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Abstract—Population synthesis is the foundation of the agent-
based social simulation. Current approaches mostly consider
basic population and households, rather than other social orga-
nizations. This article starts with a theoretical analysis of the
iterative proportional updating (IPU) algorithm, a representa-
tive method in this field, and then gives an extension to consider
more social organization types. The IPU method, for the first
time, proves to be unable to converge to an optimal popula-
tion distribution that simultaneously satisfies the constraints from
individual and household levels. It is further improved to a bilevel
optimization, which can solve such a problem and include more
than one type of social organization. Numerical simulations, as
well as population synthesis using actual Chinese nationwide cen-
sus data, support our theoretical conclusions and indicate that
our proposed bilevel optimization can both synthesize more social
organization types and get more accurate results.

Index Terms—Agent-based simulation, bilevel optimization,
iterative proportional updating (IPU), population synthesis.

I. INTRODUCTION

MULTIAGENT system (MAS) is a significant paradigm
to model distributed systems. This technique is usually

applied to analyze the engineering systems where disaggre-
gate components are coordinately controlled [1], [2], and
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the social/ecological systems where the systemic dynamics
have emerged through a bottom-up way [3]. For the lat-
ter field, two stages are typically required to reconstruct or
predict the system’s evolution. First, a synthetic population
that represents the real individuals within the studied region is
generated [4]. Classic methods involve synthetic reconstruc-
tion [5], combinatory optimization [6], Markov chain Monte
Carlo (MCMC) simulation-based method [7], etc. Second,
computational agent-based models are established on the syn-
thetic population to investigate the micro/macro dynamics.
Popular research topics in recent years involve group deci-
sion making [8], [9]; consensus achieving [10]–[13]; social
cognition [14], [15]; and cooperative or noncooperative gam-
ing [16]–[18]; to name a few. Obviously, the synthetic popu-
lation provides a reasonable and reliable initial state to keep
a plausible systemic evolution. Thus, it is fundamental to
multiagent social computing.

In population synthesis, households and individuals are
usually both considered. This is partly because the exist-
ing population synthesis methods usually use census data
as their main input. A part from individual attributes, most
census statistics also provide partial household information,
which facilitates the synthesis of individual and household
as a whole. For example, Zhao et al. [19] generated a syn-
thetic population for disaggregate traffic demand analysis.
Gargiulo et al. [20] presented an iterative method to gener-
ate statistically realistic population of households. Auld and
Mohammadian [21] developed another technique to deter-
mine how both household- and person-level characteristics
can jointly be used as controls when synthesizing popu-
lations. They introduced the Bayesian method to assemble
the constraints from two levels dynamically. Barthelemy
and Toint [22] proposed a sample-free household selection
method based on entropy maximization and tabu search, and
they adopted it to Belgian and Australian synthetic pop-
ulation generation. Huet et al. [23] used this assignment
approach to create households in French municipalities, and
to study dynamics of labor status and job changes. Ma and
Srinivasan [24] proposed a fitness-based approach in 2015.
They reweight each household sample record by measuring
the fitness of the total household constraints. Most recently,
Huynh et al. [25] used population assignment to generate the
synthetic population of New South Wales. They assigned the
basic population according to the household-individual map-
ping relations. Anderson and Farooq [26] modeled the popula-
tion assignment as a k partite-graph problem. After compared
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TABLE I
EXAMPLE OF THE IPU ALGORITHM

the mainstream methods, Ye et al. [27]–[29] proposed joint
distribution inference and copula-based approaches to synthe-
size the population. Sun et al. [30] gave a hierarchical mixture
model for household-individual population synthesis in their
Singapore application.

Basically, the related methods can be categorized into two
types: 1) population assignment and 2) distribution fitting.
Population assignment starts by generating the household and
individual entity pools, respectively, and then assembles them
according to a heuristic search. It provides an intuitive model
of how a family is formed in reality. However, since the
two entity pools are usually inconsistent, the assignment may
probably terminate due to one of them exhausted while the
other is still not empty. In contrast, the distribution fitting
fits the joint distribution of both individual and household
attributes. This, in essence, deals with the inconsistency during
the fitting phase and achieves a joint distribution that con-
tains matched households and individuals. Its primary merit
is that the final accuracy can be minimized before entities
generated. Currently, only a few methods belong to this type
where iterative proportional updating (IPU) is a representative
one [31]. The authors of the IPU paper provide a 2-D case
that illustrates how the algorithm works. But unfortunately, it
lacks a solid validation, which elicits the further analysis of
this article. The main contributions of this article are two-fold:
1) we theoretically prove that the IPU algorithm does not con-
verge to an optimal population in general. Such a theoretical
analysis, to the best of our knowledge, is given for the first
time and 2) the problem that IPU solves is extended to a more
general case in which not only households but also other social
organizations are taken into account. A bilevel optimization is
proposed to compute such a general population. To support
our conclusions, the methods are tested and evaluated using
both stochastic numerical simulation and real Chinese national
census data. Results indicate that our proposed method can not
only include more social organization types but also achieve
better population distributions.

The remainder of this article is organized as follows.
Section II presents a brief review of the IPU method with

an example provided by the original paper. Section III investi-
gates the general mathematical model that IPU solves. We will
give two propositions in this section to prove this algorithm
does not converge to a claimed optimal solution. Section IV
extends the problem to a bilevel optimization and introduces
gradient descent to solve the problem. To test and support
our theoretical conclusions, Section V conducts computational
experiments using both pure numerical random inputs and
real Chinese census data. Finally, in Section VI, this article
concludes with some additional discussions.

II. PROBLEM STATEMENT AND ALGORITHM REVIEW

As a sample-based method, the IPU algorithm was
developed to fit the weights of different types of households,
so that households and individuals can simultaneously satisfy
the statistical marginals in both levels [31]. To make this article
self-contained, the simple example from the original literature
is cited here to illustrate its main thought. Consider a target
population that contains two household types and three indi-
vidual types. Here, a household/individual type is defined by a
particular combination of its attributes. For instance, (Number
of Members = 3, Type of Residence = urban) and (Number
of Members = 3, Type of Residence = rural) are two different
household types. Table I gives the compositions of each house-
hold. Household type 1 contains three possible cases indicated
by the top three rows. The first row means that in this compo-
sition, the household consists of one person of each individual
types 1–3. The compositions of each household shown in the
table actually depict the mapping relations from household
to persons. They are determined from the input sample. In
this example, there are eight households with 23 individu-
als. All initial household weights are set to be one arbitrarily.
The “weighted sum” row represents the sum of each column
weighted by the “weights” column. The “constraints” row
provides the marginal distributions of household and individ-
ual types that must be matched. These marginal distributions
come from statistical results published officially, each of which
provides an entity or individual number with a part but not all
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of the attributes. δa and δb rows calculate the absolute value
of the relative difference between the weighted sum and the
given constraints, so that the “goodness-of-fit” of the algo-
rithm can be assessed at each stage of the algorithm and
convergence criteria can be set. During the computation, the
IPU algorithm adjusts weights for each household/person con-
straint in an iterative fashion. As in the table, the weights for
the first household-level constraint are adjusted by dividing
the number of households in that category (i.e., the constraint
value) by the weighted sum of the first household type col-
umn. It is 35/3 = 11.67. The weights for all households of
household type 1 are multiplied by this ratio to satisfy the
constraint. Thus, the weights for all households of household-
type 1 become equal to 11.67, and the weighted sum for this
type will be equal to the corresponding constraint. Similarly,
the weights for households of household type 2 are adjusted by
an amount equal to 65/5 = 13.00. Note that after this update,
the weights match both two household-level constraints. When
fitting the first individual-level constraint, the adjustment is
calculated as the ratio of the constraint for individual type
1 to the weight sum of the individual type 1 column. This
ratio is equal to 91/111.67 = 0.81. This value is used to
update the weights of all households that have persons of
individual type 1. As the fifth household (household ID 5)
does not have any persons of type 1, the weight for this par-
ticular household remains unchanged. The resulting adjusted
weights are shown in the “weights 3” column. The constraint
corresponding to individual type 1 is now perfectly matched.
The process is repeated for the remaining two types of con-
straints and the corresponding updated weights are shown in
the columns titled “weights 4” and “weights 5.” The cor-
responding weighted sums are shown in the various rows
titled “weighted sum.” Ye et al. [31] argued in his paper that
the iterative updates would minimize the following objective
functions:

∑

j

[∑
i d(i, j) · ωi − cj

cj

]2

or
∑

j

[∑
i d(i, j) · ωi − cj

]2

cj

or
∑

j

∣∣∑
i d(i, j) · ωi − cj

∣∣
cj

(1)

where i stands for the household (i = 1, . . . , 8); j stands for the
constraint (j = 1, . . . , 5); d(i, j) is the frequency of household
or person of type j in household i; wi is the weight of the ith
household; and cj is the value of constraint j.

III. THEORETICAL ANALYSIS OF THE IPU ALGORITHM

Clearly, the IPU algorithm runs two iterative proportional
fitting (IPF) procedures to fit household and individual con-
straints, respectively [32]. In a general case, however, it may
probably encounter fatal problems: the algorithm cannot con-
verge to an optimal solution. Before giving a proof, we first
construct the mathematical model that IPU operates. Table II
shows the general mathematical model of IPU. Let A1 and
A2 be the frequency matrices of household and individual

calculated by the disaggregate samples (Rm = R)

A1 =
⎡

⎢⎣
d(1, 1) · · · 0

...
. . .

...

0 · · · d(Rm, m)

⎤

⎥⎦

A2 =
⎡

⎢⎣
d(1, m + 1) · · · d(1, m + n)

...
. . .

...

d(R, m + 1) · · · d(R, m + n)

⎤

⎥⎦.

Let H(xi)(i = 1, . . . , m) and P(yj)(j = m + 1, . . . , m + n)

be the constraints of household and individual, and h =
(h1, h2, . . . , hR)T be the relevant weights. The subscription
stands for the cell of h. During the t-th (t ≥ 1) iteration,
the weights are updated through the household fitting and
individual fitting

h(1)
i (t) = h(m+n)

i (t − 1)

σ
(1)
i (t)

, h(2)
i (t) = h(1)

i (t)

σ
(2)
i (t)

, . . .

h(m+n)
i (t) = h(m+n−1)

i (t)

σ
(m+n)
i (t)

(2)

where h(j)
i (t) (j = 1, . . . , (m + n)) represents the weights after

the jth constraint fitted. Note that only h(1)
i (t) uses the h value

from the (t − 1)th iteration. The other h(j)
i (t) (j > 1) use the

previous h value in the t-th iteration. In (2) ∀i ∈ [1, R], the
update factors are

σ
(j)
i (t) =

{ ∑
r d(r,j)·h(j−1)

r (t)
H(xj)

, d(i, j) > 0

1, d(i, j) = 0
j ∈ [1, m]

σ
(j)
i (t) =

{ ∑
r d(r,j)·h(j−1)

r (t)
P(yj)

, d(i, j) > 0

1, d(i, j) = 0
j ∈ [m + 1, m + n]

(3)

where h(0)
i (t) = h(m+n)

i (t − 1). The subscript r is a subscript
of summation, meaning that the summary operation is for all
rows. Here, we use this notation to avoid the confusion with
the subscript i in σ

(j)
i (t).

In order to investigate the convergence, we need to con-
sider the objective functions in (1). Here, we choose the third
indicator

L =
∑

j

∣∣∑
i d(i, j) · hi − cj

∣∣
cj

(4)

to compute. But please note the related conclusions can be
applied to the other two analogically. Our discussions start
from two different cases according to the feature of A2.

Case 1: A2 does not contain zero elements. It means that
for a given i, σ

(m+1)
i (t), . . . , σ (m+n)

i (t) are all determined by
the weights. The following proposition reveals the trend of the
objective function.

Proposition 1: Suppose the IPU algorithm starts from any
feasible initial solution and updates the weights according
to (2). ∀d(i, j) > 0 in A2. Then

m+n∏

k=1

σ
(k)
i (t) = 1

holds for t > 1 ∀i ∈ 1, 2, . . . , R.
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TABLE II
GENERAL CASE OF IPU

Proof: From (3), there is

σ
(m+2)
i (t) =

∑
r d(r, m + 2) · h(m+1)

r (t)

P(ym+2)

= 1

P(ym+2)

∑

r

d(r, m + 2) · h(m)
r (t)

σ
(m+1)
r (t)

.

Since ∀d(i, j) > 0

σ
(m+1)
i (t) =

∑
r d(r, m + 1) · h(m)

r (t)

P(ym+1)

holds ∀i. Thus, σ
(m+1)
i (t) is a constant that does not depend

on i and

σ
(m+2)
i (t) = 1

P(ym+2)

∑

r

d(r, m + 2) · h(m)
r (t)

σ
(m+1)
r (t)

= 1

P(ym+2)
· 1

σ
(m+1)
i (t)

×
∑

r

d(r, m + 2)h(m)
r (t)

⇒ σ
(m+1)
i (t)σ (m+2)

i (t) = 1

P(ym+2)

∑

r

d(r, m + 2)h(m)
r (t).

Inductively, we have
m+n∏

k=m+1

σ
(k)
i (t) = 1

P(ym+n)

∑

r

d(r, m + n) · h(m)
r (t). (5)

For a given i ∈ 1, . . . , m, the ith row in A1 only has one
nonzero element. Suppose it emerges in the ki,0th column and
d(i, ki,0) = 1, (1 ≤ ki,0 ≤ m). Therefore

σ
(k)
i (t) = 1 ∀k ∈ [1, m], k �= ki,0.

Note that during household fitting, the weight cells are actu-
ally partitioned into m disjoint subsets and each update only
involves one of them. This elicits

σ
(ki,0)
i (t) =

∑
r d

(
r, ki,0

) · h(ki,0−1)
r (t)

H
(
xki,0

)

=
∑

r d
(
r, ki,0

) · h(m+n)
r (t − 1)

H
(
xki,0

)

which is also a constant and does not rely on i. Thus, (5) can
be written as

m+n∏

k=m+1

σ
(k)
i (t) = 1

P(ym+n)

∑

r

d(r, m + n) · h(m)
r (t)

= 1

P(ym+n)

∑

r

d(r, m + n) · h(m+n)
r (t − 1)

∏m
k=1 σ

(k)
i (t)

= 1

P(ym+n)

∑

r

d(r, m + n) · h(m+n)
r (t − 1)

σ
(ki,0)
i (t)

=
∑

r d(r, m + n) · h(m+n)
r (t − 1)

σ
(ki,0)
i (t) · P(ym+n)

.

So, we have
m+n∏

k=1

σ
(k)
i (t) =

m∏

k=1

σ
(k)
i (t)

m+n∏

k=m+1

σ
(k)
i (t)

= σ
(ki,0)
i (t) ·

m+n∏

k=m+1

σ
(k)
i (t)

= 1

P(ym+n)

∑

r

d(r, m + n)h(m+n)
r (t − 1)

= 1.

The last equation sign holds because
∑

r

d(r, m + n) · h(m+n)
r (t − 1) = P(ym+n)

after the last constraint fitted when t > 1.
Proposition 1 indicates after the first iteration, the

weights will remain unchanged in subsequent computation.
Specifically, consider the first iteration where t = 1

m+n∏

k=1

σ
(k)
i (1) = 1

P(ym+n)

∑

r

d(r, m + n)hr(0). (6)

If the IPU converges to an optimal solution, it will be
completed in the first round, which elicits

∑

r

d(r, j) · h(m+n)
r (1) = H

(
xj

) ∀j ∈ [1, m]
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∑

r

d(r, j) · h(m+n)
r (1) = P

(
yj

) ∀j ∈ [m + 1, m + n] (7)

when there exist positive solutions. Equations (6) and (7)
lead to

∑

i

[
d(i, j) − H

(
xj

)

P(ym+n)
· d(i, m + n)

]
· hi(0) = 0

∑

i

[
d(i, j) − P

(
yj

)

P(ym+n)
· d(i, m + n)

]
· hi(0) = 0 (8)

where ∀j ∈ [1, m] and [m + 1, m + n], respectively. Note (8)
holds automatically for j = m+n. Therefore, (8) is usually an
underdetermined system with R variables and (m+n−1) sequa-
tions. The above analysis manifests that if the optimization
problem shown in Table II has feasible positive weights, only
when the initial solution h(0) satisfies (8) that can the IPU find
one. This type of h(0), however, cannot always be guaranteed
by the input sample.

Case 2: A2 has some zero elements. In contrast with
the previous one, this case is more complicated. If the ith
row of A2 contains zero(s), then σ

(m+1)
i (t), . . . , σ (m+n)

i (t) are
no longer constants and we cannot receive (5) now. In the
following, we will prove by contradiction.

Assume that IPU converges to a positive solution of Table II
for the first time after the t-th iteration, then we have error

L(m+n)(t − 1) =
∑

1≤j≤m

∣∣∣
∑

i d(i, j)h(m+n)
i (t − 1) − H

(
xj

)∣∣∣

H
(
xj

)

+
∑

m+1≤j≤m+n

∣∣∣
∑

i d(i, j)h(m+n)
i (t − 1) − P

(
yj

)∣∣∣

P
(
yj

)

> 0 (9)

and

L(m+n)(t) =
∑

1≤j≤m

∣∣∣
∑

i d(i, j)h(m+n)
i (t) − H

(
xj

)∣∣∣

H
(
xj

)

+
∑

m+1≤j≤m+n

∣∣∣
∑

i d(i, j)h(m+n)
i (t) − P

(
yj

)∣∣∣

P
(
yj

) = 0.

(10)

The superscript (m + n) means after fitting the (m + n)th con-
straint. For convenience, let L(0)(t) = L(m+n)(t − 1). Then
consider the error sequence

{
L(0)(t), L(1)(t), . . . , L(m+n)(t)

}
.

Let L(c)(t) be the last positive error (1 ≤ c ≤ m+n−1). Thus

L(c)(t) =
∑

1≤j≤m

∣∣∣
∑

i d(i, j)h(c)
i (t) − H

(
xj

)∣∣∣

H
(
xj

)

+
∑

m+1≤j≤m+n

∣∣∣
∑

i d(i, j)h(c)
i (t) − P

(
yj

)∣∣∣

P
(
yj

) > 0 (11)

and

L(c+1)(t) =
∑

1≤j≤m

1

H
(
xj

)
∣∣∣∣∣
∑

i

d(i, j)h(c+1)
i (t) − H

(
xj

)
∣∣∣∣∣

+
∑

m+1≤j≤m+n

∣∣∣
∑

i d(i, j)h(c+1)
i (t) − P

(
yj

)∣∣∣

P
(
yj

) = 0.

(12)

Note that (11) and (12) are both the sum of (m + n) items
with absolute value signs. Therefore, each item in (12) equals
zero. And there is at least one positive item in (11) (if not,
the greater sign cannot hold). Again, consider the last positive
item, represented as the kth one.

1◦: If the last positive item in (11) comes from individual
constraints, we first investigate the situation that m + 1 ≤ k <

m + n, which means

1

P(yk)

∣∣∣∣∣
∑

i

d(i, k)h(c)
i (t) − P(yk)

∣∣∣∣∣ > 0

⇒
∑

i

d(i, k)h(c)
i (t) �= P(yk). (13)

Since the kth item is the last positive one, there is

1

P(yk+1)

∣∣∣∣∣
∑

i

d(i, k + 1)h(c)
i (t) − P(yk+1)

∣∣∣∣∣ = 0

⇒
∑

i

d(i, k + 1)h(c)
i (t) = P(yk+1). (14)

From (12), we have

1

P(yk)

∣∣∣∣∣
∑

i

d(i, k)h(c+1)
i (t) − P(yk)

∣∣∣∣∣ = 0

⇒
∑

i

d(i, k)h(c+1)
i (t) = P(yk) (15)

1

P(yk+1)

∣∣∣∣∣
∑

i

d(i, k + 1)h(c+1)
i (t) − P(yk+1)

∣∣∣∣∣ = 0

⇒
∑

i

d(i, k + 1)h(c+1)
i (t) = P(yk+1). (16)

According to (15), we know

∑

i

d(i, k)h(c+1)
i (t) =

∑

i

d(i, k)
h(c)

i (t)

σ
(c+1)
i (t)

= P(yk).

This indicates that at least one σ
(c+1)
i (t) does not equal 1 [if

not, (13) will turn into an equation], denoted as σ
(c+1)
r (t) �= 1.

On the other hand, from (14) and (16), we have
∑

i

d(i, k + 1)
[
h(c)

i (t) − h(c+1)
i (t)

]
= 0

⇒
∑

i

d(i, k + 1)h(c)
i (t)

[
1 − 1/σ

(c+1)
i (t)

]
= 0. (17)

Recall that

σ
(c+1)
i (t) =

{ ∑
i d(i,c+1)h(c)

i (t)
P(yc+1)

, d(i, c + 1) > 0

1, d(i, c + 1) = 0.
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This means ∀i ∈ {1, . . . , R}, each σ
(c+1)
i (t) ≥ 1 or each

σ
(c+1)
i (t) ≤ 1. Therefore, each [1−1/(σ

(c+1)
i (t))] ≥ 0 or each

[1 − 1/(σ
(c+1)
i (t))] ≤ 0. Since all d(i, k + 1)h(c)

i (t) > 0, (16)
indicates that each σ

(c+1)
i (t) = 1. Specifically, σ

(c+1)
r (t) = 1.

Now, we have a contradiction. If k = m + n, define
P(ym+n+1) = H(x1) and d(i, m + n + 1) = d(i, 1), the proof
is similar.

2◦: If the last positive item of (15) comes from household
constraints, replace P(yk) with H(xk). The proof is similar.

IV. GENERAL POPULATION SYNTHESIS USING

BILEVEL OPTIMIZATION

As can be seen in the previous sections, the IPU algo-
rithm only considers individual and household. In our daily
life, however, other social relationships may also extensively
impact people’s schedules and behaviors. Such social con-
nections have tied individuals together, and will undoubtedly
trigger particular personal activities. For example, the geo-
graphic locations of corporations and schools may probably
determine the routine destinations of their affiliated individ-
uals. Therefore, in this section, we extend the problem by
incorporating more types of social organizations.

Mathematically, the major challenge from one type of
social organizations to a more general case is that the heuris-
tic search, like the IPU fitting, is only applicable to the
organization-individual (household individual in the previous
case) sequence but rather than the reversed one. When consid-
ering more social organization types, each type can generate a
population dataset using IPU and these populations may prob-
ably not be consistent. Therefore, it is required to formulate
the social and individual constraints equally. For simplicity,
we consider two types of organizations, which means that the
constraints come from three levels: 1) individual; 2) house-
hold; and 3) enterprise. Let (zRm+1, . . . , zRm+l) be the enterprise
variables, and [E(zm+1), . . . , E(zm+l)] be the enterprise con-
straints. The general problem is modeled as Table III, where
the two social relationships have their own weights. We denote
the two coefficient matrices of household and enterprise as AT

H
(with Rm×m dimensions) and AT

E [with (Rm+l−Rm)×l dimen-
sions]. Their corresponding individual mapping matrices are
AT

H→P, AT
E→P [with Rm × n and (Rm+l − Rm)× n dimensions].

According to each level constraint, we have
[

AH

AH→P

]
x =

[
H
P

]
,

[
AE

AE→P

]
z =

[
Q
P

]
. (18)

Equation (18) indicates that each social organization distri-
bution needs to match its constraints, while the individual
distribution converted by each organization also needs to
match the mutual population constraints. At the population
level, each individual distribution converted by a particular
social relationship must be the same, which means

AH→P · x = AE→P · z. (19)

In application, the equality of (18) may not strictly hold, since
our data sources usually involve noises. However, (19) needs
to be strictly guaranteed to keep the uniqueness of the popula-
tion. This naturally leads to the following bilevel optimization

problem:

arg min
x,z

‖AH · x − H‖2 + α‖AE · z − Q‖2

+ β‖AH→P · x − P‖2 + γ ‖AE→P · z − P‖2

s.t. AH→P · x = AE→P · z, x ≥ 0, z ≥ 0 (20)

where λ = (α, β, γ )T is regularized coefficients. Here,
‖·‖2 can be changed to other types of norms. Basically,
problem (20) is a linear optimization, and classic algorithms,
such as gradient descent or multiobjective optimization [33],
[34] can be exploited to compute the optimal solutions. For
a more general case, one can easily extend the problem (20)
which looks like

arg min
xi

∑

i

αi‖Ai · xi − Ci‖2 +
∑

j

βi
∥∥Aj→P · xj − P

∥∥
2

s.t. A1→P · x1 = A2→P · x2 = · · · xi ≥ 0. (21)

This is a little more complicated but still solvable.

V. NUMERICAL TEST AND POPULATION SYNTHESIS

EXPERIMENTS

In practice, the number of constraints is usually much
smaller than the individual or social relation types, since sta-
tistical results only provide partial views of the variables’ joint
distribution. This causes the columns in Table III to be much
fewer than its rows. Thus, problem (20) actually becomes an
underdetermined system. In order to show the computational
process of IPU and test our proposed optimization method, this
section conducts experiments of pure numerical computation
and Chinese population synthesis.

A. Numerical Computation

Numerical computations are designed as two groups:
frequency matrix A2 does not contain (first group) or con-
tains (second group) zero cells. Both groups conduct 100
experiments to investigate the computations with different
inputs. These experiments simulate 80 variables with 60 con-
straints, among which 20 are “household” constraints. In the
first group, each experiment generates a frequency matrix A
and a positive solution randomly from 1 to 100. Constraints
are achieved by calculating the inner products of each col-
umn from A and the predefined solution. This process is to
guarantee the existence of positive solutions of the sequa-
tions. Then, the three algorithms, IPU, simulated annealing,
and gradient-descent-based bilevel optimization, are applied
to solve the problem with the same initial weights randomly
from 1 to 100. Fig. 1 shows the results of the first group. As
our theoretical analysis, errors from IPU remain unchanged
after the first iteration. While errors from the other two algo-
rithms decrease in general. In addition, IPU relies on the initial
weights since different inputs get different errors. In contrast,
gradient descent and simulated annealing are more robust and
can converge from various inputs. This group of results indi-
cates that IPU cannot converge when A2 does not have zero
cells, and thus support our theoretical conclusion.

The second group of experiments is similar to the first
group, only differentiating at the zero cells in A2. When gen-
erating the frequency matrices, some (about 20%) cells are
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TABLE III
GENERAL CASE OF POPULATION SYNTHESIS

Fig. 1. Numerical computational results, A2 does not contain zero cells. (a)–(c) are IPU, simulated annealing, and gradient descent, respectively.

randomly set to be zeros in A2. Other inputs are all kept the
same as the first group. Actually, real population synthesis
mostly belongs to this group, since every type of household
or other social organization cannot contain all types of individ-
uals. Fig. 2 gives the results. As can be seen, gradient descent
and simulated annealing almost perform a similar trend as
the first group. But the IPU algorithm displays random error
distributions during computation, which indicates that they
cannot converge to a solution. Thus, the results also support
our theoretical conclusion from case 2.

B. Chinese Nationwide Population Synthesis

To further validate our theoretical conclusions and test our
proposed method, this section compares the three algorithms
using real Chinese census data. As one of the most populous
and heterogeneous countries, the Chinese population synthe-
sis scenario is representative enough for such a validation.
Chinese 5th national census in 2000 is used as our inputs.

The first type is cross-classification tables of the total national
population, households, and enterprises. Such tables, as illus-
trated in Table IV, give joint distributions of a part of (but not
the whole) attributes from each level, respectively. For sim-
plicity, we choose five individuals, four households, and three
enterprise attributes to study (Table V). These attributes are
sufficient to support our experiment, as shown in the follow-
ing. The second type of data is disaggregate samples, each
of which reveals the whole detailed attributes of an individual
(with private information omitted). The samples are composed
of stochastically extracted households from original census
data, and include 345 167 households with 1 180 111 individ-
ual records. Compared with the total, our disaggregate samples
account for 0.95% of the whole population.

The experiment starts with the computation of constraints
for each level, that is, the values of H(xi), Q(zj), and P(yk),
where (1 ≤ i ≤ m), (m + 1 ≤ j ≤ m + l), and (m + l + 1 ≤ k ≤
m + l + n). This can be completed by the existing approach
using the cross-classification tables listed in Table IV [28].
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Fig. 2. Numerical computational results, A2 contains zero cells. (a)–(c) are IPU, simulated annealing, and gradient descent, respectively.

TABLE IV
CROSS-CLASSIFICATION TABLES FROM DIFFERENT LEVELS

TABLE V
INDIVIDUAL AND SOCIAL ORGANIZATION ATTRIBUTES

After that, we further analyze each household and enterprise
type in the disaggregate samples. For a particular organi-
zation type, the numbers of its members are used as the
row coefficients, and the number of organizations in such a
type contained in samples is used as the corresponding ini-
tial weight. In our case, the numbers of constraints are 1023
from the household, 651 from the enterprise, and 5170 from
the individual, which means that m, l, and n in Table III
are equal to 1023, 651, and 5170, respectively. In addition,
the samples contain 95 368 types of households and 1085
types of enterprises, which indicates that the coefficient matrix
AT

H has 95 368 rows (Rm = 95 368) and AT
E has 1085 rows

(Rm+l − Rm = 1085).
When the coefficient matrices, constraints, and initial

weights are determined, the three algorithms—IPU, simulated

annealing, and gradient-descent-based bilevel optimization—
are applied to iteratively compute the final weights, respec-
tively. The regularized coefficients (α, β, γ ) are all set to be 1.
For the simulated annealing and gradient-descent methods,
their search step lengths (also referred to as learning rate in
some literature) are adaptively computed in order to keep the
updated solutions significantly changed. Fig. 3 illustrates an
overview of the final errors, in which the unit of iteration
number is 10 000. Note that the IPU algorithm only computes
individual and household constraints, while the other two deal
with the whole three levels. As can be seen in the figure, the
three methods are all able to reduce the L1 error defined by (4).
The IPU algorithm quickly reaches equilibrium after about ten
iterations. Its speed of convergence is much faster than the
other two. However, this algorithm cannot further reduce the
error during the later computation. Such a phenomenon clearly
supports our theoretical conclusions in Section III. Simulated
annealing converges much slower than the other two. At the
early stage, it reduces the error quickly and steadily. After
that, the speed of error decrease becomes much slower. Such a
trend is consistent with the characteristic of simulated anneal-
ing, where the searching is stochastic and relies on effective
heuristics. This trial-and-error process may cost extra iter-
ations to find a “right” direction for error reduction. For
our proposed bilevel optimization using gradient descent, the
decreasing trend is much more obvious. The L1 error reduces
below IPU at about 1 100 000 iterations, and finally converges
to 1736 around 1 800 000 iterations. The error curve shows
piecewise smooth due to the adaptive change of the step
length (also referred to as a learning rate in some literature).
The final result clearly indicates that the bilevel optimization
outperforms the IPU method with 35.37% improvement
relatively.

Computational performance is shown in Table VI. It can
be seen that the IPU converges when its L1 error reaches
2686.5519, while our bioptimization converges to 1735.728.
The average computational times are 37 min 30 s and 17 h
20 min 24 s, respectively. In contrast, simulated anneal-
ing converges much slower. It takes 17 h 55 min 30 s to
reduce the L1 error into 2948.2651. Obviously, IPU gets the
fastest convergence speed, and bilevel optimization achieves
the highest accuracy.

Another important phenomenon from the experiment is that
the errors of the three algorithms always stay positive and
cannot be reduced to a near-zero level. This is because there
exists a bias in our disaggregate sample. Specifically, the
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Fig. 3. Errors of Chinese national population synthesis.

TABLE VI
COMPUTATIONAL PERFORMANCE

disaggregate sample does not cover all types of households
and enterprises that are contained by the cross-classification
tables. In other words, there are a certain number of con-
tradictory sequations, where the individual coefficient matrix
has all-zero columns but their corresponding constraints P(yj)

remain positive. According to our investigation, the number of
such contradictory sequations is 517, and they also bring an
error sum of 517.

VI. CONCLUSION AND DISCUSSION

Population synthesis is fundamental to the analysis of urban
transportation and other social-ecological systems using the
multiagent approach. As a representative method in this field,
IPU can simultaneously fit constraints from household and
individual levels. In this article, however, we prove that this
algorithm is not able to obtain an optimal population in theory.
Its error may probably remain stable after only a few iterations.
After theoretical analysis, we extend the problem into a more
general case, considering not only the household but also other
social organizations. A bilevel optimization method is intro-
duced to solve the general problem. Comparative experiments
both on the pure numerical test and real Chinese popula-
tion synthesis clearly support our theoretical conclusions and
indicate that our proposed method can outperform the IPU
algorithm with even more social organization constraints.

Basically, the extended problems (20) and (21) are convex
linear optimizations, which means the classic algorithms, such
as gradient descent, do not suffer from divergence. But this
does not mean the error can be reduced to near zero, as illus-
trated in the experiments. The final accuracy depends on the
quality of the disaggregate sample and further on whether con-
tradictory sequations exist in the constraints. Thus, to eliminate
the noise, preliminary data clean might be required according

to the confidence of each data source. Another way is to use
the role assignment without a disaggregate sample to minimize
the overall deviations from social organizations and individ-
uals [35], [36]. As a general model for society, a direct role
assignment, together with its related E-CARGO, may be a
feasible way to avoid the sample bias [37].

A second issue is the speed of convergence. As shown in our
experiments, many classic searching algorithms, especially the
ones with stochastic heuristics, may converge slowly. To accel-
erate the computation, a potential direction is to combine them
with IPU, where the IPU is exploited to provide a near-optimal
solution in the early stage and the heuristic searching uses such
a solution for further optimization. Evolutionary computation
can be also introduced for large-scale searching [38]–[41].
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