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ABSTRACT

Spatial information helps improve the performance of polari-
metric synthetic aperture radar (PolSAR) image classifica-
tion. Some existing methods have combined the spatial in-
formation and polarimetric features by the third-order tensor
representation for feature extraction. They describe a pixel
with the patch centered on this pixel. But they neglect the
spatial heterogeneity, which may influence the classification
performance. Therefore, we firstly seek k nearest samples
based on the polarimetric feature similarity for each pixel to
construct the second-order tensor, whose first order denotes
the nearest samples and the second order denotes the polari-
metric features. Moreover, k nearest samples are searched in
a spatial local region rather than the full image, which can
exploit the spatial information and reduce the computational
burden. Then we employ tensor principal component analy-
sis (TPCA) to extract low-dimensional features. Experimen-
tal results demonstrate that the proposed method can improve
the classification performance compared with other methods.

Index Terms— spatial heterogeneity, tensor-based di-
mensionality reduction, PolSAR image classification, feature
extraction

1. INTRODUCTION

Polarimetric synthetic aperture radar (PolSAR) can acquire
rich information of different types of land cover based on
multiple polarizations, thus PolSAR image classification has
become a research hotspot [1]. General PolAR image clas-
sification methods contain two key steps: feature extraction
and classifier design. Feature extraction is a crucial factor for
PolSAR image classification. Whether the extracted features
are proper influences the classification performance to a large
extent.

Originally, researchers obtained features from the Pol-
SAR data for image classification [2]. Afterwards, with the
advent of various polarimetric target decomposition methods,
numerous parameters produced by these target decomposition

methods have been utilized as features for image classifica-
tion [2]. In some recent works, some visual features, such
as texture features and color features have also been applied
in PolSAR image classification [2]. It is obvious that these
features are redundant and their number is huge.

To extract proper low-dimensional intrinsic features,
some dimensionality reduction methods have been used for
PolSAR image classification, such as Laplacian eigenmaps
(LE) [3] and supervised graph embedding (SGE) [4]. How-
ever, the above dimensionality reduction methods are based
on vectors and deal with a single pixel. In fact, the spatial
information is helpful for improving the classification per-
formance. In [1, 5, 6], each pixel was described by the patch
centered on this pixel to utilize the spatial information, thus
each pixel was represented as a third-order tensor which com-
bined the spatial information and multiple features. Some
tensor-based dimensionality methods were used to extract
low-dimensional features, such as tensor principal compo-
nent analysis (TPCA) [5], tensor local discriminant analysis
(TLDE) [6], tensor locally linear embedding (TLLE) [1].
These methods indeed take the spatial information into ac-
count, but they ignore the spatial heterogeneity. When the
patch contains many pixels whose properties are different
from the center pixel, it may not be a good choice any more
to directly use the patch to characterize the center pixel which
has been discussed in [6].

Motivated by the above works, we aim to propose a novel
tensor-based feature extraction method which takes the spatial
heterogeneity into account in this paper. Firstly, we search k

nearest samples of each pixel in a spatial local region based
on the polarimetric feature similarity. Then each pixel is rep-
resented as a second-order tensor, whose first order denotes
the nearest samples and the second order denotes the polari-
metric features. Afterwards, we take a simple tensor-based
dimensionality reduction method, TPCA, as an example to
extract low-dimensional features for PolSAR image classifi-
cation. Experimental results show that the proposed method
can improve the classification performance.
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Fig. 1. The process of forming the second-order tensor.

2. THE PROPOSED METHOD

2.1. Polarimetric features

For each pixel, we acquire 36 polarimetric features from the
PolSAR data (the scattering matrix S, the coherency matrix T

and the covariance matrix C) and some target decomposition
methods (Pauli decomposition, H/A/α decomposition, Huy-
nen decomposition, Freeman decomposition and Krogager
decomposition). We denote polarimetric features of pixel i
by a vector xi ∈ R36.

2.2. Forming two-order tensors

To consider the spatial heterogeneity, we do not directly adopt
the patch to characterize the center pixel. We firstly search k

nearest samples of a pixel based on the Euclidean distance of
polarimetric features in a local region as described in Fig. 1.
The Wishart distance is commonly used as the similarity for
PolSAR image classification, but it costs much computation
time [7]. While polarimetric features from the PolSAR da-
ta and target decomposition methods can also character the
property of each pixel. And the computation of he Euclidean
distance of polarimetric features is more efficient. Therefore,
the Euclidean distance of polarimetric features is used as the
similarity in this paper. In addition, the search is conducted
in a spatial local region rather the full image, which has t-
wo advantages: the spatial information is considered and the
computation burden is reduced.

Concretely, for pixel i and j, the Euclidean distance of
polarimetric features is computed by d(xi, xj) = ‖xi−xj‖2.
k nearest samples of pixel i are sought in a 2[

√
k] × 2[

√
k]

region centered on pixel i, where [•] denotes rounding a num-
ber. Then pixel i is represented as a second-order tensor Xi ∈
R(k+1)×36 as shown in Fig. 1.

2.3. Solving for two projection matrices

For n samples X1, X2, · · · , Xn, we aim to search for two
project matrices U1 ∈ Rd1×(k+1), U2 ∈ Rd2×36, where d1
and d2 are the reduced dimensionality for the two orders.
Then the low-dimensional representation is computed as fol-
lows:

Yi = Xi ×1 U1 ×2 U2 (1)

Algorithm 1: TPCA
Input: The training samples

{X1, · · · , Xn} ∈ RD1×···×DM and the reduced
dimensionality d1, · · · , dM

1: Initialize U0
1 = ID1

, · · · , U0
M = IDM

2: for t = 1, · · · , Tmax do
3: for m = 1, · · · ,M do
4: Zi =

Xi×1 · · ·×m−1U
t
m−1×m+1U

t−1
m+1 · · · ×MU t−1

M ,

i = 1, 2, · · · , n
5: Zi ⇒m Z

(m)
i , where Z(m) is the mode-m

unfolding of Z
6: Select the dm eigenvectors corresponding to the

largest dm eigenvalues of

Ct
m =

∑

i

(

Z
(m)
i − Z

(m)
)(

Z
(m)
i − Z

(m)
)T

to form the matrix V ∈ RDm×dm

7: U t
m = V T

8: end for
9: If t > 2 and

∑M

m=1 ‖U t
m − U t−1

m ‖ < ε, break
10: end for
Output: Um = U t

m, m = 1, · · · ,M .

where Yi ∈ Rd1×d2 , ×1 and ×2 are the mode-1 and mode-2
product of a tensor and a matrix. Some definitions of tensors
are presented in [6] in detail.

Here we employ TPCA for feature extraction. TPCA aims
to maximize the total tensor scatter as follows:

{U1, U2} = arg max
U1,U2

n
∑

i=1

‖(Xi −X)×1 U1 ×2 U2‖2 (2)

where X = 1
n

∑n

i=1 Xi is the mean of n samples, ‖ • ‖ is
the norm of a tensor. Problem (2) can be solved through an
iterative process. Algorithm 1 displays the TPCA algorithm
for general cases, i.e. X ∈ RD1×···×DM . Specific to M = 2,
at each iteration, when m = 1, i.e., fix U2 and solve for U1,
Zi = Xi ×2 U2 and Z

(1)
i = Zi. Because ‖(Zi − Z) ×1

U1‖2 = ‖U1(Z
(1)
i −Z

(1)
)‖2F = tr(U1(Zi−Z)(Zi−Z)TUT

1 ),
problem (2) becomes:

U1 = argmax
U1

tr

(

U1

(

n
∑

i=1

(Zi − Z)(Zi − Z)T

)

UT
1

)

(3)
Problem (3) can be solved by the eigenvalue decomposi-

tion of
∑n

i=1(Zi −Z)(Zi −Z)T . The d1 eigenvectors corre-
sponding to the largest k eigenvalues form the matrix V , then
U1 = V T .

When m = 2, i.e., fix U1 and solve forU2, Zi = Xi×1U1

and Z
(2)
i = ZT

i . Then we do the eigenvalue decomposition
of
∑n

i=1(Zi − Z)T (Zi − Z) to obtain U2.
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Fig. 2. Classification accuracy versus dimensionality on the
San Francisco Bay data set.

(a) (b) (c) (d) (e) (f)

Fig. 3. Classification maps of the four methods on the San
Francisco Bay data set: (a) the denoised image, (b) the
ground truth, (c) SWC, (d) PCA, (e) 3DPCA, (f) the proposed
method.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Classification maps of the four methods on the
Oberpfaffenhofen data set: (a) the denoised image, (b) the
ground truth, (c) SWC, (d) PCA, (e) 3DPCA, (f) the proposed
method.

3. EXPERIMENTS

Experiments are conducted on two PolSAR data sets which
are acquired from the San Francisco Bay in the USA by
NASA/JPL’s AIRSAR and the Oberpfaffenhofen area in
Germany by the German Aerospace Center’s E-SAR, respec-
tively.

For the first data set, we select a 600× 200 subset which
contains the Golden Gate Bridge and the boulevard as seen
in Fig.3(a). We consider four classes: sea, mountains, grass
and buildings as shown in Fig.3(b) [8]. The 7 × 7 refined
Lee filter is used to filter the PolSAR image. In our exper-
iments, 30% samples from each class are randomly selected
for training and the rest for testing. The mean accuracy of
10 experiments is used as the classification numerical results.
About some parameters of the proposed method, such as the
number of nearest samples k, the reduced dimensionality d1
and d2, the maximum number of iterations Tmax and the er-
ror ε, we select k = 25 empirically for a good performance.
It is obvious that the intrinsic dimensionality of the first order
is 1, then we set d1 = 1. For d2, Fig.2 shows the classifica-
tion accuracies versus dimensionality ranging from 1 to 15.
We can see that when d2 is larger than 8, the accuracy stays
almost unchange. Therefore, d2 is set to be 8. In addition,
Tmax = 10 and ε = 10−6. According to experiments, we can
see that the algorithm stops after 3 iterations.

The proposed method is compared with supervised Wishart
classifier (SWC), PCA, 3DPCA. The reduced dimensionality
for PCA is 8. For 3DPCA, the 11 × 11 × 36 third-order
tensor is used for a good performance and the dimensional-
ity for three orders are 1, 1 and 8. Tmax and ε are set the
same as the proposed method. To show how different feature
extraction methods influence the classification performance
more clearly, a very simple classifier, nearest neighbour (NN)
classifier, is used for the final classification. The numerical
and visual classification results are shown in Tab.1 and Fig.3,
respectively.

From the results, we can see that pixel-based SWC and
PCA do not have high classification accuracy and the visu-
al classification map is also not close to the ground truth as
shown in Figs.3(c-d). 3DPCA is a patch-based method, which
makes use of spatial information. Therefore, 3DPCA has
a better classification performance generally. However, the
Golden Gate Bridge and the boulevard can not be maintained
well as shown in Figs.3(e) because the direct usage of patch
does not take the spatial heterogeneity into account. The pro-
posed method firstly considers the spatial heterogeneity to
construct the second-order tensors. Meanwhile both the s-
patial information and polarimetric information are exploited
for feature extraction. Therefore, the proposed method has a
higher classification accuracy and a better visual classification
result compared with other methods.

The second data set consists of a great number of road-
s [9] and we select a 300× 400 subarea which only contains
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Table 1. Classification accuracies comparison of four meth-
ods on the San Francisco Bay data set

Method Sea Mountains Grass Buildings
Total

accuracy
SWC 0.9583 0.6094 0.5778 0.8720 0.7824
PCA 0.9703 0.7787 0.9007 0.8992 0.9165

3DPCA 0.9730 0.9133 0.9212 0.8945 0.9324
The proposed

method
0.9843 0.9400 0.9600 0.9625 0.9677

Table 2. Classification accuracies comparison of four meth-
ods on the Oberpfaffenhofen data set

Method Roads Others
Total

accuracy
SWC 0.9277 0.8499 0.8713
PCA 0.8585 0.9496 0.9228

3DPCA 0.8114 0.9591 0.9158
The proposed

method
0.8828 0.9550 0.9338

roads and others as shown in Fig.4(b) to further validate the
proposed method can preserve the spatial heterogeneity. The
experimental setting and parameters are the same as those of
the first data set. The numerical and visual classification re-
sults are shown in Tab.2 and Fig.4. We can see that for this
extreme case 3DPCA performs even worse than PCA and the
roads are broken. The proposed method still performs better
than other methods.

4. CONCLUSION

This paper proposed a novel tensor-based extraction method
for PolSAR image classification. To take the spatial hetero-
geneity into account, we firstly seek k nearest samples based
on the polarimetric feature similarity in a spatial local region.
Then each pixel is represented as a second-order tensor. Fi-
nally, TPCA is used to extract low-dimensional features. Ex-
perimental results demonstrate the proposed method can im-
prove the performance of PolSAR image classification .

5. ACKNOWLEDGEMENT

This work was partly supported by the Beijing Natural Sci-
ence Foundation under Grant 4174107, and partly support-
ed by the National Natural Science Foundation of China un-
der Grant 61802408, Grant U1435220, Grant 91648205 and
Grant 61602483.

6. REFERENCES

[1] H. Liu, Z. Wang, F. Shang, Y. Shuyuan, S. Gou, and
L. Jiao, “Semi-supervised tensorial locally linear embed-
ding for feature extraction using PolSAR data,” IEEE
Journal of Selected Topics in Signal Processing, pp. 1–1,
2018.

[2] S. Uhlmann and S. Kiranyaz, “Integrating color features
in polarimetric SAR image classification,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 52, no.
4, pp. 2197–2216, April 2014.

[3] S. T. Tu, J. Y. Chen, W. Yang, and H. Sun, “Lapla-
cian eigenmaps-based polarimetric dimensionality reduc-
tion for SAR image classification,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 50, no. 1, pp. 170–
179, Jan 2012.

[4] L. Shi, L. Zhang, J. Yang, L. Zhang, and P. Li, “Super-
vised graph embedding for polarimetric SAR image clas-
sification,” IEEE Geoscience and Remote Sensing Letter-
s, vol. 10, no. 2, pp. 216–220, March 2013.

[5] M. Tao, F. Zhou, J. Su, and J. Xie, “Feature extraction
for PolSAR image classification using multilinear sub-
space learning,” in 2017 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), July 2017, p-
p. 1796–1799.

[6] X. Huang, H. Qiao, B. Zhang, and X. Nie, “Supervised
polarimetric SAR image classification using tensor local
discriminant embedding,” IEEE Transactions on Image
Processing, vol. 27, no. 6, pp. 2966–2979, June 2018.

[7] L. Zhang, C. Han, and Y. Cheng, “Improved SLIC su-
perpixel generation algorithm and its application in po-
larimetric SAR images classification,” in 2017 IEEE In-
ternational Geoscience and Remote Sensing Symposium
(IGARSS), July 2017, pp. 4578–4581.

[8] C. He, J. Deng, L. Xu, S. Li, M. Duan, and M. Liao,
“A novel over-segmentation method for polarimetric SAR
images classification,” in 2012 IEEE International Geo-
science and Remote Sensing Symposium, July 2012, pp.
4299–4302.

[9] C. He, S. Li, Z. Liao, and M. Liao, “Texture classifica-
tion of PolSAR data based on sparse coding of wavelet
polarization textons,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 51, no. 8, pp. 4576–4590, Aug
2013.

1155

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 16,2020 at 08:46:19 UTC from IEEE Xplore.  Restrictions apply. 


