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Abstract— Traffic flow prediction is an important functional
component of Intelligent Transportation Systems (ITS). In this
paper, we propose a hybrid deep learning approach, called
graph and attention-based long short-term memory network
(GLA), to efficiently capture the spatial-temporal features in
traffic flow. Firstly, we apply graph convolutional network
(GCN) to mine the spatial relationships of traffic flow over
multiple observation stations, in which the adjacent matrix
is determined by a data-driven approach. Then, we feed the
output of the GCN model to the long short-term memory
(LSTM) model which extracts temporal features embedded in
traffic flow. Further, we implement a soft attention mechanism
on the extracted spatial-temporal traffic features to make
final prediction. We test the proposed method over the PeMS
data sets. Experimental results show that the proposed model
performs better than the competing methods.

I. INTRODUCTION

ACCURATE and effective traffic flow prediction is crucial
for traffic management and control, which can help

alleviate urban traffic congestion, save energy and reduce
emissions [1]–[3]. Traffic flow prediction has a long research
history, and various traffic flow prediction methods have been
developed.

Recently, deep learning methods are widely used in traffic
prediction and have achieved good performance. Lv et al.
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used stacked autoencoders to extract spatial-temporal traffic
flow features and make traffic flow prediction [4]. The long
short-term memory (LSTM) models can capture temporal
dependencies of time series data [5]. Fu et al. applied the
LSTM model and its variant GRU model [6] to predict short-
term traffic flow [7]. Yu et al. proposed a graph convolutional
network model (GCN) to tackle the traffic prediction problem
[8]. Chen et al. used convolutional neural networks (CNN)
to predict traffic flow where they used time series folding
and multi-grained learning techniques [9]. Duan et al. com-
bined CNN and LSTM networks to predict traffic flow with
trajectory data [10].

Traffic flow dynamics is a typical spatial and temporal
process. Therefore, it has both spatial features and temporal
features. In this paper, we propose a hybrid deep learning
framework called graph and attention-based long short-term
memory network (GLA) to learn both the spatial and tempo-
ral features of traffic flow for prediction. More specifically,
we use the graph convolutional network (GCN) to extrac-
t spatial relationships of traffic flow between observation
locations, in which the adjacent matrix A is composed of
trainable parameters and obtained through the learning over
data sets. The GCN is then connected to the LSTM module
which captures the temporal relations of traffic flow. Also,
we use the soft attention mechanism when designing the
proposed hybrid network. We test the proposed method on
the PeMS data sets and experiments show that the proposed
method performs better than some commonly used traffic
flow prediction approaches.

The contribution of this paper is threefold.

• We propose a hybrid deep learning framework for traffic
flow prediction, in which GCN is to capture the spatial
relationships of traffic flow between adjacent traffic
observation stations, and the LSTM model is to capture
temporal dependency of traffic flow data. Thus, the
proposed model inherently considers the spatial and
temporal correlations of traffic flow.

• A data-driven approach is used to learn the adjacent
matrix A, which represents an influence metric of traffic
flow among traffic observation stations.A soft attention
mechanism is added to capture important features and
thus assign different weights to the elements of output
vectors.

• We compare the proposed method with existing popular
methods on traffic flow prediction, and experimental
results show that the proposed method has superior
performance.
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The rest of this paper is organized as follows. Section II
introduces the proposed hybrid deep learning model. Section
III presents the experimental results. Section IV concludes
this paper.

II. METHODOLOGY

In this section, we present the proposed hybrid deep
learning approach for traffic flow prediction. We begin by
describing the problem definition of traffic flow prediction,
and then we introduce the basics of GCN and soft attention
mechanism. Finally, we present the framework of the pro-
posed method, which is the combination of the GCN, the
LSTM module, and the soft attention mechanism.

A. Problem Definition

The traffic flow prediction task can be described as
follows. Given the sequence of observed traffic flow
[Xt−S , . . . , Xt−2, Xt−1], the task is to predict traffic flow
Xt at time step t, which can be written as (1).

Xt = F([Xt−S , . . . , Xt−2, Xt−1]) (1)

Here, S is called window size, i.e. the size of previous time
steps. Xt is a vector representing traffic flow data at time
step t across observation stations.
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Fig. 1: Schematic depiction of regression problem on graph
with S input channels and F feature maps in output layers.

As Fig. 1 shows, the traffic observation stations can be
described as a graph G = {q, E ,V,A}. V is the vertex
set denoting observation stations, and q ∈ R is a scalar
associated with every vertex νi ∈ V . Suppose the number of
detector stations is Ns. Then we can obtain that the feature
vector of traffic flow at time step t is Xt = {q1t , q2t , . . . , q

Ns
t }.

The traffic flow relationship between adjacent observation s-
tations can be described as the interactions between vertexes,
which is denoted as the adjacent matrix A ∈ RNs×Ns . Each
entry Aij represents the influence degree of two stations with
a directed edge ε ∈ E from νi to νj .

B. GCN to Capture Spatial Information

Traffic flow prediction benefits from the use of both
temporal information and neighboring traffic information.
Previous studies have shown that using traffic flow data from

neighboring observation stations can help improve traffic pre-
diction [11]. In the proposed method, we use GCN to extract
the spatial relationships of traffic flow among observation
stations. We introduce the GCN model as follows.

The Laplace matrix L for a graph can be defined as (2).

L = D−1/2(D −A)D−1/2 = IN −D−1/2AD−1/2 (2)

Where IN is the identity matrix with the size of N×N . The
degree matrix is defined as Dii =

∑
j Aij .

The eigendecomposition of the matrix L can be described
as L = UΛUT , where Λ = diag ([λ0, λ1, · · · , λN−1]) and
λi is the eigenvalue of L. U is the matrix whose columns
are the eigenvectors of L.

Generalizing convolutions to the graph domain has an
increasing interest, and one approach is called the spectral
method [12], [13]. The convolution operation is done in the
Fourier domain and defined as multiplication of an input
signal x with a filter g, as (3).

g ∗ x = U
(
(UT g)� (UTx)

)
= Ugθ(Λ)UTx (3)

That is, the input x is converted into UTx which falls
into the spectral space U whose basis is [u0, u2, . . . , uN−1].
Here � represents the hadamard product, and gθ(Λ) =
UT g = diag(θ), where θ ∈ RN . Generally, the computa-
tion overhead of the convolution kernel gθ(Λ) is expensive
(the computational complexity is O(N3)). Therefore, some
approximate methods are proposed such as polynomials and
Chebyshev polynomials [12]. The calculation of g ∗ x can
be simplified by using only the first-order polynomial [13],
which is shown as (4).

g ∗ x ≈ θ
(
IN +D−1/2AD−1/2

)
x (4)

We use (4) for the approximate calculation in this paper.
We know that: IN +D−1/2AD−1/2 = D̃−1/2ÃD̃−1/2, with
Ã = A + IN and D̃ii =

∑
j Ãij . (This is also called the

renormalization trick.) Therefore, the output of the lth layer
H(l) can be written as (5).

H(l) = σ
(
D̃−1/2ÃD̃−1/2H(l−1)Θ(l−1)W (l)

)
(5)

Where σ is the activation function such as sigmoid. Let
Θ(l−1) × W (l) be W̃ (l) , where Θ(l−1) ∈ RC(l�1)×F (l�1)

,
W (l) ∈ RF (l�1)×C(l)

and W̃ (l) ∈ RC(l�1)×C(l)

. C(l−1) is
the dimension of the (l − 1)th layer’s output and F (l−1) is
the size of feature vectors in each dimension. Then, (5) can
be rewritten as (6).

H(l) = σ
(
D̃−1/2ÃD̃−1/2H(l−1)W̃ (l)

)
(6)

An intuitive way to determine Ã is to use the distance
between two stations. Many researchers used a threshold
Gaussian kernel method to calculate Ã [8] [14] . However,
such a simplified way cannot easily represent traffic flow
relationships appropriately. Here, let Â = D̃−1/2ÃD̃−1/2,
then (6) can be rewritten as (7), and the entries in Â can
be learned from data. That is, Â is a matrix composed of
trainable parameters.

H(l) = σ
(
ÂH(l−1)W̃ (l)

)
(7)
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Fig. 2: The diagrammatic view of soft attention.

C. Attention to Assign Weights of Sequence Output

Inspired by recent successes of attention mechanism in
natural language analysis and image processing, we use a soft
attention mechanism in the proposed traffic flow prediction
methods [15]–[17]. In our proposed framework, the output
of GCN is fed into the LSTM module, and then the soft
attention mechanism is implemented over the output of the
LSTM, which helps the model focus on more important
features and make the prediction more accurate.

The diagrammatic view of the soft attention mechanism
is shown in Fig. 2. Suppose there are k feature vectors
with d dimensions, denoted as hi = {h1i , h2i , . . . , hdi }(i =
1, 2, . . . , k). The output ĥ (also with d dimensions) is calcu-
lated in a weighted average way as follows.

ĥ =

k∑
i=1

αihi (8)

Where αi is the weight. hi needs to be scored to evaluate its
effect on ĥ. We train a fully connected network to calculate
a score si for each hi, and it should be noted that other
functions except neural networks also can be used. The
output of the network is (9).

si = Γ(hi) = tanh
(
wThi + bi

)
(9)

Where si represents the correlation coefficient between hi
and ĥ. Then we use the softmax function to normalize the
score si and get the final weight αi, as (10).

αi = softmax (si) = softmax (Γ(hi)) (10)

The attention mechanism can be seen as producing a fixed-
length embedding ĥ of the input sequence hi by computing
an adaptive weight αi.

D. The Hybrid GLA Network

The proposed hybrid deep learning network contains the
graph convolution network, the LSTM model, and the soft
attention mechanism, which is shown in Fig. 3.

The GCN is to extract spatial features and relationships
of traffic flow between observation stations mapped into a
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Fig. 3: The architecture of the proposed GLA model.

graph. Then the output of the GCN is fed into the LSTM
module which has the good ability of capture temporal
dependencies. Finally, the soft attention mechanism is put
over the output of the LSTM module, which further combines
the spatial and temporal information.

III. EXPERIMENTS

A. Dataset Description and model training

We test the proposed hybrid model on the data sets extract-
ed from Caltrans Performance Measurement system (PeMS)
database. The collected traffic flow data is aggregated in 5-
min interval. In the experiment, we set the vertexes of input
graph as 100. So the particular data sets used in this paper
are collected from 100 detector stations, whose identification
numbers are in the range from No.40000 to No.40171 (the
station ID is not continuous) in District 4. The sampling
period is from April 1, 2016 to August 31, 2016. We regard
each detector station as a vertex, then map the observation
stations and their neighboring relationship as a graph. Thus,
we get the input of the GCN model. The training algorithm
is illustrated in Algorithm 1.

B. Index of Performance

In this paper, three commonly used performance indexes
are introduced to compare traffic prediction models.
• Root mean square error (RMSE):

RMSE =

[
1

Ns × n

Ns×n∑
i=1

(yi − ŷi)2
]1/2

(11)

• Mean absolute error (MAE):

MAE =
1

Ns × n

Ns×n∑
i=1

|yi − ŷi| (12)

• Mean absolute percentage error (MAPE):

MAPE =
1

Ns × n

Ns×n∑
i=1

|yi − ŷi|
yi

(13)

where yi is the observed traffic flow and ŷi is the predicted
traffic flow. For the MAPE criteria, we only consider the
cases when yi > 0.
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Algorithm 1 Pseudo-Code of the model Training: Sl =
40,Ns = 100,M = 43990, BatchSize = 256

Input: The window size Sl, the number of traffic detector
stations Ns, traffic flow data represented as a matrix C ∈
RNs×M .

output: The trained model and the adjacent matrix A.
1: % Construct data sets D.
2: D⇐ φ
3: All data is scaled range from 0 to 1 for normalization.
4: for m < M do
5: Xm ⇐ [q1m, q

2
m, . . . , q

Ns
m ]

6: m⇐ m+ 1.
7: end for
8: for Xt−Sl

, Xt ∈ C do
9: D⇐ {X = [Xt−Sl

, .., Xt−2, Xt−1],Y = Xt}
10: t⇐ t+ 1.
11: end for
12: % Training the model.
13: Construct the network model as shown in Fig. 3.
14: Initialize adjacent matrix A, network parameters Θ.
15: Divide D into training set D1 and test set D2.
16: repeat
17: A batch of data is randomly selected from D1 and

put into the network;
18: Update the parameters A, Θ and minimize the MSE

between Ypred and Y , using the Adam algorithm;
19: until “The stop criterion is met”
20: return The trained model, the adjacent matrix

C. Model structure

The best hyper-parameters are chosen by using the
Tree-structured Parzen Estimator (TPE) [18]. The search
ranges for hyper-parameters of the proposed model are set
as follows: the ranges of hidden layer nodes are within
[32, 64, 100, 128, 150], and the window size are selected from
[20, 30, 40, 50]. Keras [19] is used to build and train the
proposed model, and the mean square error (MSE) is set as
the loss function. Finally, the best window size is 40 and the
best parameters of the proposed architecture are determined,
which is shown in Table I.

To illustrate the advantages of our model, we compare

TABLE I: Hypter-parameters of our proposed models

Layer Output Shape Hidden Nodes

GCN 100× 64 100× 64

Batch normalization 100× 64 0

Transpose Layer 64× 100 0

LSTM 64× 100 100

Batch normalization 64× 100 0

Attention 1× 100 64

TABLE II: Performance of multiple prediction

Model Name RMSE MAE MAPE%

BP NN 31.39 21.37 13.13

SAE 31.72 20.94 11.94

LSTM 30.88 20.93 11.95

GLA(ours) 29.41 19.95 11.79
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Fig. 4: Performance of prediction on test set.

the proposed model with back propagation neural network
(BPNN), LSTM and stacked auto-encoders (SAE). All these
three competing methods are finely tuned. During the train-
ing process, Batch Normalization (BN) [20] and early stop
techniques are applied. All experiments are performed on
a desktop with an Intel Core i7-8700 CPU and a Nvidia
GeForce GTX 1060 (3G) Graphics Card.

D. Results

We perform 5-min traffic flow prediction task over multi-
ple detector stations (100 stations). The experimental results
are shown in Table II. The best results are marked in bold in
the table. As can be seen from the table, the GLA method
has advantages over the BPNN, the SAE and the LSTM
models. The proposed method performs about 4.76%, 4.68%
and 1.34% better than the LSTM model, and about 7.28%,
4.73% and 1.28% better than the SAE model for RMSE,
MAE and MAPE, respectively.
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Fig. 5: Performance of prediction in No.40000 on test set.

Fig. 4 shows the prediction results of the proposed method
and competing methods over the data collected on August
16, 2016. We just showed the prediction results over the
first 25 detector stations at 12:00, August 16, 2016 in Fig.
4(a). The horizontal axis shows the detector station IDs,
while the vertical axis shows the count of vehicles per 5
minutes. In Fig. 4(b), we plot the prediction results on the
detector station with No.40000 from 10:10, August 16, 2016,
to 13:25, August 16, 2016. It is clearly shown that the GLA
model is more accurate than the competing methods.

Fig. 5 illustrated the prediction results on a detector station
with No.40000, in which the daily average MAE and MAPE
(14 days) as performance indicators. It is also clearly shown
that the proposed method performs better.

IV. CONCLUSION

In this paper, we propose a hybrid deep learning method
for traffic flow prediction. The proposed method takes into
account both temporal features and spatial features of traffic
flow. We use the graph convolutional network to capture
spatial interactions of traffic flow over multiple observation
stations (100 stations in this paper), where the adjacent ma-
trix A is learned from data. The output of the GCN model is
fed into the LSTM model to capture temporal dependencies
of traffic flow. A soft attention mechanism is implemented
to combine the extracted spatial and temporal features. We
evaluate the performance of the proposed method on the
PeMS data sets and compare it with the BP neural network
model, the SAE model, and the LSTM model. Experimental
results show that the proposed method performs better than
the competing methods. We believe there is still room to

improve the accuracy of the proposed framework, which is
our future work.
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