting the position i. Specifically, we define WPLoss as:

Eengy (el [ D log softmax(f([ess 2]}l (5)

where the log softmax(+); indicates the probability at posi-
tion ¢ and e; is the embedding vector at input position i.

To train the DFRM, we minimize the summation of the
above PLoss, JLoss and WPLoss.

Similarity-encoding analysis

To explore the relationships between computational vectors
and brain activations, we adopt the similarity-encoding anal-
ysis (Anderson, Zinszer, and Raizada 2016) method, which
consists of three steps as follows (as shown in the second
box in Figure 1).

(1) For each sentence, we have one semantic and one syn-
tactic vector computed by the DFRM. For each feature
vector, we calculate their Pearson correlation coefficient
for each sentence pair in a set of n sentences, resulting in
a similarity matrix with a size of n x n. Finally, we get
two representational similarity matrices in which each
row vector represents semantic or syntactic similarity of
one sentence with other n-1 sentences.

(2) For each sentence representation in the brain, we can di-
vide them into m brain region vectors. Assume that if a
specific brain region encodes the same information as a
specific feature vector, then the similarity relation of the
feature vector and that of the brain-region vector is the
same. Therefore, we can predict each brain-region vec-
tors by multiplying the above semantic or syntactic sim-
ilarity matrix with corresponding brain region vectors.
Consequently, we get m predicted brain-region matrix
with a size of n x p one for each brain-region (p denotes
vector dimension).

We use the Pearson correlation coefficient to calculate
the similarities between the predicted brain-region vec-
tors and the real brain-region vectors. The higher corre-
lation score means that the semantic or syntactic infor-
mation is more encoded in the specific brain region.

3)
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Experiments
Experimental setup

We randomly sample 500,000 paraphrase pairs from
ParaNMT-50M (Wieting and Gimpel 2018) as our training
set. For jabberwocky sentences, we adjust the original defi-
nition to eliminate out-of-vocabulary words. Specifically, we
replace nouns, verbs, adjectives, and adverbs in sentences
with randomly selected words with the same POS tag in vo-
cabulary.

To evaluate the quality of the resulting semantic and
syntactic vectors, we adopt the semantic textual similar-
ity (STS) task and the syntactic similarity (SS) task. For
the STS task, we the STS benchmark dataset and a dataset
containing the concatenation of STS tasks from 2012 to
2016 which are from http://ixa2.si.ehu.es/stswiki/index.php/
STSbenchmark. This task is to evaluate the degree of se-
mantic similarity between sentence pairs in the test set. For
the SS task, we use the part-of-speech (POS) and syntactic
parser similarity datasets proposed in Chen et al. (2019b).
The SS task is to predict a parse tree for each sentence in
the test set by finding its nearest neighbor in the training set
based on the cosine similarity of the computational vectors.
Results are evaluated with F1 for syntactic parser set and
accuracy for POS set.

Models are implemented with Pytorch and parameters are
trained for 20 epochs, with each epoch consisting of multi-
ple batches optimized with Adam. Same with the baseline
VGVAE model, the dimensions of word embeddings, MLP,
and LSTM hidden layers of DFRM are all set to 100.

Baselines

We adopt random word embeddings and several commonly
used pre-trained embeddings as baselines, including GloVe
(Pennington, Socher, and Manning 2014), InferSent (Con-
neau et al. 2017), ELMo (Peters et al. 2018) and BERT (De-
vlin et al. 2019). For all models, we average the word vec-
tors or hidden vectors of each time step to form sentence
representations. We also benchmark simple word averag-
ing (WORDAVG) model and bidirectional LSTM averag-
ing (BLSTMAVG) model, both have shown superior per-
formance when trained on the paraphrases datasets (Wiet-
ing and Gimpel 2018). For a fair comparison, we use the
same training dataset to retrain the VGVAE model in which
data and code are from https://github.com/mingdachen/
disentangle-semantics-syntax.

Brain activation data

Our experiments are conducted on the dataset from Pereira
et al. (2018) which is publicly available at https://osf.io/
crwz7/. The dataset includes preprocessed functional acti-
vation data that is gathered from 5 participants (P01, M02,
MO05, M07, M15) while exposed to sentence stimuli in
two functional Magnetic Resonance Imaging (fMRI) exper-
iments. In experiment 1, participants are presented with a
set of 96 text passages, each consisting of 4 sentences de-
scribing basic information of a particular concept, spanning
a broad range of content areas from 24 broad topics, with 4
passages per topic. In experiment 2, sentence stimuli is a set



STS benchmark test Averaged STS tests Constituent Parsing POS Tagging

(% Pearson correlation 1) | (% Pearson correlation 1) (F11) (%Acc. 1)
Random 39.7 42.5 19.2 12.9
GloVe 41.0 47.9 27.3 239
InferSent 67.8 61.0 28.0 25.1
ELMo 57.7 60.3 30.4 27.8
BERT 54.9 59.0 28.6 25.8
WordAvg 71.9 64.8 25.5 21.4
LSTMAvg 71.4 64.4 25.7 21.6

sem var. syn var. sem var. syn var. sem var. | Synvar. | sem var. | Syn var.
VGVAE 65.7 322 57.6 28.4 25.1 26.7 20.9 22.6
VGVAE+PLoss 72.5 24.0 66.3 28.5 24.2 29.0 19.6 26.3
VGVAE+WPLoss 69.4 8.5 61.1 18.9 244 35.7 19.8 33.2
VGVAE+JLoss 55.2 17.0 48.3 242 23.6 32.3 18.5 323
VGVAE+PLoss+JLoss 72.5 11.4 66.0 22.9 242 34.2 19.2 344
VGVAE+PLoss+WPLoss 71.2 15.0 65.9 22.6 24.0 34.6 19.3 32.7
DFRM (VGVAE-+all) 73.0 8.5 65.9 18.4 242 40.0 19.5 38.6

Table 1: Semantic and syntactic evaluation results. Results are bold if they are highest in the STS tasks with the semantic
variable (sem var.) or highest in the SS tasks with the syntactic variable (syn var.).

Query sentence

Neighbor sentences by semantic var.

Neighbor sentences by syntactic var.

a cook is making food .

there is a cook preparing food .

a kid is playing keyboard .

the dog is chasing the geese .

one dog is chasing the other .

the cat is licking a bottle .

you can do it , too .

yes , you can do it .

you should prime it first .

it makes absolutely no difference .

i do n’t think it makes much difference .

this is a big problem .

but the economy has n’t shown signs of
sustainable growth .

the economy , nonetheless , has yet to
exhibit sustainable growth .

but the north korean nuclear crisis has
dominated his time in office .

Table 2: Examples of most similar sentences to particular query sentences calculated by the semantic or syntactic variables.

of 72 passages, each consisting of 3 or 4 sentences about a
particular concept. Different from experiment 1, the materi-
als include first-/third-person narratives. The passages span
a broad range of content areas from 24 broad topics, unre-
lated to that in experiment 1, with 3 passages per topic.

All passages are presented sentence by sentence. Each
sentence is presented for 4 seconds followed by a fixation
gap of 4 seconds. The entire set of 637 sentences is seen 3
times. The participants are asked to attentively read the sen-
tences they are presented for scanning. The details of the
experimental setup, materials and presentation scripts are
available at https://osf.io/crwz7/wiki/home/.

In the probing experiments, we use region-of-interest-
based (ROI-based) analyses in which ROI is defined by
the Gordon Parcellation (Gordon et al. 2014). As shown in
Figure 4, this parcellation consists of 333 cortical patches
(ROI0-ROI332) with different cognitive networks.

Results and Analysis
DFRM results

As shown in Table 1, among baseline pre-trained models,
InferSent shows the strongest performance overall, followed
by ELMo and BERT. The WordAvg and LSTMAvg base-
lines, which are simply trained on paraphrases, obtain strong
performance on the STS tasks. Moreover, all these models
have relative worse performance on the SS tasks.

We can also see that the baseline VGVAE model learns
different semantic and syntactic variables that are effective
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Gordon (Cer. Cortex 2016) parcellation

B

Figure 4: A diagram of the Gordon parcellation.

on the STS tasks and the SS tasks respectively. Adding
PLoss further increases the gap between semantic and syn-
tactic variables. Interestingly PLoss not only strengthens the
performance of the semantic variable on the semantic sim-
ilarity tasks but also improves the performance of the syn-
tactic variable on the syntactic similarity tasks, even though
this loss is only imposed on the semantic variable. This find-
ing suggests that by pushing the semantic variable to learn
semantic information encoded by paraphrases, the syntac-
tic variables are forced to capture complementary syntac-
tic information. Furthermore, adding WPLoss and JLoss can
both strengthen the ability of a syntactic variable to accumu-
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Figure 5: Probing results of DFRM and random baseline on fMRI experiment 1. The x(y)-coordinate denotes the ROIs(similarity
encoding score). Only statistically significant DFRM results are shown which correspond to 112 red dots and 31 blue triangles.

0.65
0.60 ¢ L
° o @ o gl 0y 4
0 L] LY (1] 0
o 00 0 %100 gyl e 0?0y 10 g @0 0 & o ooy "'0 "uou
A''e L] A
0.55 - & A ' A0 L0 o o b [ I THEPS @
s A‘u"'onmuﬁo o ® A& LU o2 % NG iy iy .n" r iy o
A o 00 0g Ml 1 0g 0
Rin L) 2 ’ﬁ"‘x”q L] 2 n L] n A .
0.50 "“l;‘du‘ Ry ARk iy ey 2wt & .,‘.a"n 3 " ," HEE SRR ""‘
jadt] n:‘ -.‘MV ‘u”‘ ".."" VT TN ARV PPN caa t NERIF e N ."\,,‘.f "‘ WA
¥ l..l ¥ i N i"\" . 1% VAR
0.454 " Random LARNL)
@ DFRM_semantic
A DFRM_syntax
0.40 T T T T

Figure 6: Probing results of DFRM and random baseline on fMRI experiment 2. The x(y)-coordinate denotes the ROIs(similarity
encoding score). Only statistically significant DFRM results are shown which correspond to 125 red dots and 48 blue triangles.

late syntactic information of sentences. Our DFRM, which
utilizes all three losses, obtains the highest quality and best
disentangles semantic and syntactic feature vectors. This ob-
servation not only indicates that WPLoss and JLoss encode
complementary syntactic information but also illustrates that
the DFRM successfully disentangle and encode semantic
and syntactic information respectively.

To qualitatively evaluate the learned semantic and syntac-
tic vectors by DFRM, we find the nearest neighbor sentences
to test set examples (2,551 sentences in total) by comput-
ing cosine similarity in terms of the semantic and syntac-
tic vectors respectively. We show five representative exam-
ples in Table 2. It is evident that neighbor sentences calcu-
lated by the semantic variable are semantically similar to the
query sentence. However, neighbor sentences calculated by
the syntactic variable are mostly semantically unrelated but
have similar sentence structures. For instance, the query sen-
tence “a cook is making food” has the same meaning with
“there is a cook preparing food” calculated by the semantic
variable, and has the same sentence structure with “a kid is
playing keyboard” calculated by the syntactic variable.

Taken together, we conclude that the proposed DFRM can
effectively disentangle the semantic and syntactic informa-
tion from sentences and encode them into semantic and syn-
tactic vectors respectively. Note that we do not claim to en-
tirely disentangle semantics and syntax in distinct represen-
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tations. Instead, our goal is to generate vectors that maxi-
mally separate the semantic and syntactic information in a
sentence.

Probing results

Using the proposed probing method, we return to the cen-
tral question originally posed. That is, whether and where
is the semantic and syntactic information encoded in dif-
ferent brain regions? Based on the semantic and syntactic
sentence vectors generated by DFRM, we use the similarity-
encoding-analysis method to show the relationships between
brain-region and semantic (or syntactic) feature.

Figures 5 and 6 show the averaging results over five sub-
jects on two fMRI experiments respectively. We only show
statistically significant results that are higher than random
(p-value < 0.05). For fMRI experiment 1, we get 112 and
31 significant ROIs (in which 18 are overlapped) for the
semantic and syntactic features respectively. For fMRI ex-
periment 2, we get 125 and 48 significant ROIs (in which
29 are overlapped) for the semantic and syntactic features
respectively. These ROIs are distributed across the whole
brain, including the default-mode, cingulo-opercular, fronto-
parietal, smhand networks, etc.. Both semantic and syn-
tactic features are effective in several frontal and tempo-
ral regions. Specifically, semantic features are most corre-
lated with angular, cingulum, fusiform, insula and precuneus



gyrus on both left and right head, plus several frontal and
temporal regions (i.e., [FGoperc.L, ORBinf.L, ORBinf.R,
IFGtriang.L, IFGtriang.R, MFG.L, MFG.R, ORBmid.L,
ORBmid.R, SFGdor.LL, SFGdor.R, SFGmed.L, ORBmid.L,
ORBmid.R, ITG.L, ITG.R, MTG.L, MTG.R, STG.R, TPO-
mid.R). Syntactic features are most correlated with parts
of the superior frontal, superior temporal, middle cingu-
lum, cuneus, inferior parietal, precentral gyrus on right head,
plus inferior frontal opercular part, middle frontal, mid-
dle temporal gyrus on left head. In addition, the follow-
ing ROIs are sensitive to the semantic feature only, includ-
ing right angular, anterior cingulum, right middle cingu-
lum, fusiform, insula, left inferior parietal, right postcen-
tral, precuneus gyrus, plus several frontal and temporal re-
gions (i.e., ORBinf.L, ORBinf.R, IFGtriang.L, IFGtriang.R,
MFG.L, ORBmid.L, ORBmid.R, ORBsup.L., ORBsup.R,
SFGmed.R, SFGdor.R, ITG.L, ITG.R, MTG.L, MTG.R,
STG.R, TPOmid.R) (which corresponds to ROI 4, 7, 13, 24,
etc.). The parts of the right superior frontal, right inferior
parietal, right cuneus, and left precentral gyrus (which cor-
responds to ROI 12, 17, 27, 40, etc.) are only sensitive to the
syntactic feature.

In general, the above results agree with previous neu-
roscience findings (Fedorenko, Nieto-Castanon, and Kan-
wisher 2012; Matchin et al. 2019), further evidencing that
linguistic representations are organized in a distributed fash-
ion throughout the language system including most parts of
frontal and temporal areas, in which semantic information is
represented more robustly than syntactic information across
the brain. Furthermore, from the computational perspective,
our results provide new evidence for the relationships be-
tween brain regions and language features by finding can-
didate brain regions only sensitive to semantic or syntactic
features.

mmm DFRM_semantic
BN DFRM_syntax

Figure 7: The averaged probing results on ROIs that have
the largest gaps between the semantic and syntactic feature
on fMRI experiment 1. The bar denotes standard deviation
over 5 subjects and the asterisk denotes significantly differ-
ent results with p < 0.05.

To show clearly the differences between semantic and
syntactic features, we minus the probing results of the se-
mantic and syntactic features across all ROIs and show the
largest 10 ROIs and smallest 10 ROIs in Figures 7 and 8.
For fMRI experiment 1, as Figure 7 clearly shows, seman-
tic features are more involved than syntactic features on left
inferior temporal, right anterior cingulum, left medial parts
of the orbital frontal, right insula, right rectus, right mid-
dle temporal, left middle occipital gyrus (i.e., ROI 128, 322,
116, 243, 287, 188). The syntactic features are more in-
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mEm DFRM_semantic
mmm DFRM_syntax

Figure 8: The averaged probing results on ROIs that have
the largest gaps between the semantic and syntactic feature
on fMRI experiment 2. The bar denotes standard deviation
over 5 subjects and the asterisk denotes significantly differ-
ent results with p < 0.05.

volved than semantic features on the right precentral gyrus
(i.e., ROI 198). For fMRI experiment 2, as shown in Fig-
ure 8, semantic features are more connected to left infe-
rior frontal operculum, right inferior temporal, left middle
frontal, right superior temporal, left inferior temporal, right
superior temporal, left middle occipital gyrus (i.e., ROI 75,
301, 153, 330, 130, 331, 88, 11) than syntactic features. The
syntactic features are more connected to left middle frontal
gyrus (i.e., ROI 147) than semantic features.

Moreover, the probing results in specific brain regions be-
tween fMRI experiments 1 and 2 are divergent. The reason is
probably because of the significant differences in language
understanding among different subjects (refer to the devia-
tion values in Figures 7 and 8). Therefore, it is necessary
for future researches on brain language processing to collect
much larger datasets which include more participants.

Conclusion and Future Work

Our principal motivation is to understand better whether and
where the semantic and syntactic information in sentences
are represented in the human brain. The difficulty with such
research lies in the intertwined relationships between differ-
ent kinds of sentence features. To solve this problem, we
propose a DFRM method that disentangles semantic and
syntactic information in sentences, generating a semantic
and a syntactic vector for each sentence. Subsequently, we
can explore the brain representation of semantics and syntax
by associating disentangled feature vectors with brain acti-
vation data. We find that the semantic feature is represented
more robustly than the syntactic feature. The brain repre-
sentations of semantics and syntax are largely overlapped in
several frontal and temporal regions, but there are also brain
regions only sensitive to one of them. This work corrobo-
rates and extends previous findings, highlighting the value
of introducing the latest NLP models in studying brain lan-
guage comprehension.

Future work can move beyond sentence-level analysis,
conducting studies of brain language processing from char-
acter to discourse level. Moreover, the proposed method can
be extended to explore other feature representations in the
brain, such as visual, auditory, emotional representations by
exploiting the objective function of classifying, or generat-
ing corresponding features.
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