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This article addresses the problem of learning compositional Chinese sentence representations, which repre-
sent the meaning of a sentence by composing the meanings of its constituent words. In contrast to English, a
Chinese word is composed of characters, which contain rich semantic information. However, this information
has not been fully exploited by existing methods. In this work, we introduce a novel, mixed character-word
architecture to improve the Chinese sentence representations by utilizing rich semantic information of inner-
word characters. We propose two novel strategies to reach this purpose. The first one is to use a mask gate on
characters, learning the relation among characters in a word. The second one is to use a max-pooling opera-
tion on words to adaptively find the optimal mixture of the atomic and compositional word representations.
Finally, the proposed architecture is applied to various sentence composition models, which achieves substan-
tial performance gains over baseline models on sentence similarity task. To further verify the generalization
ability of our model, we employ the learned sentence representations as features in sentence classification
task, question classification task, and sentence entailment task. Results have shown that the proposed mixed
character-word sentence representation models outperform both the character-based and word-based models.
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1 INTRODUCTION

To understand the meaning of a sentence is a prerequisite to solve many problems of natural
language processing, such as question answering, machine translation, and human-computer in-
teraction. Obviously, this requires a good representation of the meaning of a sentence. Recently,
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Fig. 1. An example sentence that consists of five words as “#4 7€ (take) Hi #l %= (taxi) F)(to) HT.#F (Honggiao)
Hl¥% (airport).” Most of these words are transparent, namely, the word “¥43[¢(take)” consists of the charac-
ters “¥&(take)” and “Ff¢(ride),” the word “H} L 4= (taxi)” constitutes the characters “ti(out),” “fl(rent),” and
“Z:(car),” and the word “H137(airport)” is composed of the characters “Hl(machine)” and “¥%(field).” The
word “dT#(Honggiao)” is a place name, which is non-transparent. The color depth represents (1) contribu-
tions of each character to the compositional word meaning and (2) contributions of the atomic and compo-
sitional word to the final word meaning. The deeper color means more contributions.

neural network-based sentence representation models have gained a significant amount of re-
search attention and show advantages in representing sentence meaning [2, 11, 12, 16, 17, 19, 28,
29, 32, 33, 34]. However, despite the fact that inner-word characters are important for representing
word meaning, the most existing distributed sentence representations are usually built from rep-
resentations of its constituent word sequences, ignoring rich semantic information in characters.

In this article, we situate our investigation in the context of Chinese, a language in which the
majority of words are transparent, i.e., we can understand the meaning of the word if we know the
meaning of its constituent characters. Li [18] analyzed the semantic transparency of 33,000 Chinese
double and triple-syllable words in the Contemporary Chinese Dictionary. She discovered that
93% of these words are comparably (70%) or completely (30%) transparent, which means that the
component characters play a vital role in understanding the word meaning. The high proportion
of transparent words makes it necessary to explore how to take full advantage of information on
a character level.

As illustrated in Figure 1, characters in Chinese words express two characteristics: (1) Each
character in a word contributes differently to the compositional word meaning [35] such as the
word “Hi F % (taxi).” The first two characters “H{#l(rent)” are descriptive modifiers of the last
character “%-(car),” and make the last character play the most important role in expressing word
meaning. (2) The atomic (which ignore inner characters) and compositional representations con-
tribute differently to different types of words [20]. For instance, the meaning of “Hl3%(airport),” a
low-frequency word, can be better expressed by the compositional word representation, while the
non-transparent word “U#7(Honggiao)” is better expressed by the atomic word representation.

In this article, we explore inner-word characters to learn generic sentence representations and
propose a mixed character-word architecture, which can be integrated into various sentence com-
position models from simple word averaging to a Long Short-Term Memory (LSTM) network
model. In the proposed architecture, a mask gate is employed to model the relation among char-
acters in a word, and a pooling mechanism is leveraged to model the contributions of the atomic
and compositional word embeddings to the final word representations. As Chinese characters are
much more ambiguous compared with words, we further explore two character disambiguation
methods to verify if multi-prototype character embeddings have a positive effect on learning sen-
tence representations. Furthermore, to evaluate effectiveness, we compare our models with both
character-based and word-based models and conduct experiments on applying the learned sen-
tence representations to the tasks of sentence similarity, sentence classification, question clas-
sification, and sentence entailment. Experimental results have demonstrated the superiority of
our method. In addition, as there are no publicly available Chinese sentence similarity datasets,
we build a dataset to directly test the quality of sentence representations. The data and code are
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released on Github: https:// github.com/wangshaonan/Chinese-sentence-representation with the hope
that they can serve as a baseline and promote research on Chinese sentence representation.

2 RELATED WORK

Learning meaningful sentence representations, as the first step toward the goal of language un-
derstanding, has received wide research attention. Recently, neural network-based methods have
shown an advantage in learning task-specific sentence representations [2, 4, 24, 28, 37] and generic
sentence representations [8, 13, 16, 17, 27, 32, 33, 34]. Our work falls into the second category of
models that capture sentence semantics and perform robustly across tasks. While most of existing
work focuses on English, this article concentrates on learning Chinese generic sentence represen-
tations.

Different from task-specific sentence representations, in which training and testing datasets
are drawn from the same distributions, learning generic sentence representations requires raw
or out-of-domain annotated text corpora. There have been some research efforts targeting this
goal. One approach is to train recursive or recurrent sentence encoders with a reconstructive
objective function to embed sentences into low-dimensional vectors [8, 27]. Another approach
is the ParaphraseVec (PV) model [17], which represents sentences as fixed length vectors in a
non-compositional way and trains them together with word vectors. Other methods utilize the
encoder-decoder architecture to learn sentence representations by predicting the previous and
next sentences, which are based on an extension of the distributional hypothesis (similar sentences
occur in similar contexts) [13, 16]. However, the above methods either rely on complex model
structures or huge training sets, leading to low training efficiency. To make the learning process of
sentence representations as effective as word representations, Wieting et al. [32, 33, 34] proposed
to learn generic sentence representations based on supervision from the Paraphrase Database [6].
Following their approach, we train our models based on supervision from Chinese paraphrases.
The difference is that we extracted paraphrases from a machine translation evaluation corpus,
which are high quality sentence pairs instead of noisy phrase pairs. As for textual representation
learning in Chinese, Wang and Zong [31] conduct a comparison work on learning Chinese
phrase representations. They find that the quality of word representations (enhance the word
representations with semantic lexicon or not) plays a critical role in representing phrase meaning.
Inspired by that, in this article, we explore the idea of using semantic enhanced word embeddings
to learn sentence representations. Different from their method, instead of using semantic lexicon,
we utilize inner-word characters to learn augmented word representations. Following Wang
et al. [30], we utilize both of the characteristics of Chinese word-character relationships to learn
generic Chinese sentence representations. Previously, Wang et al. [30] focused on designing
model architectures to make full use of characters’ semantic information. This article conducts
a more comprehensive study of learning Chinese sentence representations. Specifically, besides
character-word relationships, we also explore the effects of character disambiguation. Moreover,
we also compare with more baseline models including both character and word level models,
we test the learned sentence representations in downstream tasks of textual classification and
entailment, and we perform a more detailed analysis of the learned sentence representations.

Another branch of related work is learning Chinese word representations with character level
information. Chen et al. [3] propose a character-enhanced word embedding model, based on the
framework of the Continuous Bag-of-Words (CBOW) model [21], by adding the averaged character
embeddings to the word embeddings. Xu et al. [36] extend this work by using weighted character
embeddings. The weights are cosine similarity between embeddings of a word’s English translation
and its constituent characters’ English translations. However, their work calculates weights based
on a bilingual dictionary, which brings lots of mistakes because words in two languages do not
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Fig. 2. The model architecture of our mixed character-word sentence representation model." The top half
denotes the architecture of the word-based sentence representation model. The bottom half illustrates our
mixed character-word architecture, which can be incorporated into various sentence composition models to
improve sentence representations.

have a one-to-one relationship. Furthermore, they only consider the first characteristic of inner-
word characters, but ignore the contributions of the atomic and compositional word to the final
word meaning. Similar ideas of adaptively utilizing character level information have also been
investigated in English recently [7, 23, 25]. It should be noted that these studies do not focus on
learning generic sentence embeddings.

3 MODEL DESCRIPTION

The problem of learning compositional sentence representations can be formulated as Rsentence =
f(x), where fis the composition function that combines the word representations x =
(x1, %2, . .., X,) into the sentence representation Rgeptence. To make full use of inner-word char-
acters, we extend the word-based sentence representation models to include character level infor-
mation. The model architecture is shown in Figure 2.

Next, we first describe how we utilize character level information to build mixed character-
word representations, followed by the composition functions, which combine the generated word
representations into sentence representations, and then introduce the training objective of our
models.

3.1 Mixed Character-Word Representation

The final word representation is a fusion of the atomic and compositional word representations.
The atomic word representation is calculated by regarding the words as inseparable units and
projecting each word into a high-dimensional space by a look-up table, while the compositional

n this article, the mixed character-word (sentence representation) model denotes the sentence representation model that
utilizes the mixed character-word architecture.
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word representation is computed as a gated composition of character representations:

m

xicomp = Z Uij ©} Cij, (1)

j=1
where ¢;; € R*! is the j-th character representation in the i-th word and ® denotes inner product.
The mask gate v;; € R4*! controls the contribution of the j-th character in the i-th word. The
subscript d denotes dimension of the vector and m denotes the number of characters in a word.
The mask gate is performed by using a feed-forward neural network operated on the concatenation
of a character and a word, under the assumption that the contribution of a character is correlated
with both character itself and its relation with the corresponding word:

v = tanh(W [c;5;x:]), (2)

where W € R¥*?d is a trainable parameter and [cij; x] denotes the concatenation of vector c; and
vector x. The proposed mask gate is a vector instead of a single value, which introduces more
variations to character’s meaning in the composition process.

Then, the atomic and compositional word representations are mixed with a max-pooling ap-
proach:

inal _ d atomic comp
)H; = maxy_, (xl.k X ) , ®3)

where the maxis an element-wise function to capture the most important features (i.e., the highest
value in each dimension) in the two generated word representations.

3.2 Sentence Composition Model

Given word embeddings, we make a systematic comparison of five different composition models
for sentence representations as follows:

Rsentence = AVerage(X) = % 1r'l:1 Xi

Rsentence = Matrix(x) = % lr'l=1 f(mei)

Rentence = Dan(x) = f(Wd( % Z?:l xi) + b)

Rsentence = RNN(X) = f(Wxxi + Whhi—l + b)

Rsentence = LSTM(x) = 0; © f(c;), where ¢; = f; - ¢j—1 +i; - ¢; and ¢; = 0 (WyeX; + Wyehi—1)

G L

Average model, as the simplest composition model, represents sentences with averaged word
vectors that are updated during training. The Matrix and Dan models are proposed in Zanzotto
et al. [38] and Iyyer et al. [10], respectively. By using matrix transformations and nonlinear func-
tions, the two models represent sentence meaning in a more flexible way. We also include RNN
and LSTM models, which are widely used in recent years. The parameters {i;, f;,0;} € R4 denote
the input gate, the forget gate, and the output gate, respectively. c¢; € R? is the short-term memory
state to store the history information. {W,,, Wy, Wy, Wy, Wy, Wy} € R9*d are trainable parame-
ters. h;_; denotes representations in the hidden layer. Sentence representations in RNN and LSTM
models are hidden vectors of the last token.?

3.3 Objective Function

Following Wieting et al. [32], we employ the max-margin objective function to train generic sen-
tence representations by maximizing the distance between positive examples and negative exam-
ples. Specifically, our training data consists of a set X of sentence paraphrase pairs (x;, x2), while

2We have also tried to use the averaged hidden vectors or the max-pooling results of hidden vectors, and we find the hidden
vectors of the last token perform the best in the experiments.
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t; and t, are negative examples that are the most similar sentences to x; and x,, respectively in a
mini-batch during optimization. The objective function is given as follows:

min ] _ X1 X2 X1 t
Wy = max (0,1 W - W2 + WY - W)
IX] (x1,x2) €X
2
+max (0,1 = WX - W2 + W2 - ij)) + [ Waririar = Woo (4)

where A is the regularization parameter, |X| is the number of training paraphrase pairs, W,, is
the target word vector matrix, W,,, ,,,., is the initial word vector matrix, and W,, denotes the
representation of a specific sentence.

4 EXPERIMENTS
4.1 Datasets

To build the training dataset, we extract Chinese paraphrases in machine translation evaluation
corpora by combining every two sentences in the four equivalent Chinese translations. Specifically,
we extract Chinese paraphrases in NIST2003,> which contains 1100 English sentences with four
Chinese translations, and CWMT2015,* which contains 1859 English sentences with four Chinese
translations. Moreover, we select aligned sub-sentence pairs between paraphrases to enlarge the
training corpus. Specifically, we first segment the sentences into sub-sentences according to punc-
tuations of comma, semicolon, colon, question mark, ellipses, and periods (, ; : ? ... .). Then, we
pair all sub-sentences between a paraphrase and select sub-sentence pairs (s, s;), which satisfy the
following two constraints: (1) the number of overlapping words of sub-sentence s; and s, should
meet the condition: 0.9 > len(overlap(s;, s2))/min(len(s;),len(sy)) >= 0.2, where len(s) denotes
the number of words in sentence s; (2) the relative length of a sub-sentence should meet the condi-
tion: max(len(s;), len(sz))/min(len(s;), len(sz)) <= 2. Finally, we get 30,846 paraphrases (18,187
paraphrases from NIST including 11,413 sub-sentence pairs, and 12,659 paraphrases from CWMT
which include 7912 sub-sentence pairs). An example of the training dataset (one paraphrase and
its sub-sentence pairs) is as follows:’

— H % (day shares) 145 (price) J&] —.(Tuesday) Y17 (close) “F-*F-(mediocre), K"} (because) it
Z (lack) 1:Anf(any) [E N (domestic) 1E [ (positive) i & (news), B ifi(political) A1/t (worry)
fifi(make) A (people) i[> Z(feel) T H(heavy) o ||| H A<(Japan) % i (stock price) 7E(on)
J& —(Tuesday) Y& #%(close) #5-F(flat), J&(-) [H K(because) Xf(-) B Ja(political situation)
B () ML S (worry) i (suppressed) T (-) 1 26 (mood), ¥ (and) 1% £ (no) 1L fil(any) FX
e (positive) 19(-) [E A (domestic) 14 & (news) o

— H % (day shares) /M #% (price) J&] —(Tuesday) Ui (close) *F-*F-(mediocre) ||| H 4% (Japan) /i
#r (stock price) £ (on) J&] —(Tuesday) Wk (close) 7 F(flat)

—[H A (because) Hlt = (lack) 1Ll (any) [ N (domestic) 1F [fii (positive) 71 & (news) ||| X (and)
BEA (no) 1147 (any) F (positive) 4(-) [E N (domestic) {1 Bl (news)

The testing and development datasets are sentence pairs collocated with human similarity
ratings. We choose candidate sentences from the People’s Daily and Baidu encyclopedia corpora.

Shttps://catalog.ldc.upenn.edu/LDC2006T04.

4http://www.ai-ia.ac.cn/cwmt2015/index html.

°In this article, we segment all Chinese sentences into words with Urheen: http://www.openpr.org.cn/index.php/zh/
NLP-Toolkit-For-Natural-Language-Processing/68-Urheen- A- Chinese/English-Lexical- Analysis-Toolkit/View-details.
html.
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Table 1. Inter-Annotator Agreement on Different Datasets
Using Spearman Correlations

Mean Max Min SD
Renmin 0.8844 0.9271 0.8044 0.0395
Baidu 0.8783 0.9184 0.8113 0.0300
Total 0.8786 0.9160 0.8088 0.0318

The mean, max, min and SD represents average value, maximum value,
minimum value and standard deviation, respectively. The higher values
mean more consistency among the participants.

To assure sentence pairs to accommodate full variations in semantic similarity, we pair sentences
in one paragraph, select high similarity sentence pairs by calculating cosine similarity,’ and delete
unrelated sentences manually. Then we randomly pair the left sentences to construct sentence
pairs with low similarity. Finally, we get 1360 sentence pairs (1025 sentence pairs from the Baidu
encyclopedia corpora and 335 sentence pairs from the People’s Daily). To collect human similar-
ity ratings for sentence pairs, we use an online questionnaire’ and follow the gold standard® to
guide the rating process of participants. The subjects are paid 7 cents for rating each sentence pair
within a range of 0~5 score. In total, we obtain 104 valid questionnaires and every sentence pair is
evaluated by an average of eight persons. We use the average subjects’ ratings for one paraphrase
as its final similarity score, and the higher score means that the two sentences have more simi-
lar meaning. We then randomly partition the datasets into test and development splits in 9:1. An
example of the testing and development datasets is as follows:

— 41 (foreign exchange) % P J&j(administration) it & (reply) H' {%(CITIC) 4R 17 (bank)
% (operating) #ML (foreign exchange) I 45 (business) i [Fl(range) ||| 7£(in) [F]—(same)
Jii J¥(order) % iE(legal) #k 7&K A(heir) H(-), A(do not) 753(-) k% P (discriminate)
{H% (women) ||| 0.125

— 2 B (purple potato) ¥t i¥H(wash) 2 [ (peeled) V] i¥i(cut into) F(pieces) ||| 45 & (purple
potato) {5t (spread out), ¥l (cut into) 1F )5 (square) . ||| 2.75

— LN 1 (vendors) iR (begin) X (-) SR 5 (buyers) $#2 {1t (offer) 7]N(small) it & (quantities)
B(of) 7= fif(products) ||| W B (vendors) Xf(-) K W R (buyers) #2 fi(offer) /IM(small)
it (quantities) #(of) /™ fif(products) ||| 4.125

To check the quality of the data we have collected, we follow Mitchell and Lapata [22] and
examine how well participants agreed in their similarity judgments, which is called intersubject
agreement. The indicator of intersubject agreement is an upper bound for the task and allows
us to evaluate how well our model performs compared with humans. To calculate intersubject
agreement, we use the leave-one-out cross-validation method. For each subject group, we divided
the set of the subjects’ responses with size m into a set of size m-1 (and average them) and a set
of size one. We then correlated the ratings of the former set with the ratings of the latter using
Spearman’s correlation coefficient. This was repeated m times and we get the results in Table 1.

In Table 1, “Mean,” “Max,” “Min,” and “SD” represent average value, maximum value, minimum
value, and standard deviation, respectively. The higher value of “Mean” and lower value of “SD”
denote more consistency among the participants. As shown by the “Mean” (column 2) and “SD”

%Here, we use averaged word embeddings as the sentence representation.
Thttps://wj.qq.com/.
8http://alt.qcri.org/semeval2015/task2/index.php?id=semantictextual-similarity-for-english.
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(column 5) results, the consistency is high among the questionnaire participants’ responses—even
though the participants thought that the sentence similarity evaluation task was difficult.

4.2 Baselines

We construct four groups of models (G1~G4), which serve as baselines to test the proposed mixed
character-word models (G5). Group G1 includes six baseline models, which have shown impres-
sive performance in English. The first two are averaged word vectors (Average-word) and averaged
character vectors (Average-character) without training. Followed by two character-based models
(Char-CNN and Charagram), and two word-based models (PV-DM and FastSent). A short descrip-
tion of these models is as follows:

—The Character convolutional neural network model (Char-CNN) [14] is one kind of CNN
model with character n-gram filters, which has been widely used to embed sentences or
documents for several NLP tasks.

—The Charagram model [33] represents words or sentences using character n-gram count
vectors, which are embeded into a low-dimensional space by nonlinear transformation.

—The distributed memory model of paragraph vectors (PV-DM) [17] is an extension of the
Skip-gram word representation model [21]. The sentences in the PV-DM model are mapped
to a unique vector and averaged (or concatenated) to the word vectors in the sentence to
predict the next word in a context.

— As a simplification of the SkipThought model [16], the FastSent model [8] replaces the LSTM
sentence representation module with the simple additive model and exploits the same ob-
jective function as SkipThought, which is to predict the previous and the next sentences.

In group G2, G3, and G4, each group of models applies a different word embedding method
with five sentence composition models in Section 3.2. The character-based model (G2) and word-
based model (G3) utilize basic units of characters and words, respectively, in which the word-based
models are explored in Wieting et al. [32] for English. The averaged character-word models (G4)
use the summation of a word vector and an averaged character vector as the final word vector,
which is the method used in Chen et al. [3].

4.3 Experimental Settings

In all models, the word and character embeddings are initialized with 300-dimension vectors
trained by the Skip-gram model [21]. Specifically, we use a corpus’ which contains 3 billion Chi-
nese words, and we use this corpus to construct another corpus by segmenting it at the character
level. Finally, we use a concatenation of the two corpora to train word and character embeddings.
This simple method enables us to easily train the distributed representations of words and char-
acters simultaneously. All models are implemented with the work of Theano [1] and Lasagne [5],
and optimized using the work of Adam [15]. In this article, we run all experiments five times and
report the mean values. We use a mini-batch of 25 and tune the initial learning rate over {0.001,
0.005, 0.0001, 0.0005}. For the Dan and the Matrix models, we tune the over-activation function
(tanh or linear or rectified linear unit) and the number of layers (1 or 2). The hyper-parameters are
selected by testing different parameter values and evaluating their effects on the development set.

9The corpus is datasets crawled from Xinhua News: http://www.xinhuanet.com/ and Baidu encyclopedia: https://baike.
baidu.com/.
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For the other baseline models, we tuned the parameters as follows:

— Char-CNN: We use the set of filters from Kim et al. [14], which are filters of width [1; 2; 3;
4; 5; 6] of size [25; 50; 75; 100; 125; 150] for a total of 525 filters. We tune over the activation
functions in the convolution (tanh or linear or rectified linear unit) and the output layer
(tanh or linear or rectified linear unit).

—Charagram model: We tune over the number of n-grams (3,4,5) and the activation function
in the output layer (tanh or linear or rectified linear unit).

—PV-DM: We use the implementation in gensim tool'’ with the same parameters used in the
Skip-gram model. The training data is one-tenth of the corpora as in the Skip-gram model
to prevent memory overflow.

—Fastsent: We use the training data from the People’s Daily corpus!? (22M words), which are
contextually coherent paragraphs, and train the model with the default parameters.

4.4 Results on Sentence Similarity

We use the Pearson’s correlation coefficient to examine relationships between the averaged human
ratings and the predicted cosine similarity scores of all models. Moreover, the Wilcoxon’s test
shows that significant difference (p < 0.01) exists between our models (G5) with baseline models
(G1, G2, G3, G4).

Comparing different sentence composition functions in Table 2, we find that the two simple
composition functions, i.e., Matrix and Dan, achieve the best performance in all groups of mod-
els. The two recurrent neural network models (i.e., RNN and LSTM), which have more complex
sentence structures, perform even worse than the simplest average model. This indicates that sim-
pler composition functions are more suitable for learning generic sentence representations in the
condition of the small amount of paraphrase training data used in this article. We leave this to
the future work to explore other kinds of training data to effectively train complex composition
functions like RNN and LSTM.

Comparing the best performing sentence composition function (which is Dan) in different
groups in Table 2, we can see that the proposed mixed character-word models (G5), which uti-
lize gate and pooling methods, have significantly improved the performance over baseline models
in group G2, G3, and G4. Specifically, using mask gate alone and max pooling alone yield an im-
provement of 1.05 points and 0.83 points, respectively, and using both strategies improves the
averaged character-word models by 1.52 points. This result indicates that it is important to find
the appropriate way to fuse character and word-level information. Moreover, as shown in Table 2,
models exploiting both word and character level information (G4, G5) perform better than the
pure word-based models (G3), which proves the usefulness of characters in representing sentence
meaning.

Another observation is that the majority of the character-based models (G2) perform better
than the word-based models (G3). This is surprising because the word is the basic semantic unit of
Chinese language. There are two possible explanations for this phenomenon. One is word segmen-
tation error, which is still an unsolved problem. The other is insufficient training of rare words. To
test this, we increase the training dataset with large short paraphrase pairs constructed in Wang
and Zong [31] and retrain the word-based models. In the extended corpus, words that appear less
than five times drop from 13.5% to 10%. However, we only find a 1% improvement in the average

Ohttps://radimrehurek.com/gensim/models/doc2vec.html.
Uhttp://www.lancaster.ac.uk/fass/projects/corpus/pdcorpus/pdcorpus.htm.
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Table 2. Correlation Coefficients of Model Predictions with Subject Similarity
Ratings on Chinese Sentence Similarity Task

Group Model Renmin | Baidu | Total
Gl: Average-character | 0.6737 | 0.6957 | 0.6976
Baselines Average-word 0.7745 | 0.7657 | 0.7518
Char-CNN [14] 0.8086 | 0.8077 | 0.8095
Charagram [33] 0.8359 | 0.8393 | 0.8382
PV-DM [17] 0.7541 0.7552 | 0.7561
FastSent [8] 0.7423 0.7359 | 0.7369
G2: Average 0.8631 0.8451 | 0.8484
Character-based Matrix 0.8612 | 0.8464 | 0.8496
Dan 0.8638 0.8483 | 0.8507
RNN 0.8167 | 0.8338 | 0.8286
LSTM 0.7762 | 0.7714 | 0.7726
G3: Average 0.8271 | 0.8192 | 0.8199
Word-based Matrix 0.8419 | 0.8365 | 0.8382
Dan 0.8419 | 0.8378 | 0.8385
RNN 0.7995 | 0.8176 | 0.8121
LSTM 0.7922 | 0.7801 | 0.7834
G4: Average 0.8320 0.8238 | 0.8245
Averaged Matrix 0.8498 | 0.8410 | 0.8427
Character-Word Dan 0.8502 | 0.8379 | 0.8407
RNN 0.8105 0.8233 | 0.8185
LSTM 0.7949 | 0.7875 | 0.7895
G5: Average 0.8467 | 0.8477 | 0.8471
Mixed Matrix 0.8462 | 0.8486 | 0.8517
Character-Word Dan 0.8639 | 0.8491 | 0.8521
RNN 0.8416 | 0.8425 | 0.8408
LSTM 0.7829 | 0.8062 | 0.8000

The bold data refers to the best result in each group of models.

model and a slight performance drop on the others. The above results indicate that Chinese char-
acters have great potential in learning generic sentence representations.

4.5 Effects of Character Disambiguation

Compared with words, Chinese characters are much more ambiguous. Previous work has proven
that multi-prototype character embeddings are useful for learning better word representations.
However, it is still unknown whether multi-prototype character strategy is effective in learning
Chinese sentence representations. In this article, we propose two character disambiguation meth-
ods to address this issue:

1. Cluster-based method
Cluster-based word disambiguation methods cluster the textual context of a word to dis-
tinguish different word senses [9, 26]. Similarly, to distinguish different senses of a charac-
ter, we cluster the embeddings of all words in which it appears. For instance, we have
a character “¥(sound, tone,...)” and it appears in words “iF sk(music),” “/l & (bosom
friend),” “F] ¥ (siyin),” and so on. By utilizing the k-means method, we can summarize these
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Fig. 3. Performance of the averaged character-word (G3) models on sentence similarity tasks (with total
datasets) with single characters, cluster-based, and translation-based multi-prototype characters.

words into k clusters,'? resulting in different character senses as {“% 1”: “¥ R(music),”
“H W (tone)”, ...}, {“&-2": “H1¥ (bosom friend)”, ...}, and {“&-3": “H] & (siyin)”, ...}.
2. Translation-based method

Following the character disambiguation method of Xu et al. [36], we first obtain translations
of Chinese words and characters with a bilingual dictionary.!®> For example, this Chinese
word “# JK” has two characters, which are “#” and “/Kk”. Their English translations are
“music”, “sound; news; tidings tone; a surname; ...,” and “music; a surname; pleasure;
cheerful; laugh; ...,” respectively. Then, we merge similar meanings of these English trans-
lations for Chinese characters to limit the number of word senses. As in the above character
“/R,” its translation words “pleasure” and “cheerful” are merged because their word em-
beddings have high cosine similarity. Finally, we disambiguate the sense of a character by
computing cosine similarity between embeddings of their translation words. For instance,
character “#” has multiple senses, and we give it the sense “sound” when used in the word
“%Hx(mumc)” because the embeddings of “sound” and “music” have high cosine similarity.

To inspect if multi-prototype character embeddings improve the quality of sentence representa-
tions, we employ the above cluster-based and translation-based methods to disambiguate charac-
ters in the training and testing datasets. Here, we take the simple averaged character-word models
as an example for illustration. Specifically, we replace all characters in the training and testing
datasets with the disambiguated characters and train the model with the same approach described
in Section 4.4.

As shown in Figure 3, the two character disambiguation methods have mostly negative effects
on sentence similarity task. The only exception is the cluster-based multi-prototype characters
in the simple average composition model. In the experiment, we have tried various experimental
settings, such as using various similarity calculation methods like edit distance and heuristic rules,
restricting the number of words in which characters are disambiguated (specifically, we choose
words which occur more than 10 times as candidates and only disambiguate characters in those
words). However, no improvement over a single prototype character is found. Moreover, we have
also tuned the number of character senses. Results show that a smaller number of senses for a
character leads to better performance.

2Follow the suggestions in [3], we set k as 3 in the experiments.
13We use ICIBA as an English-Chinese translation tool for free. APIL http://www.iciba.com/.
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There are several reasons for this phenomenon. One is that the quality of disambiguated charac-
ter representations is not good enough, which we test with character “ifi(road, Taoism, talk, etc.)”
as an example. Specifically, for each sense of the character, we calculate the three most similar
words with cosine similarity.14 As for the cluster-based method, we get “B (tree), 1t 5 (flower bed),
M (trees)” for “JE-1;" “FX i (pindao), f1:(official), %%(chennai)” for “if-2;” and “Htifi (reported),
Mk (post), %4 (national newspaper)” for “iE-3.” As for the translation-based method, we get
“(network), % (tube), Zk(wire)” for “ii-1;” “#(road), £ 1f (village road), ii }(road)” for “ifi-2;
and “Vi(say), A& (media), fit ifi(reported)}” for “i&-3.” Due to differences in methodology, the
cluster-based method disambiguates characters according to word usage, while the translation-
based method disambiguates characters according to word meaning. From the example, we can
see that both methods can generate reasonable multi-prototype characters, but meanwhile, in-
troduce some errors. The second reason is that although single character representations contain
multiple character senses, they can be disambiguated when combined with specific word repre-
sentations. This is reasonable because a character usually has one sense in a specific word. The
last reason is that the training data of paraphrase pairs are not enough. We leave this to the future
work to explore other kinds of training data, such as aligned articles for the same topic, which can
be easily constructed in a large quantity.

4.6 Using Learned Representations as Features

To verify the generalization ability of the learned sentence representations, we perform sentence
classification and question classification tasks, which classify sentences and questions, respec-
tively, according to the predefined categories. In addition, we also test the learned sentence rep-
resentations on the sentence entailment task that recognize the entailment relation (entailment,
contradiction, and neutral) between two sentences.

For sentence classification, we build a dataset based on the Fudan document classification
dataset.!® The Fudan corpus contains 20 categories of documents, including art, literature, sports,
and so on, in which we extract the title or the first sentence of the abstract.!® Then, we delete
the categories with less than 20 sentences and the sentences with a length of less than 5 words.
Finally, we obtain 2142 sentences in nine categories. For question classification, we use the Fudan
question classification dataset,'” which contains 13 types of questions, including description, fact,
evaluation, and so on. To avoid imbalance, we delete the categories with less than 30 questions,
and finally, obtain a total of 17252 questions in 10 categories. For both datasets, we split training,
development, and testing datasets as 7:1:2.

For both tasks, we use the multi-layer perceptron classifier with cross-entropy objective func-
tion. Let h, be the learned sentence representations, y be the target distribution of sentence cat-
egory, and ¢ be the predicted distribution. The goal of training is to minimize the cross-entropy
loss between y and 7 for all sentences:

hg = O'(M/shc)a
1 = softmax(W,h;),

Loss = —Z nyloggf + 21161, 5
ij

14The three senses of character “i&i” are denoted as “If-1”, “Ii-2”, and “J&-3”.
Bhttp://www.datatang.com/data/44139.

19We segment sentences based on Chinese punctuations: full stop, question mark, exclamatory mark.
7http://www.nlpir.org/?action-viewnews-itemid-106.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 14. Publication date: January 2018.


http://www.datatang.com/data/44139
http://www.nlpir.org/?action-viewnews-itemid-106

Empirical Exploring Word-Character Relationship for Chinese Sentence Representation ~ 14:13

Table 3. Evaluation Accuracies (%) of Models without or with Learned (G2, G3, G4, G5)
Sentence Representations on Sentence Classification Dataset

Average | Matrix | DAN | RNN | LSTM
Standard Settings 75.80 76.48 77.63 | 7443 | 77.40
Character-based (G2) 77.17 75.57 | 75.80 | 76.71 | 74.55
Word-based (G3) 78.77 77.85 76.26 | 78.31 75.37
Averaged Character-Word (G4) 79.00 76.94 | 77.63 | 77.52 | 76.31
Mixed Character-Word (G5) 79.22 78.77 | 78.31 | 79.00 | 74.43

The bold data refers to best results within the same sentence composition model.

where iis the index of the sentence, jis the index of the sentence category, o is the logistic sigmoid
function, W, € R4 and W, € R¥*k are trainable parameters, d is dimension of the vector, k is the
size of the sentence category, and A is the L, regularization term operated on the parameter set 6.

As for the sentence entailment task, we build a Chinese sentence entailment dataset based on
the English sentence entailment dataset (Sentence Involving Compositional Knowledge (SICK)'®
in SemEval 2014) since no public Chinese dataset is available. Specifically, we use a neural machine
translation tool!? to translate the English SICK dataset into Chinese and modify the obvious mis-
takes manually. In this way, we get a Chinese sentence entailment dataset that consists of 9,927
sentence pairs in a 4,500/500/4,927 train/dev/test split.

To classify the entailment relation between two sentences, we first produce sentence repre-
sentations h; and h, for each sentence pair. Next, we use their element-wise multiplication and
subtraction to capture the similarity and difference between their representations, which are then
transformed by the multi-layer perceptron. Finally, we use a cross-entropy objective function to
train the model:

Wy = h; © hy,
Wy =1h; = h|,
hs = o (Wxhyx + Wi hy),
i = softmax(W,h;),

Loss = —ZZy{log}}{ + AllOll,
i

where Wy € R4 W, e R¥k and W, € Rk and are trainable parameters. The © denotes
element-wise multiplication.

For comparison, we also investigate how these models perform in the standard setting where
sentence representations are the averaged word embeddings (without further training). In the ex-
periments, we use a mini-batch of 25, tune the initial learning rate over {0.001, 0.005, 0.0001, 0.0005}
with optimization method of Adam, and tune the L, regularization term over {le-03, 1e-04, 1e-05,
1e-06}. The performance is evaluated by predicting accuracy on the testing set (shown in Table 3,
Table 4, and Table 5).

The same as the results in sentence similarity experiments, Table 5 shows that in the sentence
entailment task, the character-based models achieve better results than word-based models when
incorporated with most sentence composition models. On the contrary, as shown in Table 3 and
Table 4, character-based models achieve a much worse performance than word-based models in
the sentence and question classification task. One possible reason is that the sentence similarity

Bhttp://clic.cimec.unitn.it/composes/sick html.
Phttps://www.microsoft.com/en-us/translator/translatorapi.aspx.
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Table 4. Evaluation Accuracies (%) of Models without or with Learned (G2, G3, G4, G5)
Sentence Representations on Question Classification Dataset

Average | Matrix | DAN RNN LSTM
Standard Settings 0.6170 0.6246 | 0.6269 | 0.6196 | 0.6741
Character-based (G2) 0.6185 0.6153 | 0.6142 | 0.6261 | 0.5693
Word-based (G3) 0.6336 0.6231 | 0.6175 | 0.6397 | 0.6232
Averaged Character-Word (G4) | 0.6449 0.6336 | 0.6332 | 0.6408 | 0.6443
Mixed Character-Word (G5) 0.6453 | 0.6369 | 0.6409 | 0.6281 | 0.6540

The bold data refers to best results within the same sentence composition model.

Table 5. Evaluation Accuracies (%) of Models without or with Learned (G2, G3, G4, G5)
Sentence Representations on Sentence Entailment Dataset

Average | Matrix | DAN RNN LSTM
Standard Settings 0.7061 0.7700 | 0.7651 | 0.7310 | 0.7635
Character-based (G2) 0.7454 0.7753 | 0.7810 | 0.7521 | 0.7691
Word-based (G3) 0.7266 0.7727 | 0.7735 | 0.7461 0.7767
Averaged Character-Word (G4) | 0.7765 0.7757 | 0.7936 | 0.7603 | 0.7899
Mixed Character-Word (G5) 0.7800 | 0.7814 | 0.8049 | 0.7733 | 0.7875

The bold data refers to best results within the same sentence composition model.

Table 6. Correlation Coefficients of Model Predictions
with Subject Similarity Ratings on Chinese Word
Similarity Task, Where C, W, and G Represent
Character, Word, and Mask Gate, Respectively

Character Word C&W C&W&G
Average 0.4903 0.4311 0.4584 0.5245

Dan 0.4672 0.4470  0.5410 0.5716
Matrix 0.4784 0.4496  0.5458 0.5694
RNN 0.4646 0.4562  0.5656 0.5674
LSTM 0.4669 0.4535 0.5674  0.5734

task depends more on overlap ratio of words or characters in two sentences, whereas the sentence
classification task relies more on topical information where words take superiority. In general, the
majority of models in G2, G3, G4, and G5 outperform models in standard settings, which indicate
the effectiveness of the learned sentence representations used as features. Moreover, we can also
see that models in G5 perform better than models in G4 and they both outperform other models,
which indicate the importance of combining word level and character level information and the
superiority of the proposed character-word mixing strategy.

5 ANALYSIS

In this section, we analyze the effects of the two key strategies (i.e., mask gate and max pooling)
of the proposed mixed character-word model in learning sentence representations. The mask gate
assigns different weights to characters in a word, hopefully leading to better word representa-
tions. To intuitively show effects of the mask gate, we check characters whose 12-norm increases
after applying the mask gate approach. We find that characters like “JF(crime)” in “JE{R (guilty),”
“f%(tiger)” in “IEIM JE (jaguar),” and “/I\(melon)” in “#& Ji\(cucumber)” achieve more weights. The
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Fig. 4. lllustration of the relationship between word frequency and contribution ratio of the compositional
word vectors to the final word vector.

above results illustrate that the mask gate approach successfully models the first characteristic
of inner-word characters (i.e., assigning more weights to key characters). To quantitatively dis-
play the results, we extract the word representations calculated by the five sentence composition
models in four different groups and evaluate their quality on WordSim-297 dataset®® using the
Pearson correlation method. As shown in Table 5, the mask gate approach significantly improves
the quality of word representations.

The max-pooling approach is supposed to model contributions of the atomic and the composi-
tional word vectors to the final word vector. To find out what the max-pooling method has learned,
we use contribution weights by calculating cosine similarity between the final word representation
with the atomic and compositional word representations. As shown in Figure 4, the results show
interesting relationships with word frequency.?! For high-frequency words, the contribution of
compositional word representations is more dominant. While for low frequency words, both high
and low contribution ratios of compositional word representations can be found. The high ratio of
compositional word representations, which means that they are more important in representing
meanings of the word, is more reasonable because generally poor atomic word representations
are learned for low-frequency words. When looking into words with the lowest ratio, we find a
large portion of English abbreviations like NBA, BBC, GDP, and so on, and a portion of metaphor-
ical words, like “FE#ft(retire, hanging boots)” and “il 7 (wrangle, pull skin).” Both kinds of these
words are non-transparent, which illustrates that the max-pooling method can successfully model
the second characteristic of inner-word characters and encode word transparency to some extent.

Another interesting observation is that name entities, which are non-transparent words, appear
in both high- and low-contribution ratios of compositional word representations. This indicates
that some characters in name entities are indicative, which is helpful to learn better word rep-
resentations. For instance, the character “Z%(Li)” in the word “Z% # %%(Li jianjun)” is a common
Chinese family name which indicates that the word “Z=#%(Li jianjun)” is a name entity.

LDhttps://github.com/Leonard-Xu/CWE/tree/master/data.
21We use total training and testing datasets to calculate word frequency.
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6 CONCLUSIONS AND FUTURE WORK

In this article, we introduce a novel mixed character-word architecture to improve generic Chinese
sentence representations by exploiting the internal character of words. Extensive experiments and
analyses have indicated that our models can encode word transparency and learn different seman-
tic contributions across characters. We have also created a dataset to evaluate composition models
of Chinese sentences, which could advance the research for related fields. We summarize our main
findings as follows:

—Modeling relations between characters and words with mask gate significantly improve the
quality of word representations.

—Using max-pooling on compositional and atomic word representations can encode word
transparency and help generate better sentence representations.

—In the condition of a relatively small amount of paraphrastic training data, using multi-
prototype character embeddings has a negative effect on sentence similarity tasks.

—Using the generic sentence representations as features can improve performance of down-
stream tasks like sentence classification and question classification.

Building representations for sentences from their constituent words is complex, because dif-
ferent types of words have different effects in representing the meaning of a sentence and there
exist multiple relations between words in a sentence. In the further work, we plan to conduct
a finer-grained analysis on effects of different types of words (e.g., semantic words and syntac-
tic words) and relations between words in a sentence. By exploiting methods like reinforcement
learning, we hope to develop a sentence representation model that can assign different representa-
tions to different type of words and automatically learn the semantic relations between words in a
sentence.
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