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Abstract

This paper focuses on machine reading com-
prehension for narrative passages. Narrative
passages usually describe a chain of events.
When reading this kind of passage, humans
tend to restore a scene according to the text
with their prior knowledge, which helps them
understand the passage comprehensively. In-
spired by this behavior of humans, we propose
a method to let the machine imagine a scene
during reading narrative for better comprehen-
sion. Specifically, we build a scene graph
by utilizing Atomic as the external knowl-
edge and propose a novel Graph Dimensional-
Iteration Network (GDIN) to encode the graph.
We conduct experiments on the ROCStories, a
dataset of Story Cloze Test (SCT), and Cos-
mosQA, a dataset of multiple choice. Our
method achieves state-of-the-art.

1 Introduction

Machine Reading Comprehension (MRC) is an
NLP task designed to evaluate a machine’s ability
to understand human language. This direction has
recently drawn much attention due to the fast devel-
opment of deep learning techniques and large-scale
datasets. As a basic form of MRC, the compre-
hension of narrative has attracted long-standing
interests (Mostafazadeh et al., 2017; Kočiskỳ et al.,
2018; Cui et al., 2019). In this paper, we focus on
this kind of MRC task.

Unlike the other type of text, the narratives usu-
ally present a series of events, which are related
to a scene in real life. In the field of perception,
the scene is a kind of information that flows from
a physical environment into a perceptual system
(Ruderman and Bialek, 1993). When reading a nar-
rative instead of being in a physical environment,
humans tend to restore the scene in their mind ac-
cording to the text with their prior knowledge for
better perception and comprehension (Bower and

Figure 1: An example of Narrative MRC. Specifically,
it is an example of Story Cloze Test (SCT), where given
the first four sentences (s0, s1, s2, s3) of the story, a
model is required to select the suitable ending from the
candidates (e0, e1). The middle part is a presumable
description of the scene restored by a human reader.

Morrow, 1990; Zwaan et al., 1995). The scene re-
stored is an immediate association about the event,
and it could be composed of the event itself, the
state of the person roles, the possible cause and ef-
fect, and so on. To approach human intelligence, an
MRC model is supposed to have a similar ability to
restore the scene. However, previous work (Wang
et al., 2016; Cui et al., 2019; Zhou et al., 2019a)
pay little attention to this ability of narrative MRC
models.

Figure 1 is an example of Narrative MRC. While
reading the story sentence by sentence, a human
tends to restore a scene in his or her mind as de-
scribed in the figure. Subsequently, the human
reader can infer that the suitable ending is e0 based
on information of the scene. Unfortunately, a ma-



Figure 2: The basic overview of the proposed method

chine reader is not endowed with the ability to
associate the prior knowledge, and cannot restore
the scene according to the original narrative. As a
result, It cannot thoroughly understand what hap-
pens in the story and possibly make a wrong deci-
sion. To address this problem, we proposed a novel
method, which can restore the scene and utilize it
to understand the narrative passages.

Firstly, we propose to employ external knowl-
edge as the basic resource for restoring the scene.
Some previous works (Chen et al., 2019; Guan
et al., 2019) also employ external knowledge in
Narrative MRC. However, most of them use the
concept knowledge from ConceptNet (Liu and
Singh, 2004), WordNet (Fellbaum, 1998), or other
word-centered knowledge bases to obtain the asso-
ciation information for the noun phrases mentioned
in the story. This kind of method is able to help the
machine to understand what is mentioned in the
story, but not what happens in the story. For exam-
ple, with those methods, given the sentence “The
right side of his face was all covered in blood.”,
the machine understand the noun phrases “right
side” “face” and “blood” better, but is still unable
to know exactly that a man is hurt, he needs medical
assistance, and some others nearby might help him.
To this end, we select an event-based knowledge
graph, Atomic (Sap et al., 2019), as the source
of external knowledge. Atomic is an atlas of ev-
eryday commonsense reasoning. Each center node
of Atomic is an event like “PersonX’s face is cov-
ered in blood”, and the nodes associated with it are
the cause, the effect, and the attribute of the roles
of the events. Therefore, Atomic is beneficial for
the machine to know “what happens”.

Secondly, we utilize a structured description to
restore the scene. Specifically, we build a scene
graph based on the original narrative and the
knowledge from Atomic. Compared with the
unstructured text, graph data can represent the

scene more intuitively. In MRC task, previous
works (Kipf and Welling, 2016; Qiu et al., 2019)
that utilize structured data generally regard the
words or noun phrases as the nodes of the graph.
Those methods have no specific for Narrative MRC,
where the events and the roles are the key factors.
Therefore, we build the scene graph by taking the
events, the persons, and the external knowledge of
the event as the nodes. Meanwhile, we design the
connections of the graph from both the perspec-
tives of each event and the whole passage. Instead
of the typical plane graph, we build a three-
dimensional graph, which can not only model
the relevance among the events in the passage
but also retain the unique information of each
event. To encode the graph in a targeted manner,
we propose Graph Dimensional Iteration Net-
work (GDIN). GDIN can encode the scene graph
iteratively and thus obtain the integrated represen-
tation of the scene graph. As a result, the ma-
chine will understand the narrative more compre-
hensively and make the decision more precisely.

To summarise, inspired by human behaviors, we
propose a novel method to restore the scene for
narrative MRC. Specifically, we introduce event
knowledge from Atomic (Sap et al., 2019), and
build the scene graph to describe the scene. To
encode the graph, we propose a novel graph neural
network, GDIN. We conduct experiments on two
datasets, ROCStories (Mostafazadeh et al., 2017)
and CosmosQA (Huang et al., 2019). The results
show that our method achieves state-of-the-art.

2 Method

The overview of our method is shown in Figure
2. Our starting point is to let the machine restore
the scene like a human while reading narrative pas-
sages and then utilize the information from the
scene to better comprehension. As shown in Fig-
ure 2, given a narrative passage, we firstly obtain



the knowledge for the events mentioned in the
passage. Subsequently, we build a scene graph,
a three-dimensional graph, whose nodes contain
events, person roles, and event knowledge. The
graph is composed of two kinds of plane graphs:
one is the inner-event graph, which describes a sin-
gle event; the other is the cross-event graph, which
captures the relevance among the events. Mean-
while, we conduct a basic encoding for the narrative
passage and the knowledge and then obtain their
original representation. By utilizing our proposed
Graph Dimensional-Iteration Network (GDIN), we
encode the scene graph from the inner-event graph
to cross-event graph iteratively. To this end, we ob-
tain the representation of the scene and then make
a prediction based on it.

2.1 Knowledge Obtaining

Figure 3: The process of obtaining event knowledge

To endow the model with the ability to asso-
ciate the event-relevant description, we introduce
external knowledge from Atomic. Atomic is an
event-based knowledge graph. It contains 24,313
central nodes (i.e., base events) like “PersonX re-
pels PersonY’s attack”. Each of them is linked to
multiple types of knowledge nodes, such as the ef-
fect on PersonX (e.g., Person X’s heart races), the
cause of PerosnX (e.g., X wanted to protect him-
self), the effect on PersonY (e.g., Y gets hurt) and
so on. As those knowledge nodes are also events,
there are totally 877,108 〈event, relation, event〉
triples.

Nevertheless, due to the diversity of real-world
events, Atomic cannot cover all the events. Mean-
while, even if the coverage is acceptable for every-
day events, the accuracy of event linking (link a
certain event text to Atomic) also cannot be ensured.
Therefore, we employ the pre-training framework,
Comet (Bosselut et al., 2019), which is originally
proposed for the task of knowledge base comple-
tion. Specifically, Comet is obtained by fine-tuning
GPT (Radford et al., 2018) on Atomic. The train-
ing task is inputting the start event and the relation

〈event, relation, 〉, and then generating the end
event of the triple.

By employing Comet, we design the process of
obtaining event knowledge, as shown in Figure 3.
Given an event like “Jerry repels Tom’s attack”,
to approximate the phrases in Atomic, we firstly
annotate the person roles, that is, replacing the sub-
ject person with “PersonX” and the other person
with “PersonY”. Thus, we get “PersonX repels
PersonY’s attack”. Secondly, we input it to the
Comet and obtain the event knowledge. Accord-
ing to the demand of restoring the scene, we se-
lect four types of them, including “xIntend” (Why
does X cause the event), “xEffect” (What effects
does the event have on X), “yEffect” (What ef-
fects does the event have on Y), and “xAttr” (How
would X be described). For example, “xIntend”
here could be “PersonX wanted to protect himself”.
Finally, we resolve the normalized person roles,
that is, replacing “PersonX” and “PersonY” with
the original person names. For example “xIntend”
will finally be “Jerry wanted to protect himself”.

2.2 Scene Graph Building

Having annotated the person roles and obtained
relevant knowledge for every event, we build a
graph, named “scene graph”, to present a structured
description for the scene. We believe that compared
with the unstructured text, the graph can provide a
more intuitive description from the perspective of
the events for the scene.

(a) inner-event graph (b) cross-event graph

Figure 4: Two types of plane graphs, which com-
pose the three-dimensional scene graph. For i-th
(i ∈ {0, 1, 2...n− 1}) event, we denote the nodes
as follows: ei (event), pxi (PersonX), pyi (PersonY),
kxai (xAttr), kxii (xIntend), kxei (xEffect), kyei (yEffect).

The “Scene Graph Building” part in Figure 2
shows the full view of a scene graph. It is a three-
dimensional graph composed of two kinds of plane
graphs: inner-event graph and cross-event graph as
shown in Figure 4. The nodes of event and per-
son are the intersection between the two types



of graphs. The inner-event graph describes a sin-
gle event, and the cross-event graph captures the
relevance among the events, including the narra-
tive order and the person coreference. Accordingly,
we build an inner-event graph for each event and a
cross-event graph for the whole narrative passage.

The graph contains three kinds of nodes: event,
person role, and event knowledge. The links of the
graph are designed as follows: (1) In each inner-
event graph, a) we link every event knowledge to
the event; b) The person roles are linked to the
event; c) Each knowledge is linked to its corre-
sponding person. (2) In the cross-event graph, a)
we link each event to the adjacent event, which
could capture the narrative order; b) To pass infor-
mation from the perspective of the role, we conduct
a coreference resolution and build a connection be-
tween two mentions for the same person across the
events. To this end, we obtain two kinds of adjacent
matrixes for those plane graphs. They are formu-
lated as Ainner

i ∈ R7×7 (i ∈ {0, 1, 2...n− 1}) and
Across ∈ R3n×3n, where n− 1 is the total number
of the events in the passage.

2.3 Basic Encoding
Before the process of graph encoding, we employ a
pre-trained Language Model (LM) to conduct a ba-
sic encoding and obtain the original representation
of the nodes. For a certain sequence (e.g., a sen-
tence or a passage), the representation is calculated
by

Sseq, S = LM (sequence) ∈ RLs×d,Rd

where Ls denotes the word-level length of the se-
quence, and d is the dimensional size of the rep-
resentation. We take S as the sequence represen-
tation. Thus inputting the narrative passage to the
LM, we can obtain Cseq ∈ RLp×d and C ∈ Rd. In
a specific task, the passage will be concatenated
with other text (e.g., question or candidate) together
as the input sequence, which will be detailed in 2.5.

In practice, we regard each sentence in the nar-
rative passages as an event, and thus from Cseq we
can extract Eseq

i ∈ RLe×d, the representation of
the words of i-th event, according to its sentence
span. Then, we merge it by max-pooling, and ob-
tain E(0)

i ∈ Rd, the original representation of i-th
event. Meanwhile, the representation of the roles
can be extracted from Cseq based on their position
as well. Therefore, for the subject person, PersonX,
we have P x(0)

i ∈ Rd; For the other person, Per-

sonY, we have P y(0)
i ∈ Rd. Specifically, for each

role, we take the representation of its first word as
its overall representation. Moreover, taking each
knowledge as the input of the LM, we can get the
representation for it. Hence, for “xIntend”, “xEf-
fect”, “yEffect”, “xAttr”, we have Kxi(0)

i , Kxe(0)
i ,

K
ye(0)
i , Kxa(0)

i ∈ Rd, respectively.

2.4 Dimensional-Iteration Encoding
To encode the graph in a targeted manner and
model the scene from both the perspectives of each
event and the whole passage, we propose Graph
Dimensional-Iteration Network (GDIN) based on
Graph Convolutional Network (GCN) (Kipf and
Welling, 2016). As shown in Figure 2, GDIN en-
codes the graph along the dimension of inner-event
graph and then encodes it along the dimension of
cross-event graph, which is an iterable process.
As the original representation of every node has
been obtained by the basic encoding, we conduct
a dimensional-iteration encoding with GDIN as
follows:
(1) Encoding along the dimension of inner-
event graph: At t-step, for i-th inner-event graph,
we formulate the representation of its nodes as
H

(t)
i = [E

(t)
i ;P

x(t)
i ;P

y(t)
i ;K

xi(t)
i ;K

xe(t)
i ;K

ye(t)
i ;

K
xa(t)
i ] ∈ R7d, where the symbol“;” denotes con-

catenation. Then we update the representation of
all nodes by

H
(t+1)
i = σ

(
Din− 1

2 ˜Ainner
i Din− 1

2H(t)W in
)

˜Ainner
i = Ainner

i + I

where I is the identity matrix. W in ∈ R7d×7d is
a trainable matrix and σ is the activation function.
Din

pp =
∑

q

(
Ainner

i + I
)
pq

is the degree matrix.
(2) Encoding along the dimension of cross-event
graph: At (t+1)-step, for the cross-event graph,
we collect the nodes of person and event from
those above inner-event graphs, and then we for-
mulate the representation of its nodes as H(t+1) =

[E
(t+1)
0 ;P

x(t+1)
0 ;P

y(t+1)
0 ;E

(t+1)
1 ;P

x(t+1)
1 ;

P
y(t+1)
1 ; ...;E

(t+1)
n−1 ;P

x(t+1)
n−1 ;P

y(t+1)
n−1 ] ∈ R3nd

Subsequently, we update the representation of the
nodes of person and event by

H(t+2) = σ
(
Dcs− 1

2 ˜AcrossDcs− 1
2H(t+1)W cs

)
˜Across = Across + I



where W cs ∈ R3nd×3nd is a trainable matrix, and
Dcs

pp =
∑

q (A
cross + I)pq is the degree matrix.

Note that, in this step the representation of the
knowledge does not change. Taking the xEffect
knowledge as an example, at this step we have
K

xe(t+2)
i = K

xe(t+1)
i .

Iterating: The nodes of event and person are the
intersection between the two types of graphs. With
iterating (1) and (2), the information passes across
different dimensions along those nodes. Therefore,
GDIN can model the three-dimensional scene
graph from both the perspectives of each event
and the whole passage. Assuming it iterating for
L loops, we obtainH(T )

i ∈ R7d, where T = 2L−1.
The representation of i-th event, E(T )

i ∈ Rd, can
be extracted from H

(T )
i .

We merge the representation of all the events by
Cs =

∑
i αiE

(T )
i . The weight α is calculated by

αi =
exp

(
σ
(
wpE

(T )
i

))
∑

i′ exp
(
σ
(
wpE

(T )
i′

))
where wp ∈ Rd is a trainable vector. Cs is the
representation of the narrative passage built from
the description of the scene. Subsequently, we
obtain the final representation of the passage by a
residual connection: Cf = [Cs;C] ∈ R2d.

2.5 Task-Specific Input and Output

We evaluate our method on two types of MRC
test, story cloze test and multiple choice. Given
a passage, the former requires the model to select
a suitable ending from two candidates; the latter
requires the model to select the answer for a cer-
tain question from four candidates. We prepare the
input for the model following Devlin et al. (2018)
and Radford et al. (2018). For the story cloze test,
we concatenate each ending with the given passage
as the input sequence of basic encoding. Then we
can obtain an ending-aware passage representation
Cseq and C. For multiple choice, we concatenate
each option with the question and the passage as
the input sequence. Thus we get a option-question-
aware passage representation Cseq and C. After
basic encoding and dimensional iteration encoding,
we have the final representation Cf . In both the
above tests, there is Cf

j , which is the passage repre-
sentation for j-th candidate. To this end, we score

each candidate by

scorej =
exp

(
Cf
j ws

)
∑

j′ exp
(
Cf
j′ws

)
where scorej is the normalized selection score of
the j-th candidate. ws ∈ R2d is a trainable vector.
Then we predict by taking the candidate with the
highest score as the ending or the answer.

3 Experiments and Analysis

3.1 Datasets and Metrics
The datasets we choose are ROCStories
(Mostafazadeh et al., 2017) and CosmosQA
(Huang et al., 2019). The passages of both the
above datasets are narrative.
ROCStories: a popular dataset of Story Cloze Test
(SCT), annotated by Amazon Mechanical Turk
(MTurk) workers based on a collection of short
stories. In development and test set, each instance
contains a four-sentence passage, and two candi-
date endings, while the train set only provides the
original five-sentence story containing the proper
ending. Following previous works (Cai et al., 2017;
Chaturvedi et al., 2017; Cui et al., 2019), we take
the development set for training and evaluate the
performance on the test set.
CosmosQA: a recently proposed dataset formu-
lated as multiple choice. The narratives are col-
lected from the Spinn3r Blog dataset (Burton et al.,
2009) and annotated by MTurk. We train and vali-
date the model on the train set and the development
set, respectively. As the label of the test set is not
public, we evaluate our model by submitting the
predictions to the official website1.
Evaluation Metrics: As the targets of both the
above tests are making a choice among the candi-
dates, we use the common metric, accuracy, for
evaluation.

3.2 Implementation Details
In practice, we regard each sentence in the narrative
passages as an event. When annotating the person
roles in a particular sentence, we employ spaCy2

for dependency parsing. To link two mentions for
the same person across the sentences while build-
ing a graph, we utilize Neural Coreference3 for

1https://leaderboard.allenai.org/cosmosqa/submissions/public
2a Python library for natural language processing

https://spacy.io/
3a toolkit to annotate and resolve coreference clusters

https://github.com/huggingface/neuralcoref



Method Accuracy
DSSM (Huang et al., 2013) 58.5
Conditional GAN (Wang et al., 2017a) 60.9
End Attn (Cai et al., 2017) 74.7
LR+RNNLM (Schwartz et al., 2017) 75.2
HCM (Chaturvedi et al., 2017) 77.6
SeqMANN (Li et al., 2018) 84.7
GPT-FT (Radford et al., 2018) 86.5
Concept (Chen et al., 2019) 87.6
BERT-FT (Devlin et al., 2018) 89.2
BERT+Diff-Net (Cui et al., 2019) 90.1
Our method (BERT+GDIN) 91.9

Table 1: Result on ROCStories

coreference resolution. Particularly, in the case
where person roles (PersonX or PersonY) could
not be found in the sentence, we drop the corre-
sponding nodes (person and relevant knowledge)
while building the scene graph.

For a fair comparison with the state-of-the-art
models, we employ pre-trained language model,
BERT-large (Devlin et al., 2018) and ALBERT-
xxlarge (Lan et al., 2020)for basic encoding, re-
spectively. The optimizer we choose is Adam. The
learning rates are 5× 10−6 for the model based on
BERT and 1 × 10−5 for that based on ALBERT.
We train both the models for three epochs with a
0.1 dropout rate.

3.3 Baselines
We present a series of previous works as baselines
for each dataset. For brevity, we only detail those
recently published advanced methods.
LM-FT: a kind of model that combines a task-
specific output layer with the pre-trained language
model, LM. The model is fine-tuned on ROC-
Stories or CosmosQA. LM could be GPT (Rad-
ford et al., 2018), BERT, RoBERTa (Liu et al.,
2019) , or ALBERT. Note that the BERT model
is BERT-large, which is the same as that in our
method for ROCStories; The ALBERT model is
ALBERT-xxlarger and which is the same as that in
our method for CosmosQA.
Concept: a neural network model for SCT. This
model employs a pre-trained language model,
which is initialized from GPT and introduces the
external knowledge from ConceptNet.
BERT+Diff-Net: the state-of-the-art model for
SCT. It employs the pre-trained language model,
BERT (BERT-large). In particular, it focuses on
better modeling the differences of each ending and
discriminates two endings in three semantic as-

Method Accuracy
Stanford Attentive (Chen et al., 2016) 44.4
Co-Matching (Wang et al., 2018b) 44.7
Gated-Attention (Dhingra et al., 2017) 46.2
Commonsense (Wang et al., 2018a) 48.2
GPT-FT (Radford et al., 2018) 54.4
BERT-FT (Devlin et al., 2018) 67.1
DMCN (Zhang et al., 2020) 67.6
RoBERTa-FT (Liu et al., 2019) 80.6
K-Adapter (Wang et al., 2020) 81.8
ALBERT-FT (Lan et al., 2020) 82.3
Our method (ALBERT+GDIN) 84.5

Table 2: Result on CosmosQA 4

pects: contextual representation, story-aware repre-
sentation, and discriminative representation.
K-Adapter: a recently proposed advanced method.
It contains multiple knowledge-specific adapters.
Those adapters infuse entity and syntax knowledge
from T-REx (Elsahar et al., 2019) and Book Corpus
(Zhu et al., 2015), respectively, into the pre-trained
language model (RoBERTa).

3.4 Overall Performance

Table 1 reports the results on the ROCStories
dataset. Our proposed method, which restores the
scene by the graph and GDIN, outperforms the
state-of-the-art model, BERT+Diff-Net (Cui et al.,
2019), by 1.9% in terms of accuracy. The results
on the CosmosQA dataset are shown in Table 2.
Our method outperforms the published state-of-
the-art models, K-Adapter (Wang et al., 2020) and
ALBERT-FT (Lan et al., 2020), by a considerable
margin. Those results demonstrate the effective-
ness of our overall method.

3.5 Effectiveness of the Event Knowledge

As stated in 2.1, Knowledge Obtaining, we choose
the event relevant knowledge from Atomic instead
of the concept knowledge from ConceptNet, Word-
Net, or other word-centered knowledge bases. To
validate the effectiveness of the event knowledge,
we employ GPT and RoBERTa for basic encod-
ing. We combine them with GDIN, respectively,
and conduct experiments on the two datasets. Ta-
ble 3 shows the results of the experiments. Our
model, GPT+GDIN, surpasses Concept, which uti-
lizes GPT and the knowledge from ConceptNet.
Meanwhile, the performance of RoBERTa+GDIN

4the published methods by the time of our evaluation sub-
mitting (May 16, 2020)



Figure 5: An example for showing the comparison between unstructured description and structured one (graph)
for the scene. Note that in the cross-event graph, we omit some links among the persons for brevity, including px0
to py2 , px0 to py3 , px1 to py3 , and py0 to px3 .

Method Accuracy
ROCStories

Concept (Chen et al., 2019) 87.6
GPT+GDIN 88.3

CosmosQA
K-Adapter (Wang et al., 2020) 81.8
RoBERTa+GDIN 82.5

Table 3: Comparison between the different source of
knowledge

is better than that of K-Adapter, which employs
RoBERTa and entity and syntax knowledge. To a
certain extent, those pairs of comparison verify the
effectiveness and suitability of the event knowledge
we choose for narrative MRC.

3.6 Effectiveness of the Scene Graph

As stated in 2.2, Scene Graph Building, we propose
a three-dimensional graph to describe the scene. To
verify the advantages of this method, we build two
baselines as follows:
BERT+Flat: a method that describes the scene
by the flatten unstructured text. Specifically,
BERT+Flat attaches the knowledge sentences to
their corresponding event text, and organizes an

Method Accuracy
BERT+Flat 90.2
BERT+Plane 90.9
BERT+GDIN 91.9

Table 4: Comparison between different description of
the scene

unstructured description by the template:

xAttr+and+xIntend+Event+xEffect+yEffect

where the subject name of xIntend is dropped for
fluency. During the process of encoding, the pas-
sage joined with the event knowledge is encoded as
a whole, and the ending-aware (or option-question-
aware) passage representation C is applied directly
to predict. Figure 5 shows an example of the com-
parison between the unstructured description and
the structured one for the scene.
BERT+Plane: a method that merges our proposed
three-dimensional scene graph into a unified plane
graph. Specifically, we put all of the inner-event
graphs on a single plane and then build connects
among them with the links of the cross-event graph,
e.g., the link between e0 and e1. Because GDIN is



Iteration Step Accuracy
1 (no iteration) 90.8
2 91.9
3 91.4
4 91.0
5 90.9

Table 5: Comparison between different iteration steps

not suitable for this plane graph, we encode it by
a two-layer GCN instead. The other processes are
the same as those in our proposed method.

The comparison results on ROCStories dataset
are shown in Tabel 4. Compared with BERT+Flat,
the graph-based method, BERT+GDIN shows sig-
nificant advantages. The result further confirms
our belief that the structured data provides a more
intuitive and exploitable description of the scene
for the machine. Besides, BERT+GDIN surpasses
BERT+Plane, which verifies the effectiveness of
our proposed three-dimensional graph. From our
point of view, during the process of encoding,
the unified plane graph can not retain the unique
information of each event as well as the three-
dimensional graph does.

3.7 Effectiveness of Iterable Encoding
As stated in 2.4, Dimensional-Iteration Encoding,
we propose a novel neural network, GDIN, for
encoding the three-dimensional scene graph in a
targeted manner. To study the effectiveness of the
iteration, we set a different number of iteration
steps for our model and conduct experiments on
ROCStories. The results are shown in Table 5.
On the one hand, when the number is 1, where the
model does not iterate actually, the performance lag
obviously behind that of 2 steps. This demonstrates
the effectiveness of the iteration. On the other hand,
by increasing the step number, the performance
rises up rapidly and then drops down slowly. This
phenomenon indicates that in addition to enabling
the iteration, it is also important to select a proper
iteration step. We deduce that the proper step is the
balance point where each event retains its unique
information, and at the same time, also gets the
associated information from the whole passage.

4 Related Work

Machine Reading Comprehension: Due to the
fast development of deep learning techniques and
large-scale datasets, Machine Reading Comprehen-
sion(MRC) has gained increasingly wide attention

over the past few years. Richardson et al. (2013)
build the multiple-choice dataset MCTest, and this
dataset encourages the early research of machine
reading comprehension, and a strand of MRC mod-
els (Sachan et al., 2015; Narasimhan and Barzi-
lay, 2015) are inspired by the dataset. Hermann
et al. (2015) propose a cloze test dataset CNN &
Daily Mail, which is large-scale and more suitable
than MCTest for deep learning methods. Based
on this dataset, Hermann et al. (2015) proposes
an attention-based LSTM model named Attentive
Reader, and Chen et al. (2016) simplify this model
by directly utilize the query-aware context represen-
tations to match the candidate answer. Moreover,
Rajpurkar et al. (2016) release the span extraction
dataset, SQuAD, which has become the most pop-
ular MRC dataset over recent years. This dataset
enlightens a lot of classical MRC model, like Bidi-
rectional Attention Flow (BiDAF) (Seo et al., 2016)
and R-Net (Wang et al., 2017b). Recently, there
are some new trends in this field, such as multi-
passage MRC (Campos et al., 2016), knowledge-
based MRC (Ostermann et al., 2018) and multi-hop
MRC (Yang et al., 2018; Min et al., 2019).
Narrative Comprehension: Understanding narra-
tive is a challenging task in natural language under-
standing, for the passages contain rich cause and
effect relations. A large body of previous works fo-
cus on scripts learning (Schank and Abelson, 1977).
Some previous works addressed script learning by
focusing on the narrative cloze test (Chambers and
Jurafsky, 2008). Story Cloze Test (Mostafazadeh
et al., 2017) is then introduced as a new evaluation
framework, and gains wide attention (Chaturvedi
et al., 2017; Zhou et al., 2019b). Besides, recent
works present other test frameworks for narrative
comprehension, such as multiple choice (Huang
et al., 2019) and answer generation (Kociský et al.,
2018). Compared with the other complex forms of
test, e.g., answer generation, the test frameworks
we choose (selecting ending or answer) are more
focused on narrative comprehension itself.

5 Conclusion

In this paper, we focus on Narrative Machine Read-
ing Comprehension. Inspired by human behaviors,
we propose a novel method to restore the scene
for the narrative passage. Specifically, we intro-
duce the event knowledge from Atomic and build
a three-dimensional graph to describe the scene.
To encode the scene graph, we propose Graph



Dimensional-Iteration Network (GDIN). We con-
duct experiments on two relevant datasets, ROCSto-
ries and CosmosQA. The result shows our method
achieves state-of-the-art. Further experimental in-
vestigation shows that (1) compared with concept
knowledge, the event knowledge we choose is more
suitable for narrative MRC; (2) Our proposed graph
models the scene more effectively than the unstruc-
tured text and the unified plane graph do; (3) Our
proposed GDIN encodes the scene graph efficiently
by iterating multiple steps.
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