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Abstract

Multimodal models have been proven to outperform text-
based models on learning semantic word representations. Al-
most all previous multimodal models typically treat the rep-
resentations from different modalities equally. However, it
is obvious that information from different modalities con-
tributes differently to the meaning of words. This motivates
us to build a multimodal model that can dynamically fuse the
semantic representations from different modalities according
to different types of words. To that end, we propose three
novel dynamic fusion methods to assign importance weights
to each modality, in which weights are learned under the weak
supervision of word association pairs. The extensive exper-
iments have demonstrated that the proposed methods out-
perform strong unimodal baselines and state-of-the-art multi-
modal models.

Introduction

Representing the meaning of a word is a prerequisite to solve
many natural language problems, such as calculating seman-
tic relations between different words, finding the most rel-
evant images of a word and so on. In recent years, com-
putational semantic models that represent word meanings
from patterns of word co-occurrence in corpora have re-
ceived a lot of research interests (Turney and Pantel 2010;
Mikolov et al. 2013; Clark 2015; Wang, Zhang, and Zong
2017a). However, compared to human semantic represen-
tation, these purely text-based models are severely impov-
erished for lacking perceptual information attached to the
physical world. This observation has led to the development
of multimodal word representation models that utilize both
linguistic (e.g., text) and perceptual information (e.g., im-
ages, audios). Such models can learn better semantic word
representations than text-based models, as evidenced by a
range of evaluations (Andrews, Vigliocco, and Vinson 2009;
Bruni, Tran, and Baroni 2014).

Learning good multimodal word representations relies not
only on the quality of the word representations from lin-
guistic and perceptual inputs, but also the ability to produc-
tively combine these representations. However, the existing
multimodal models generally treat the word representations
from different modalities equally. This is inconsistent with
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the fact that meaning of concrete words like horse and
computer are mostly learned from perceptual experiences
of seeing, touching and listening. In contrast, more abstract
words, such as hope and lovely, are encoded mostly in
linguistic modality rather than perceptual modality, which
has been found in cognitive psychology (Wang et al. 2010;
Binder et al. 2016) and computational experiments (Hill, Re-
ichart, and Korhonen 2014; Hill and Korhonen 2014).

All these factors motivate us to build a multimodal model
that can dynamically fuse information from linguistic and
perceptual modalities according to different types of words.
We can optimize the importance weights of different modal-
ities for a word if the word has the gold representation. As
no gold word representation exists in reality, we resort to
word pairs which share the same meaning, so that they can
guide each other. In this paper we utilize word association
pairs1, which are generated by subjects firstly reading a cue
word and then writing down the first word(s) that come to
mind. Some examples are wealthy and rich, jigsaw
and puzzle, larger and bigger. We assume that these
association word pairs can lead us to learn the importance
weights for different modalities. For instance, representa-
tions of abstract words larger and bigger are composed
by linguistic and perceptual vectors, and the linguistic vec-
tors are more important in representing abstract word mean-
ing (i.e., the two words share more similarity in linguistic
modality). To achieve the goal of making these two asso-
ciation words obtain similar representations, the model will
assign more weights to their linguistic vectors.

In light of these considerations, we propose three novel
dynamic fusion methods to improve multimodal word rep-
resentations. The three methods utilize a modality-specific
gate, category-specific gate and sample-specific gate respec-
tively, to learn different weights of linguistic and perceptual
representations for each input modality, each supersense cat-
egory and each word sample respectively. Furthermore, we
perform extensive analysis to shed light on the principle of
the proposed dynamic fusion methods. To summarize, our
main contributions are two-fold:

• We present a novel dynamic fusion method for multi-

1We have also tried other resources, such as synonyms from
WordNet. However, these datasets are noisy and perform slightly
worse, thus we only report results of word associations.
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modal representations, which utilizes a small set of word
association pairs to learn different weights of different
modalities for semantic word representations. The core
idea is to introduce weak supervision to learn a generic
fusion rule. Results on six standard benchmarks demon-
strate that our method significantly improves the quality
of baseline multimodal representations.

• Quantitative analysis shows that the proposed models can
successfully assign different weights to linguistic and per-
ceptual representations, and the learned weights show
clear difference between concrete and abstract words.
This offers initial support for the idea that humans dif-
ferently encode concrete words and abstract words, and
it also indicates that the proposed model can assist in ex-
ploring human semantic representation.

Background and Related Work

Cognitive Grounding

Dual coding theory (Hiscock 1974) posits that concrete
words are represented in the brain in terms of a visual and
linguistic code, whereas abstract words are encoded only in
the linguistic modality. This theory has been initially val-
idated by a number of neuroimaging studies (Wang et al.
2010; Andrew et al. 2017).

In summary of previous studies, Wang et al. (2010) con-
duct a meta-analysis for differences in human neural rep-
resentation of abstract and concrete words. Their results
show that abstract words elicit greater activity in linguistic-
related brain area while concrete words elicit greater activ-
ity in perceptual-related brain area. With the help of com-
putational models, Andrew et al. (2017) decode functional
Magnetic Resonance Imaging (fMRI) activity patterns asso-
ciated with concrete and abstract words. They observe that
both linguistic and visual representations can significantly
decode most concrete nouns, while the abstract nouns can
only be decoded by linguistic representations.

To sum up, these studies hold that both linguistic and
perceptual information affect human representations of con-
crete words, while only linguistic modality plays a large role
in representing meaning of abstract words. In this respect,
our method employs a representation process analogous to
that of humans, in which linguistic and perceptual modali-
ties contribute differently to concrete and abstract words.

Multimodal Models

There is by now a large literature of multimodal representa-
tion models, and the existing models can be generally clas-
sified into two groups:

1) Joint training models that build multimodal representa-
tions with raw inputs of both linguistic and perceptual re-
sources.
A class of models extends Latent Dirichlet Allocation
(Blei, Ng, and Jordan 2003) to jointly learn topic distri-
butions from words and perceptual units (Fellbaum 1998;
Andrews, Vigliocco, and Vinson 2009; Silberer and La-
pata 2012; Roller and Schulte im Walde 2013). The re-
cently introduced work is an extension of the Skip-gram

model (Mikolov et al. 2013). For instance, Hill and Ko-
rhonen (2014) propose a corpus fusion method that inserts
the perceptual features of a word in the training corpus,
which is then used to train the Skip-gram model. Lazari-
dou et al. (2015) propose MMSkip model, which injects
visual information in the process of learning linguistic
representations by adding a max-margin objective func-
tion to minimize the distance between linguistic vectors
and visual vectors.
The joint training methods implicitly propagate percep-
tual information to word representations and at the same
time learn multimodal representations. However, these
methods utilize raw text corpus in which words associated
with perceptual information account for a small portion.
This weakens the effect of introducing perceptual infor-
mation, and consequently leads to only limited improve-
ment of linguistic vectors.

2) Separate training models that independently learn lin-
guistic and perceptual representations and integrate them
afterwards.
The simplest approach is concatenation, which fuses lin-
guistic and visual vectors by concatenating them. It has
been proven to be effective in learning multimodal models
(Bruni, Tran, and Baroni 2014; Hill, Reichart, and Korho-
nen 2014; Collell, Zhang, and Moens 2017). Variations
of this method employ transformation and dimension re-
duction on the concatenation result, including applica-
tion of singular value decomposition (SVD) (Bruni, Tran,
and Baroni 2014) or canonical correlation analysis (CCA)
(Hill, Reichart, and Korhonen 2014). In addition, Silberer
and Lapata (2014) and Silberer et al. (2017) use stacked
autoencoder to learn multimodal representations by em-
bedding linguistic and visual inputs into a common space
with the objective function of reconstructing the individ-
ual inputs. However, the above methods can only gener-
ate multimodal representations of those words that have
perceptual information, thus reducing multimodal vocab-
ulary drastically.
An empirically superior model addresses this problem by
firstly predicting missing perceptual information. This in-
cludes Hill et al. (2014) who utilize the ridge regression
method to learn a mapping matrix from linguistic modal-
ity to visual modality, and Collell et al. (2017) who em-
ploy a feed-forward neural network to learn the map-
ping relation between linguistic vectors and visual vec-
tors. Applying the mapping function on linguistic repre-
sentations, they obtain the predicted visual vectors for all
words in linguistic vocabulary. Then they calculate mul-
timodal representations by concatenating linguistic and
predicted visual vectors. Furthermore, they find that ir-
relevant visual information is discarded in process of as-
sociating language to vision, which makes the predicted
visual vectors outperform original visual vectors on vari-
ous semantic similarity experiments.

According to this classification, our method falls into the
second group. However, the fact that representations from
different modality contribute differently to word meanings
is ignored by existing models. This paper aims to solve this
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problem by assigning different importance weights for lin-
guistic and perceptual representations according to different
type of words, which can be seen as a weighted combination
model.

In multimodal representation models, the effectiveness of
weighted combination is first emphasized by Bruni et al.
(2014), in which weights are super-parameters and the same
for all words. Furthermore, Kiela et al. (2014) propose the
Dispersion method to distinguish abstract words from con-
crete words, based on the observation that diversity of a
word’s images negatively correlates with its concreteness (in
which diversity is the average cosine distance between all
the visual representations of a word). Then they give zero
weights to the perceptual representations of abstract words
in building multimodal word representations. However, this
method ignores the concreteness of each word, and can not
handle words without images due to relying on visual infor-
mation.

Proposed Method

The problem of learning multimodal representations of a
word can be formulated as Mi = G(Li, Pi), where G is
the fusion function which combines the ith word’s linguistic
representations Li with its (predicted) perceptual represen-
tations Pi. In this section we describe the details of our pro-
posed method (Figure 1): (1) build the linguistic and percep-
tual representations. Following most previous work, we em-
ploy visual vectors as the perceptual representations, which
contain a much smaller vocabulary than linguistic vectors.
(2) Learn a mapping from the linguistic to visual space. In
this way, we get the predicted visual vectors for all words in
linguistic vocabulary. (3) Generate multimodal representa-
tions by combining linguistic and predicted visual represen-
tations with dynamic fusion method. (4) Train the proposed
model with max-margin objective function.

Obtaining Liguistic and Visual Representations

We employ the Glove vectors as our linguistic representa-
tions, which are trained by global word co-occurrence statis-
tics. For visual representations, we employ image collec-
tions from ImageNet (Russakovsky et al. 2015), in which
each image is attached to a word and each word corresponds
to multiple images. To generate visual vectors for each word,
we use the forward pass of a pre-trained CNN model and ex-
tract the hidden representation of the last layer as the feature
vector. Then we use averaged feature vectors of the multiple
images corresponding to the same word.

Learning to Propagate Language to Vision

As introduced in the previous section, the words with cor-
responding visual images are only a small subset of the lin-
guistic vocabulary. To obtain the visual vector for each word,
we need a text-to-vision mapping function that transforms
the linguistic vectors into visual ones. In this section, we in-
troduce how to design the mapping function.

Suppose that L ∈ R
ml×nl be the linguistic representa-

tions containing ml words, V ∈ R
mv×nv be the visual rep-

resentations of mv (� ml) words, where nl and nv are di-
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Figure 1: Overview of our model, where the four numbers
correspond to four steps of our method. Lw1 and Lw2 are
representations of one word association pair. Pw1 and Pw2

are the predicted visual representations from outputs of text-
to-vision mapping f . The multimodal representation of a
word is weighted concatenation of its linguistic vectors and
its predicted vectors, in which weights are learnable param-
eters.

mensions of the linguistic and visual representations respec-
tively. The linguistic representations of the mv visual words
are denoted as Lv ∈ R

mv×nl . Our goal is to learn a mapping
from linguistic to visual space. To achieve this, we utilize
ridge regression method which learns nv regression coeffi-
cients Aj ∈ R

nl×1 that maps each linguistic representation
Lv into a particular feature (the jth dimension of the vector)
of visual representations Vj . The objective for learning Aj

is then to minimize:

||LvAj − Vj ||22 + λ||Aj ||22, (1)

where λ is the regularization parameter. Finally, all nv coef-
ficients of Aj are applied together to map the nl-dimensional
linguistic vectors to get the nv-dimensional predicted visual
representations P = LA ∈ R

ml×nv .

Generating Multimodal Representations

To build better multimodal representations, we explore three
different gates (Figure 2) to learn the importance weights of
textual and predicted visual representations respectively:

(1) Modality-specific gate Analysis on the inner proper-
ties of linguistic and visual vectors shows that the two vec-
tors capture some of the same properties (Collell and Moens
2016; Wang et al. 2018), which are redundant in represent-
ing the meaning of a word. Based on this observation, we
design a modality-specific gate to give a weight value or a
weight vector gL for linguistic modality and gP for visual
modality respectively.

(2) Categoty-specific gate Psychological researches
(Handjaras et al. 2016) prove that human semantic repre-
sentation shows clear difference between different word
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Figure 2: Illustration of three different gates, in which each
gate can be a value gate or a vector gate. Take sample-
specific gate (in the dashed box) as an example, it calcu-
lates importance weights gLi for linguistic representations
and gPi for visual representations according to specific word
i (in which the importance weight is either a vector param-
eter for vector gate or a value parameter for value gate).
Similarly, the category-specific gate and modality-specific
gate calculate importance weights according to modality and
word supersense respectively.

categories. For instance, the category of living things
on average receives higher saliency ratings on visual
properties than on emotion category. To model the above
observation, we design a category-specific gate to give two
weight values or weight vectors (i.e., gLm

for linguistic
modality and gPm

for visual modality) for each word
supersense2 m.

(3) Sample-specific gate Considering that the meaning of
each word has different dependencies on linguistic and vi-
sual information, we propose the sample-specific gate to
assign two weight values or weight vectors (one for each
modality) for each word. The weight parameters are calcu-
lated by the following feed-forward neural networks:

gLi = tanh(WLLi + bP )

gPi
= tanh(WPPi + bP ),

(2)

where gLi
and gPi

are the value gate or vector gate of the ith
word’s linguistic representation Li and visual representation
Pi respectively. For the value gate, WL and WP are vector
parameters with size of d× 1, and bL and bP are value pa-
rameters. For the vector gate, the parameters WL and WP

are matrices with size of d× d, and bL and bP are vectors
with size of d× 1.

In the above dynamic fusion methods, the value gate con-
trols the importance weights of different input representa-

2The supersense refers to 41 WordNet’s supersenses (e.g., an-
imal, body, food, emotion, motion), in which we tag a word with
its most frequent supersense in the sense-annotated corpora: https:
//github.com/UKPLab/acl2016-supersense-embeddings

tions as a whole, whereas the vector gate can adjust the im-
portance weights of each dimension of input representations.

Finally, we compute element-wise multiplication of the
linguistic and visual representations with their correspond-
ing gates, and concatenate the results to get the multimodal
representations:

Mi =

⎧⎨
⎩

[gL � Li ; gP � Pi] for M-gate
[gLm � Li ; gPm � Pi] for C-gate
[gLi � Li ; gPi � Pi] for S-gate

(3)

Where Mi is the multimodal representation of the ith

word, operator [v1; v2] denotes concatenation of vector v1
and v2, and � denotes element-wise multiplication. In the
C-gate model, m represents the category of the ith word.

Training Multimodal Models

The training data consists of a set W of word association
pairs (w1, w2). To learn the model parameters of different
gates pgates (i.e., gL and gP for M-gate; gLm

and gPm
for C-

gate; WL, bL, WP and bP for S-gate), we minimize a max-
margin objective function as follows:

∑
(w1,w2)∈W

(max(0, 1−Mw1 ·Mw2 +Mw1 ·Mn1)

+max(0, 1−Mw1 ·Mw2 +Mw2 ·Mn2))

(4)

where Mi denotes the multimodal representation of word i
which can be calculated by equation (3), and n1 and n2 are
randomly selected negative examples. The intuition for this
objective is that we want the two association words to be
more similar to each other than the negative examples.

Experimental Setup

Datasets

We use 300-dimensional GloVe vectors3 which are trained
on the Common Crawl corpus consisting of 840B tokens and
a vocabulary of 2.2M words. Our source of visual vectors are
collected from ImageNet (Russakovsky et al. 2015) which
covers a total of 21,841 WordNet synsets (Fellbaum 1998)
that have 14,197,122 images. For our experiments, we delete
words with fewer than 50 images or words not in the Glove
vectors, and sample at most 100 images for each word. We
use a pre-trained model of VGG-net4 to embed visual infor-
mation, resulting in 8048 vectors of 128 dimensions.

The training dataset are selected from about 20,000 word
association pairs, and each word pair is generated by at least
one subject5. We calculate the association score for each
word pair (cue word + target word) as: the number of per-
son who generated the word pair divide the total number
of person who is presented with the cue word. To select
high-quality association pairs, we delete those whose score
is lower than 0.2 or with words that are not in the Glove

3http://nlp.stanford.edu/projects/glove
4http://www.vlfeat.org/matconvnet/
5The dataset is collected by (De Deyne, Perfors, and Navarro

2016) and can be found at: https://simondedeyne.me/data.
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vocabulary. For better generalization ability, we delete word
pairs that contain words in the testing datasets, which results
in 1,494 word pairs. We use the remaining word association
pairs as the development dataset (word pairs together with
their association scores).

Model Settings

Our models are implemented with Theano (Bergstra et al.
2010) and Lasagne (Dieleman et al. 2015), and optimized
with Adagrad (Duchi, Hazan, and Singer 2011). We test the
initial learning rate over {0.05, 0.01, 0.5, 0.1}, set batch size
to 25, and train the model for 5 epochs. We set the initial
parameters in three gates to 1.0 and select the best param-
eters on the development set. All models are trained for 3
times and the average results are reported in Table 1. Note
that we do not update word embeddings because 1) words in
the training dataset are not in the testing dataset, and 2) more
importantly we aim to learn generic composition rules. The
data and code for training and evaluation can be found at:
https://github.com/wangshaonan/dynamicFusion

Experiments

Evaluation Tasks

We test the baseline and proposed models on 6 standard eval-
uation benchmarks, covering two different tasks: (i) Seman-
tic relatedness: Men-3000 (Bruni, Tran, and Baroni 2014)
and Wordrel-252 (Agirre et al. 2009); (ii) Semantic sim-
ilarity: Simlex-999 (Hill, Reichart, and Korhonen 2015),
Semsim-7576 (Silberer and Lapata 2014), Wordsim-203 and
Simverb-3500 (Gerz et al. 2016). All test sets contain a list
of word pairs along with their subject ratings.

We employ Spearman’s method to evaluate the perfor-
mance of our models. This method calculates the correlation
coefficients between model predictions and subject ratings,
in which the model prediction is the cosine similarity be-
tween semantic representations of two words.

Baseline Multimodal Models

For fair comparison, we re-implement several representa-
tive systems with our own linguistic and visual vectors. The
Concatenation (CONC) model (Kiela and Bottou 2014)
is simple concatenation of normalized linguistic and visual
vectors. The Ridge (Hill, Reichart, and Korhonen 2014)
and Mapping (Collell, Zhang, and Moens 2017) models
first learn a mapping matrix from linguistic modality to vi-
sual modality using the ridge regression method and feed-
forward neural network respectively. After applying the
mapping function on the linguistic representations, they ob-
tain the predicted visual vectors for all words in linguistic
vocabulary. Then they concatenate the normalized linguis-
tic and predicted visual vectors to get multimodal repre-
sentations. All above models are implemented with sklearn.
Model hyper-parameters are tuned by 5-fold cross validation
(20% of data for testing and 80% for training) with evalua-
tion metric of mean square error6. The Dispersion model

6In Ridge model, the optimal regularization parameter is 0.6.
The Mapping model is trained with SGD for maximum 100 epochs
with early stopping, and the optimal learning rate is 0.001.

computes multimodal representations by using weighted
concatenation of linguistic and visual representations, in
which weights are 1 or 0 for two modalities according to
whether it is concrete or abstract words. Same as Kiela et al.
(2014), we set the threshold (which distinguish concrete and
abstract words) as the median image dispersion7, and give
zero weights to the visual representations for abstract words
before concatenation.

Results and Discussion

As shown in Table 1, our proposed multimodal models
clearly outperform baseline unimodal and multimodal mod-
els (in group 2 and 3). We use Wilcoxon signed-rank test
to check if significant difference exists between two mod-
els. Results show that our multimodal models with vector
gates perform significantly better (p < 0.05) than all base-
line models, while the multimodal models with value gates
do no show significant difference over Ridge model.

Overall performance Our multimodal models with vec-
tor gate (i.e., M-gate-vec, C-gate-vec, S-gate-vec) improve
Ridge in VIS and ZS region. In other words, our models
achieve better performance on words with (mostly concrete
words) or without visual information (more abstract words).
This suggests that the dynamic fusion methods can dynam-
ically fuse different modality inputs. The good results in
ZS region also indicate that our models have good general-
ization capacity. Therefore, our multimodal representations
with vector gates clearly accomplish one of their foremost
goals, namely to improve the multimodal representations for
all types of words.

Unimodal baselines On the linguistic side, we addition-
ally test Skip-gram model. Comparing unimodal models (in
group 2), we can see that Glove outperforms Skip-gram
on four datasets while Skip-gram takes superiority on the
other two datasets, indicating that these two text-based mod-
els may encode different types of information. The CNN
model, which learns representations from visual modality,
gets worse performance than Glove and Skip-gram.

Multimodal baselines The CONC model that combines
Glove vectors and CNN visual vectors, performs worse than
Glove on four out of six datasets, suggesting that simple
concatenation might be suboptimal. The Mapping and Ridge
models, which combine Glove vectors and predicted visual
vectors, improve over Glove on five out of six datasets in
both ALL and VIS regions. This indicates that the predicted
visual vectors contains richer information than purely visual
representations and are more helpful in building multimodal
models. In ZS region (zero-shot region shows the result of
word pairs without visual vectors), multimodal models of
Mapping and Ridge only significantly outperform Glove on
the SEMSIM dataset.

Our multimodal models Among our proposed models,
the multimodal models with vector gate are clearly better
than the ones with value gate (i.e., M-gate-val, C-gate-val,

7We calculate image dispersion with the toolkit: https://github.
com/douwekiela/mmfeat
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Table 1: Spearman correlations between model predictions and human ratings on six evaluation datasets. The bold scores are
the best results per column and #inst. denotes the number of word pairs. For each test, ALL correspond to the whole testing
set, VIS (visual) to those word pairs for which we have both visual and linguistic vectors, and ZS (zero-shot) denotes word
pairs for which we hove only linguistic vectors. We divide all models into four groups: (1) previous multimodal models in
which results are reprinted from (Collell, Zhang, and Moens 2017). (2) Uni-modal models with linguistic and visual inputs
respectively. (3) Our re-implementation of baseline multimodal models. (4) Our proposed multimodal models with the dynamic
fusion method, where M,C,S denote modality-specific, category-specific and sample-specific respectively. gate-val and
gate-vec denote value gate and vector gate respectively.

 MEN SIMLEX SEMSIM SIMVERB WORDSIM WORDREL 
 ALL VIS ZS ALL VIS ZS ALL VIS ZS ALL VIS ZS ALL VIS ZS ALL VIS ZS 

Kiela & Bottou 2014 - 0.72 - - -  - - - - - - - - - - - - 
Si lberer & Lapata -  - - - - 0.70 - - - - - - - - - - - 

Lazaridou et al., 2015 0.75 0.76 - 0.40 0.53 - 0.72 0.72 - - - - - - - - - - 
Collell  et al., 2017 0.811 0.819 0.802 0.410 0.388 0.422 0785 0.791 0.764 0.286 0.371 0.285 0.781 0.698 0.766 0.629 0.797 0.601 

Skip-gram 0.763 0.755 0.734 0.442 0.435 0.412 0.714 0.728 0.735 0.363 0.308 0.368 0.775 0.726 0.715 0.609 0.833 0.537 
Glove 0.802 0.799 0.753 0.408 0.371 0.397 0.744 0.751 0.808 0.283 0.320 0.280 0.798 0.688 0.792 0.682 0.759 0.631 
CNN - 0.566 - - 0.406 - - 0.502 - - 0.235 - - 0.526 - - 0.422 - 

CONC - 0.786 - - 0.442 - - 0.709 - - 0.437 - - 0.665 - - 0.666 - 
Mapping 0.806 0.815 0.729 0.408 0.407 0.374 0.769 0.771 0.840 0.282 0.358 0.277 0.781 0.696 0.790 0.650 0.751 0.581 

Ridge 0.806 0.816 0.733 0.418 0.405 0.394 0.764 0.766 0.832 0.287 0.329 0.283 0.786 0.689 0.785 0.660 0.765 0.588 
Dispersion - 0.700 - - 0.415 - - 0.650 - - 0.222 - - 0.544 - - 0.630 - 
M-gate-val 0.808 0.815 0.741 0.417 0.400 0.396 0.765 0.768 0.834 0.288 0.324 0.284 0.792 0.697 0.791 0.672 0.762 0.603 
C-gate-val 0.809 0.815 0.742 0.411 0.397 0.395 0.766 0.770 0.820 0.292 0.339 0.290 0.807 0.706 0.801 0.682 0.732 0.638 
S-gate-val 0.813 0.808 0.766 0.418 0.389 0.408 0.762 0.764 0.833 0.289 0.352 0.286 0.801 0.687 0.795 0.682 0.763 0.630 

M-gate-vec 0.836 0.820 0.824 0.466 0.430 0.465 0.774 0.778 0.826 0.347 0.371 0.348 0.821 0.729 0.782 0.729 0.796 0.700 
C-gate-vec 0.820 0.803 0.813 0.463 0.435 0.452 0.766 0.771 0.801 0.359 0.314 0.363 0.803 0.716 0.777 0.695 0.749 0.672 
S-gate-vec 0.829 0.821 0.812 0.493 0.466 0.496 0.740 0.745 0.793 0.364 0.347 0.369 0.804 0.723 0.752 0.717 0.837 0.672 

#inst. 3000 1065 1935 999 261 738 7576 1789 5787 3500 41 3459 203 45 158 252 28 224 

S-gate-val). This indicates that combining representations
from different modalities is more complex than weighted
concatenation, and thus needing deep fusion methods that
can selectively combine the inside elements of different
representations. Another observation is that the multimodal
model with category-specific vector gate is not as effective
as other two models with vector gates. This is possibly due
to that the tagging process of word supersense introduces
some errors.

Model Analysis

Effects of training data size To investigate the effects of
training data size, we conduct experiments with less training
data. As can be seen in Figure 3, decreasing the number of
training data clearly harms the performance of models with
vector gate, but leads to no obvious difference for the mod-
els with value gate. Additionaly, we observe that the models
with vector gate can obtain a quite good result with 40%
(600 training pairs) of data, indicating that our dynamic fu-
sion methods can be successfully trained with a small train-
ing set.

Effects of different gates To inspect whether the pro-
posed models meet our expectation, i.e., assigning different
weights to linguistic and visual representations for concrete
words and abstract words respectively, we conduct a quanti-
tative analysis using a set of concrete and abstract words.
Specifically, we utilize the University of South Florida
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Figure 3: Effects of training data size on the model perfor-
mance, which are evaluated by averaged Spearman’s corre-
lations on all evaluation datasets.

dataset (USF) 8, which includes concreteness ratings for
over 6,000 words collected from thousands of participants9.
To extract a set of abstract and concrete words, we first select
words those appear in both USF dataset and the linguistic
vocabulary, and order these words according to their con-
creteness ratings. Next we sample at random from the first
and fourth quartiles, in which we get 796 concrete words
and 788 abstract words. Then we examine the weights as-
signed to different modalities on abstract and concrete words
respectively. In the following, we separately describe the re-
sults of our proposed dynamic fusion methods with different
gating mechanism.

8The dataset can be download at: http://web.usf.edu/
FreeAssociation/

9Examples of word and its concreteness are: (tree, 7), (eye,
6.28), (wind, 5.4), (dark, 4.68), (work, 3.88), (effort, 2.22), (hope,
1.18).

5978



M-gate-val obtains a weight value of 1.089 for linguistic
modality, and 0.911 for visual modality.

C-gate-val learns one weight value for each supersense
category in linguistic and visual modality respectively.
The five categories with highest weight ratio of linguistic
to visual are Attribute, Location, Cognition,
Quantity, and State. The five categories with lowest
weight ratio of linguistic to visual are Animal, Object,
Motion, Shape, and Plant10.

S-gate-val calculates one weight value for each word in
linguistic and visual modality respectively. We then com-
pute the average weight ratio of linguistic to visual modality
respectively on the set of abstract and concrete words. As
a result, we get 1.965:1 for concrete words, and 2.203:1 for
abstract words. Moreover, the five words with the highest ra-
tio of linguistic to visual are: much, seem, curious,
sense, mind, whereas the five words with lowest ra-
tio are: wharf, walkway, married, beverage,
tower. In addition, we test the Spearman correlation be-
tween word concreteness and weight ratio of linguistic to
visual modality for all these words, which results a correla-
tion score of 0.614.

M-gate-vec assigns one vector for each modality. To in-
spect the importance weight of linguistic and visual modal-
ity, we calculate the l2-norm of the two vectors. Finally, we
get a value of 1.186 for linguistic modality and 0.045 for
visual modality.

C-gate-vec learns one vector for each supersense cat-
egory in linguistic and visual modality respectively. We
then calculate the l2-norm of these vectors and the weight
ratio of linguistic to visual modality in each category11.
The five categories with highest ratio are Attribute,
Cognition, State, Social, and Change. The
five categories with lowest ratio are Shape, Object,
Creation, Motion, and Plant12.

S-gate-vec calculates one vector for each word in lin-
guistic and visual modality respectively. We then com-
pute the averaged l2-norm weight ratio of linguistic to vi-
sual modality on the set of abstract and concrete words
respectively. As a result, we get 2.975:1 for concrete
words, and 3.714:1 for abstract words. Moreover, the
five words with the highest ratio are: really, think,
seriously, reason, believe, and the five words
with lowest ratio are: volcano, palace, salad,
shackle, tomato. Furthermore, we test the Spearman
correlation between word concreteness and weight ratio of
linguistic to visual modality for all these words, in which we
get a correlation score of 0.458.

10Example words in these categories: Attribute (age, power,
strength), Location (area, west, south), Cognition (thought, be-
lieved, known), Quantity (miles, meters, number), State (condition,
problems, health), Animal(cow, frogs, birds), Object (river, valley,
lake), Motion (follow, travel, enter), Shape (concave, angle, lines),
and Plant (fruit, flowers, vines).

11The higher ratio means that the category needs more linguistic
information which corresponds to abstract words

12Example words in these categories: Social (succeed, encour-
age, join), Change (lengthen, simplify, diminishing), Creation (pub-
lish, design, fix), Motion (drop, swim, roll).

From the above results, we observe that (1) the pro-
posed models can successfully assign different weights to
linguistic and visual modalities, and the learned weights
show clear difference between concrete and abstract words.
(2) For models with modality-specific gates (M-gate-val,
M-gate-vec), representations of linguistic modality always
achieve higher weights, which indicates that linguistic vec-
tors are more important in building multimodal representa-
tions on the whole. (3) As for models with category-specific
gates (C-gate-val, C-gate-vec), the categories which contain
mostly abstract words achieve higher weight ratio of lin-
guistic to visual modality, which means that the linguistic
modality is more important to abstract words. (4) In mod-
els with sample-specific gates (S-gate-val, S-gate-vec), ab-
stract words achieve higher weight ratio of linguistic to
visual modality. Moreover, the learned weight-ratio shows
high correlation with word concreteness, indicating that the
proposed model can assist in related psycholinguistic exper-
iments.

Conclusion and Future Work

Motivated by the fact that different semantic word repre-
sentations require information from different modality in-
puts, in this paper we propose three simple but effective fu-
sion methods for learning multimodal word representations.
Experimental evaluations show that our proposed models
achieve substantial gains in accuracy on all six bench-
marks. Qualitative analyses further evidence that the pro-
posed methods can dynamically fuse representations from
different modalities according to different types of words.

Future work includes exploring better semantic word rep-
resentations by combining information from other modal-
ity inputs. Moreover, the visual representations can be en-
hanced by utilizing more fine-grain semantic understand-
ing of a image, which can be achieved with operations like
image segmentation. We believe that one of the promis-
ing directions is learning from human semantic representa-
tion to build a more cognitive-inspired computational model
(Wang, Zhang, and Zong 2017b).
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