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Impurity detection involves detecting small impurities in the liquid inside an opaque glass bottle with
complex textures by looking through the bottleneck. Sometimes experts have to observe continuous
frames to determine the existence of an impurity. In recent years, region-based convolutional neural net-
works have gained incremental successes in common object detection tasks. However, sequential impu-
rity detections present more challenging issues than detecting targets in a single frame, because
consecutive motions and appearance changes of impurities cannot be captured using those common
object detectors. In this paper, we propose a simple and controllable ensemble architecture to alleviate
this problem. Specifically, a siamese fusion network is used to generate impurity proposals, then an
attention model based on visual features and trajectories is proposed to localize a unique region proposal
in each frame, finally, a sequential region proposal classifier using a long-term recurrent convolutional
network is applied to refine impurity detection performances. The proposed method achieves
79:81%mAP on IML-DET datasets, outperforming a comparable state-of-the-art Mask R-CNN model.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Impurity detection in a glass container is a process of searching
potential impurities [1–6] (color points, fibers, plugs, black points,
white points, threads, cotton, and so on) in the liquid by looking
through the bottle surface, and containers are usually checked by
humans. Specifically, glass bottles can be divided into transparent
bottles and opaque bottles: as for transparent bottles, workers can
find impurities directly through the bottle walls with their own
eyes under strong illuminations, and to adapt to the fast speed of
a production line, workers much detect bottles rapidly and con-
stantly, but leak detections are unavoidable after the excessive
use of human eyes; as for opaque glass bottles, workers must check
them from the bottlenecks, moreover, under limited lighting con-
ditions on bottle surfaces, they have to repeatedly rotate bottles
and recheck them from different perspectives.

Impurity detection completely relying on visual features in our
task remains challenging due to the following reasons: firstly, a
sampled image in an opaque glass not only contains the bottle with
complex textures but also is filled with many background fluctua-
tions caused by liquid waves and bubbles after rotating bottles,
therefore, traditional machine-vision-based methods [1–4] applied
in impurity detection in transparent glass containers with clean
backgrounds may be difficult to be applied directly in our sampled
images; secondly, ambiguous visual features of impurities in opa-
que glass containers sometimes lead to challenging discrimina-
tions between impurities and backgrounds using state-of-the-art
region-based common object detectors [7,8,6].

Trajectory features of impurities in opaque glass bottles are
more global and distinctive than local visual features. Specifically,
impurity detection in an opaque glass bottle models the problem of
searching potential impurities in the liquid inside the opaque glass
bottle by looking through the bottleneck. Bottles are usually
observed after they are rotated in high speed and then are abruptly
stopped [6], as a result, an image sequence observed using our
model is shown in Fig. 1, and a circular trajectory can be found if
all the locations of an impurity individual are put into a single
empty image.

In this paper, a trajectory-based attention model is proposed to
alleviate the above-mentioned problems, and a sequential-region-
based impurity detection framework (see Fig. 2) is constructed,
which eventually improve impurity detection performances.
Specifically, to exploit short-term visual changes, a differential
image between neighboring frames is combined with a current
gray image. To generate high-quality region proposals, a fully con-
volutional neural network can be applied to produce accurate
object proposals [9], inspired by their work, siamese fusion net-
works are systematically constructed and analyzed to generate
high-quality temporal semantic impurity proposals; to eliminate
ambiguous background fluctuations for sequential region propos-
als, a trajectory-based attention model based on circular motion

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.06.008&domain=pdf
https://doi.org/10.1016/j.neucom.2020.06.008
mailto:guoyue2013@ia.ac.cn
https://doi.org/10.1016/j.neucom.2020.06.008
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Fig. 1. Impurity detections in an image sequence: the predicted bounding boxes and manually labeled boxes are respectively annotated with blue squares and green
rectangles, and a trajectory of the moving impurity is shown in the figure center.

Fig. 2. Sequential-region-based impurity detection framework: in an image sequence, a siamese fusion network takes a gray image and a differential image at each time step
as inputs and outputs a binary semantic mask. At each time step, multiple region proposals are cropped from the gray image according to the semantic mask, and their
motions are checked globally with a trajectory-based attention model so that all the region proposals with inconsistent motions are eliminated. Finally, the left region
proposals at all the time steps are classified by a long-term recurrent convolutional network.
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priors is proposed; finally, a long-term recurrent convolutional
network is constructed to further ensure consistent visual changes
of detected impurities. Quantitative experiments demonstrate that
our proposed method outperforms the state-of-the-art region-
based object detectors.

The remainder of this paper is organized as follows. Firstly,
related definitions and works are introduced in Section 2. Secondly,
the sequential-region-based impurity detection framework is
described in detail in Section 3. Thirdly, datasets and experiments
are elaborated in Section 4. Finally, conclusions, discussions, and
future works are presented in Section 5.

The main contributions of this paper are summarized as
follows:

(1) A siamese fusion network is proposed to generate temporal
semantic impurity proposals, and their variants are system-
atically constructed and analyzed for fusing multi-domain
information.

(2) A trajectory-based attention model is proposed to select the
sequential region proposal. Specifically, a small-scale convo-
lutional neural network is trained to further eliminate region
proposals of background, and motion priors in an image
sequence are integrated to refine the trajectories of impurity
proposals.
(3) A long-term recurrent convolutional network is constructed
to retain region proposals with consistent appearances in a
continuous sequence. To the best of our knowledge, this is
the first attempt that simultaneously considers visual
appearance changes and global motions in a deep-
learning-based impurity detector.

(4) A sequential-region-based impurity detection framework
where all the submodels are trained from scratch is built
and compared with other state-of-the-art object detectors
finetuned in this task, which demonstrates the effectiveness
of our method.

2. Related works and definitions

2.1. Related works

2.1.1. Region proposal generation
Region proposals are image patches belonging to the objectness

and are directly cropped from static input images. Currently, there
are mainly two main-stream approaches to generate region pro-
posals: low-level feature-based generators and high-level-
feature-based region generators.

Low-level-feature-based generators output object proposals by
grouping small regions into larger ones according to colors, tex-
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tures, similarities, and superpixels [6,10]; high-level-feature-based
generators provide object proposals with semantic feature infor-
mation from convolutional neural networks, and they can output
object proposals with higher recalls [9].

2.1.2. Region-based object detection
Region-based convolutional neural networks are the most pop-

ular deep learning architectures for object detection tasks. At first,
thousands of region proposals are generated using selective search,
and convolutional neural networks are used for extraction and
classification of region features [11]. Then RoI pooling layers are
proposed to extract features from regions of interest, while multi-
ple classes and locations of region proposals can be simultaneously
determined [12]. Next, region proposal networks are proposed, and
shared feature extractions between the region proposals networks
and Fast R-CNNs increase the detection speeds [7,13]. Additional
target masks can also be fused into an end-to-end object detector
to improve performances in some challenging tasks [14]. More-
over, ensembles of convolutional neural networks can be applied
to further improve object detection performances. A cascade R-
CNN is proposed to detect objects in COCO datasets using the same
object detection models with different IoU thresholds [15].

Large numbers of anchor boxes in region-based object detectors
lead to a large imbalance between positive and negative region
proposals and manual design choices of hyperparameters. To
address this problem, on the one hand, an anchor box can be
replaced with the top-left corner and the bottom-right corner of
a bounding box [16] or four extreme points (top-most, left-most,
bottom-most, and right-most) and a center point [17], so anchor
box designing and bounding box regression are transferred into
keypoint estimation problem; on the other hand, directly predict-
ing confidences for all the object categories and the bounding box
on every level of the feature pyramid [18–20] becomes a common
solution. Besides, Training balance modules including IoU-
balanced sampling, rescaling levels of a feature pyramid, re-
designing loss functions [21,22], and generalized IoU [23] are pro-
posed to improve object detection performances.

2.1.3. Salient object detection
Salient object detection is to capture the most attractive object

and segment it out from backgrounds in an image [24], which is
similar to the region proposal segmentation task.

Salient objects are studied from different perspectives. For
example, salient objects are grown with center-surrounding visual
attention based on the prior locations of salient objects [25], visu-
ally informative patches are extracted with wavelet transform [26],
directional cues are represented using quaternionic-distance-
based weber descriptor [27], and backgrounds are captured with
a local tree-structured low-rank constraint on the representation
coefficient matrix [28]. To alleviate data ambiguity and robustly
learn in complex scenarios, self-paced learning is integrated to
gradually learn from easy training examples to more complex ones
[29].

Local contexts are limited with salient object detectors based on
convolutional neural networks. To address this issue, a multi-scale
cascade network progressively refines detection results from
coarse to fine [30], and a multi-scale bidirectional fully convolu-
tional network is built to consolidate multi-level contexts [31]. A
two-stream fusion scheme is also effective for fusing multi-level
features. For instance, a two-stream part-object assignment net-
work is constructed to reduce noisy assignments from low-level
part capsules to high-level object ones [24], and a two-stream
fusion scheme is conducted to output fusion maps and the confi-
dence map [32]. Inspired by the above-mentioned work, a siamese
fusion network is constructed to capture visual appearances and
short-term motions.
2.1.4. Spatial–temporal feature fusion
Long-short term memories (LSTMs) are capable of learning

long-term dependencies on public benchmarks and challenging
tasks [33]. A long-term recurrent network is connected to the con-
volutional neural network to form a long-term recurrent convolu-
tional network, and it is trained simultaneously to learn visual
representations and temporal relationships in a video sequence
[34].

LSTMs can also be combined with convolutional networks [35]
using 2D inputs or 3D inputs to capture spatiotemporal informa-
tion for object tracking [36]. Moreover, temporal pyramid pooling
layers are integrated to represent features of videos, then appear-
ance changes and motions are combined to recognize human
actions [37]; tubelet proposals are proposed to incorporate tempo-
ral and contextual messages for object detections in videos [38].
Since recurrent models using convolutional features in an entire
frame may fail to reserve rich dynamics between neighboring
frames, an LSTM is integrated with saliency-based 3D-CNN [39].

Similarly, temporal appearance changes of tiny impurities may
be imperceptible in a large frame. Inspired by their ideas [37–39],
we focus on a specific region in one frame using semantic features,
instead of representing a small effective area with feature maps on
a whole image.

One of the most similar methods to ours is a facial action unit
detection framework encoding region partition rules and integrat-
ing a convolutional LSTM to dynamically detect action units [40],
different from their work, target regions in our task follow trajec-
tory rules instead of facial partition rules.
2.1.5. Impurity detection
Shape information has been commonly exploited as features of

impurities in transparent bottles [1,2], and trajectories of moving
blobs are the additional features to separate impurities from bub-
bles [2]. Region proposals can be classified using machine learning
algorithms including support vector machines [3,4]. However,
these features and models may be less effective when transferred
in opaque glass bottles and evaluated on larger datasets [41].

Convolutional neural networks can be used to simultaneously
extract and classify static visual features, but there remain some
detection errors [6], furthermore, similarities of two impurity indi-
viduals from different frames are studied, but the robustness of
impurity detection heavily relies on the augmentation of correla-
tional examples, and the inter-frame correlation is only an implicit
cue of local motions [5]. A graph is a flexible architecture to handle
complex relations [42]. Transferred to our task, a gallery-guided
graph architecture is built to capture inter-sequence relations
[43]. However, such an impurity detector relies on a large number
of gallery sequences, which may limit its fast adaptation among
impurity detection tasks in different domains. To further reduce
detection errors using auxiliary cues such as global motions while
ignoring a large number of gallery examples during the test stage,
we introduce a trajectory extracted from an entire sequence.
2.2. Related definitions

Sequential region proposal: in this paper, a sequential region
proposal is selected to maintain the temporal continuity of the
region proposals, and there are two main characteristics in it:
firstly, a sequential region proposal consists of region proposals
that satisfy both the objectness classification rule in the current
frame and the motion regularity in an image sequence; secondly,
only one region proposal exists in each frame, then they are
arranged in the time order as a sequential region proposal.
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3. Sequential-region-based impurity detection

3.1. Siamese fusion network

Small-scale models widely used in semantic segmentations are
mainly based on fully convolutional networks [44–46] and
encoder-decoder architectures [47–51]. To compare the detection
performances of our siamese fusion networks, in this paper, all of
them are designed using encoders with the same depth.

Training a model from scratch may be difficult to converge if a
single gray image is treated as the model input. Compared with
backgrounds with complex textures and relatively small motions,
rotating impurities are much more visible in differential images,
but static impurities are difficult to appear in differential images.
Therefore, a gray image and a differential image are constructed
as two inputs for every model trained without pre-trained
weights, and we respectively extend fully convolutional networks
and counterparts with decoders as siamese FE-nets and siamese
FD-nets.

Additionally, representative modules used for semantic seg-
mentation can be implemented in our task. Firstly, a convolutional
neural network usually includes convolutions, spatial pooling lay-
ers, and so on, but objects become less sensitive to location
changes using such a network, so boundary details of objects might
be lost in the output masks. Based on the above considerations,
fully connected conditional random fields [52] can be used to fur-
ther refine these masks. Secondly, atrous convolutions are typical
blocks to avoid oversampling on convolutional feature maps and
shrinking the reception fields [45], so we will try to replace spatial
poolings with atrous convolutions in the future.
Fig. 3. Architecture of region proposal models: Iðm;nÞ is a m�m gray image with n cha
image and the corresponding semantic mask; Cðn; k; sÞ is a convolution with n channels,
with l units; Uðn; sÞ is upsampling with n channels and s strides. a gray image and a differ
is a semantic mask. Pixel labels belonging to impurities are labeled as 1s, and backgrou
Siamese FE-nets can be constructed by fusing inputs in different
layers, but correlations of these inputs become complex when fus-
ing high-level feature maps. To select the most suitable FE-nets for
impurity detections, three siamese FE-nets (SFEN-l, SFEN-m, and
SFEN–h) are constructed, as shown in Fig. 3.

An FD-net consists of an encoder and a decoder, and a convolu-
tional layer in the encoder can be concatenated with one in the
decoder layer to learn the relationships among feature maps in dif-
ferent levels. Similar to the siamese FE-nets, we have designed
three siamese FD-nets (SFDN-l, SFDN-m, and SFDN–h), as shown
in Fig. 3.

3.2. Trajectory-based attention model

Circular trajectories are formed in image sequences when bot-
tles are rotated and stopped abruptly. Therefore, such motion pri-
ors are utilized to design a trajectory-based attention model that
consists of two major parts: a region proposal classifier and a
trajectory-based attention model.

A convolutional neural network is constructed as a region pro-
posal classifier to classify gray image patches cropped from seman-
tic masks. The model input contains a region proposal which is
provided by a siamese fusion network, and its output is a probabil-
ity of the region proposal belonging to the impurity class. The struc-
tures of convolutional layers in this model are the same as those in
the sequential region proposal classifier, as shown in Fig. 5.

Given the region proposals in a complete image sequence
selected with the above classifier, a motion trajectory is calculated.
A specific example is illustrated in Fig. 4, and the process is
detailed as below:
nnels, similar to the parameters of I;D and M respectively represents a differential
filters in size k� k, and downsampling with s strides; FðlÞ is a fully-connected layer
ential image are organized as inputs of each siamese model, and the network output
nd labels are set as 0 s.



Fig. 4. A trajectory-based attention model based on motion priors: the radius of a
circle is rmid; dots with numbers are region proposals in different frames, ij
represents that jth region proposal is located at ith frame; states of region proposals
are represented with various colors: a black dot means that a true impurity exists,
but no region proposals are provided at this location; a green dot or a yellow dot
represents the region proposal predicted as an impurity with the classifier, while a
blue dot or a red dot is the region proposal predicted as a background.
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(1) Given conditions: given the central coordinate of the bottle
bottom ðxc; ycÞ, assume that the ith region proposal in jth
frame is pi�j, and the coordinates of its contour center are
ðxi�j; yi�jÞ, the probability of an impurity from the region pro-
posal classifier is qþ.

(2) Region proposal prediction: region proposals of impurities
are selected if predicted probabilities are larger than the
probability threshold of impurities qtþ, otherwise, those of
backgrounds are eliminated.

(3) Distance computation: a L2 distance from each region pro-
posal left (green and yellow dots) to the bottom center is
computed as ri�j, and the mid-value of all the smallest nmid

radii is output as rmid, and a circular trajectory is formed
using rmid.

(4) Region proposal selection: region proposals which distances
from the circle are less than dmid are choosen. In the ith
frame, the region proposal with the largest oþ is selected
as a sequential region proposal si. For example, when
dmid ¼ 200, both p6�1 and p6�3 are close to the circle, but
the classification probability of p6�1 is larger than that of
p6�3, so p6�1 should be reserved; p11�1 is misclassified by
the region proposal classifier but is far away from the circle,
so no region proposals can be provided in the 11-th frame.

3.3. Sequential region proposal classification network

Convolutional neural networks and long-short term memories
can be concatenated to learn the visual representations and tempo-
ral relationships [34], so we construct a long-term recurrent con-
volutional network to classify image patches at different time
steps, as shown in Fig. 5.
Fig. 5. A long-term recurrent convolutional network to classify region proposals sequent
extracted with a convolutional neural network module, then these features at all the tim
patches are provided for sequential binary classification.
In the long-term recurrent convolutional network, the input at
each frame is a 40� 40 image patch, and weights of convolutional
layers in different frames are shared, then each output is a 60
dimensional feature vector. All the vectors can be concatenated
and reshaped as the inputs of an LSTM model, and this recurrent
model consists of two layers: input of the first layer is a matrix
of 12� 60, and it outputs a 36 dimensional vector; the second
layer takes the output of the first layer as an input and outputs a
36 dimensional vector. Then another fully connected layer with
12 hidden units and a linear activation function are used to predict
probabilities of impurities in a specific sequence.

3.4. Independent training of models

Models in our impurity detection framework are Independently
trained for multiple tasks including region proposal segmentation,
region proposal classification, and sequential region proposal
classification.

3.4.1. Region proposal segmentation
The training objective of a siamese fusion network we use is

dice coefficient, for the ith sampled image:

Lsegi ¼ �2ðmpred
i \mgt

i Þ
mpred

i [mgt
i

ð1Þ

where mpred
i is a semantic mask predicted with the siamese fusion

network, and mgt
i is a corresponding groundtruth pixel map.

3.4.2. Region proposal classification
Regarded as a classification problem of two classes, a small-

scale convolutional network outputs probabilities for each region
proposal ri:

Lclsi ¼ �ogti logðopredþi Þ � ð1� ogti Þlogðopred�
i Þ ð2Þ

where opredþi and opred�i respectively represent a probability corre-
sponding to impurity and one belonging to background, and
ogti 2 f0;1g is the groundtruth label.

3.4.3. Sequential region proposal classification
At each time step, an output indicates the probability of a region

proposal containing impurities. Empirically, the sequential region
proposal classification problem is treated as regression. For ith
region qi in an image patch sequence, the output value of a trained
long-term recurrent convolutional network should be close to the
ground truth label:

Lseqi ¼
Xlt

t¼1

jjvgt
it � vpred

it jj22 ð3Þ
ially: the input of this model at each frame is an image patch, and visual features are
e steps are sent into the long-short-term memory, and probabilities of all the image



Fig. 6. Sequential region proposals containing impurities: there are four lines of
sequences, each line represents a sequential region proposal inside the same bottle,
and part of them are randomly blocked.

Fig. 7. Sequential region proposals containing backgrounds, and randomly blocked
regions are much more than foreground ones in Fig. 6.
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where at each time step t;vpred
it is the predicted value using the net-

work, which should be close to the groundtruth label vgt
it , and lt is

the sequence length.

3.4.4. Independent training for multiple tasks
Many researchers have been improving model performances

given a fixed dataset and trying to explore the interpretability of
their networks. On the contrast, inspired by the idea of AdaBoost
[53], a big complex model can be explained with small simple
models. Multiple datasets are automatically generated with
ground truth labels to adapt for each task, so every small network
can be independently trained.

4. Experiments

4.1. Datasets

4.1.1. IML dataset
Images are sequentially sampled after the bottle stops abruptly,

and each bottle contains a single impurity. The resolution of each
frame is 480� 480. To avoid test results affected by model overfit-
ting, different bottles are separately sampled in the training set and
the test set. As a result, IML dataset consists of 874 sequences for
training and 274 sequences for the test, and IML-DET, IML-SEG,
IML-SEQ, and IML-RPN share the same original images from IML
dataset. Moreover, the training part and test one for every follow-
ing dataset are respectively sampled from training sequences and
test ones in IML dataset.

4.1.2. IML-DET dataset
Bounding box annotation tools are used to label all the region

proposals that have visible impurities. There are 8302 boxes and
2739 ones in the training set and the test set.

4.1.3. IML-SEG dataset
Pixel-level labels are generated with ground truth bounding

boxes from IML-DET dataset. Considering that manually labeling
pixels takes a much longer time than labeling bounding boxes,
pseudo-semantic labels are generated and augmented. Conse-
quently, there are 8302 original images and 33208 augmented
ones respectively. Specific augmentation procedures are detailed
in Appendix A.

4.1.4. IML-RPN dataset
Region proposals are generated with ground truth bounding

boxes in IML-DET dataset. Specifically, after basic data augmenta-
tions including translation, rotation, and rescaling, ground truth
bounding boxes are used to represent region proposals belonging
to impurities. To balance samples of impurities and those of back-
grounds, random sampling in a whole frame except regions with
impurities is applied to generate additional background region
proposals, and the sampling times are 4 in each frame. Different
from the small data augmentation scale in IML-SEG dataset, the
training set in IML-RPN dataset contains 41568 region proposals
with impurities and 40461 ones without impurities, while the test
set in IML-RPN dataset includes 13717 region proposals with
impurities and 12692 ones without impurities.

4.1.5. IML-SEQ dataset
Sequential region proposals must be generated and augmented

because the number of sequences is limited. After sequential
region proposal augmentation (see Appendix B), the training set
in IML-SEQ dataset contains 199122 region proposals with impuri-
ties and 430158 ones without impurities, and the test set in IML-
SEQ dataset has 65911 region proposals with impurities and
131369 ones without impurities. Several sequential region propos-
als are illustrated in Fig. 6 and Fig. 7.

To train the long-term recurrent convolutional network, all the
sequential region proposals are derived from the training set.
Specifically, sequential region proposals with impurities and those
without impurities are mixed, randomly shuffled, and split into
training and validation sets with a split ratio of 0:8 : 0:2.
4.2. Metrics

4.2.1. Overall metrics
Influences of different modules are evaluated in a sequential-

region-based impurity detection framework, and at most one
ground truth bounding box in a frame is considered in all the eval-
uations. Assume that a bounding box that contains a true impurity
bg is labeled as lg , and a predicted bounding box bp is labeled as lp.

Specifically, when both bg and bp exist, an overlapped ratio is
calculated: if bg and bp are overlapped, then lg and lp are labeled
as 1s; if they are not overlapped, then lg and lp are respectively 1
and 0; if bg does not exist but bp exists, then lg and lp will be respec-
tively labeled as 0 and 1; if both bg and bp do not exist, then lg and lp
will be labeled as 0s.

Precisions, recalls, F1 scores, and mAPs are used to evaluate the
experimental results [54]. Specifically, precisions, recalls, and F1
scores are computed with macro-average metrics, while mAPs
are calculated using micro-average metrics.
4.2.2. Metrics of region proposal segmentation
Region proposals are generated by siamese FE-nets or siamese

FD-nets, and semantic region proposals are evaluated using overall
metrics.
4.2.3. Metrics of region proposal classification
To determine the class output by the region proposal classifier,

decisions have to be made according to the output probabilities of
this model. Specifically, a probability of impurity is assumed as qþ,
and the corresponding threshold is defined as qtþ. If qþ > qtþ, then
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this region proposal may contain an impurity; otherwise, it will be
classified as a background.
4.2.4. Metrics of sequential region proposal classification
To obtain the final decision for the sequential region proposal rst

at tth time step in the sth sequence, an output ost of the sequential
region classification model is transformed to a binary representa-
tion. Specifically, given the output threshold ostþ, if ost > ostþ, then
rst is classified as an impurity; otherwise, rst is predicted as a
background.
4.3. Implementation details

4.3.1. Baselines
Our impurity detection framework is compared with the most

famous generic instance segmentation model Mask R-CNN [13]
finetuned with IML-DET dataset, and the detection results are eval-
uated using overall metrics. ResNet backbones [55] and Feature
Pyramid Networks [56] are selected to modeling Mask R-CNN
[13], base learning rate for training is modified to 0:0002, and
the confidence threshold for the test is set as 0:3, then all the other
configurations are the default for both training and evaluation.

The trajectory-based attention model is compared with criss-
cross attention which is chosen as a baseline of visual attention
[57,58] and integrated into siamese fusion networks. Specifically,
the criss-cross attention module is integrated between the feature
extraction layers and segmentation modules [57], and we have
already concatenated earlier feature encoding layers in siamese
fusion networks, so in SFEN-l, SFEN-m, and SFEN–h, criss-cross
attention modules are added before the feature map concatena-
tion; in SFDN-l, SFDN-m, and SFDN–h, the criss-cross attention
modules are added between the encoder and the decoder. For fair
comparisons, all the siamese fusion networks with/without criss-
cross attention modules are trained from scratch. Besides, it should
be noted that this visual attention module and our trajectory-
based attention model can be simultaneously applied in an impu-
rity detection framework.
4.3.2. Our method
qtþ; ostþ;nmid, and dmid are respectively set as 0:5;0:1;4, and 800.
To briefly describe every modules in our framework, siamese

fusion network containing an encoder, siamese fusion network
including both an encoder and a decoder, criss-cross attention,
region proposal classification network, trajectory-based attention
model, and sequential region proposal classification network are
respectively abbreviated as SFEN, SFDN, CA, CNN, SP, and LRCN.
4.4. Qualitative evaluations

To qualitatively evaluate the sequential impurity detection
results, several outputs of SFDN-l + CNN + SP + LRCN and those
of the best-performing Mask R-CNN on the same sequences are
chosen and compared, as shown in Fig. 8. In Fig. 8, to observe mod-
ule outputs in our method, unique color is used to annotate boxes
output by each module. Specifically, rectangles in violet, brown,
red, and orange respectively represent outputs from semantic seg-
mentation models, region classification models, trajectory-based
attention models, and long-term recurrent convolutional net-
works. Besides, orange circles are applied to represent trajectories
of detected impurities. It should be noted that different modules
are cascaded into a framework, so if an output of a later module
exists, so does that of the front modules.
4.5. Quantitative evaluations

4.5.1. Baselines
Publicly available state-of-the-art object detection methods are

transferred to our task and evaluated on IML-DET dataset, but the
mAP of our proposed method is higher than those of common
object detectors, as shown in Table 1.

4.5.2. Siamese fusion networks
Semantic segmentation models including SFEN-l, SFEN-m,

SFEN–h, SFDN-l, SFDN-m, and SFDN–h are trained from scratch
and evaluated on IML-DET datasets. Specifically, SFDN-l works sur-
prisingly well, and its mAP can reach 80.87% on training data,
which is much larger than the second-best model SFEN-l
(72.21%), however, 75.64% mAP remained on test data using
SFDN-l shows that small overfitting happens on this model. Then
mAPs between SFEN-m and SFEN–h are around 48%, but SFDN-m
and SFDN–h obtain much lower mAPs. Generally, precisions,
recalls, and F1 scores behave similarly with mAPs among all the
architectures. Interestingly, the recall of SFDN–h is lower than its
precision, but recalls of all the other models are higher than their
corresponding precisions, as listed in Table 2.

4.5.3. Region proposal classifier in trajectory-based attention model
The region proposal classifier is evaluated on IML-RPN datasets,

and its AUCs evaluated on training data and test one are more than
0.999, probably because sampling rules are the same between
training sequences and test counterparts. Specific ROC curves
(‘‘cnn - train” and ‘‘cnn - test”) are illustrated in Fig. 9.

4.5.4. Long-term reccurent convolutional network
The long-term recurrent convolutional network is evaluated on

IML-SEQ datasets, its AUCs remain similarly high with those of the
region proposal classifier, and corresponding ROC curves (‘‘lrcn -
train” and ‘‘lrcn - test”) are detailed in Fig. 9. Datasets for different
model functionalities are applied in the region proposal classifier
and the long-term recurrent convolutional network, therefore,
their classification performances cannot be directly compared.

4.5.5. Ensemble
Different modules are concatenated as an ensemble model. The

performance of every module can be evaluated in an incremental
way, because inputs of a later part may rely on the outputs of front
parts. For example, a trajectory-based attention model requires the
probabilities of impurity provided by the region proposal classifier,
while no probabilities of region proposals can be directly provided
by segmentation models; only one region proposal at each frame
must be given to long-term recurrent convolutional networks,
and only the trajectory-based attention model can output such
region proposals in our framework.

By comparing impurity detection results in Table 2, we get the
following detailed experimental findings:

(1) Siamese fusion networks can be used to generate region pro-
posals. For example, the mAP of SFDN-l can achieve 75.64%,
which proves the effectiveness of segmentation models
applied in impurity detection.

(2) Detection performances of siamese fusion networks with
poor results can be improved using the region proposal clas-
sifier, but they cannot be better for siamese fusion networks
providing high-quality region proposals. All the results
including mAPs, precisions, recalls, and F1 scores of SFEN-
m, SFEN–h, SFDN-m, and SFDN–h are higher using CNNs.
However, they become lower when CNNs are applied to
SFEN-l and SFDN-l.



Fig. 8. Output comparisons between Mask R-CNN and the sequential impurity detection framework: every test sequence contains 12 frames, and its index is located on its
left-top side with orange numbers. To conveniently compare outputs of Mask R-CNN and our method, two sequences with the same sequential index are concatenated
vertically, where the top sequence and the bottom one respectively belong to Mask R-CNN and our method.
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Table 1
Evaluations of Baselines and Our Method on IML-DET Dataset.

Methods Backbones Bottles mAP Precision Recall F1 score Bottles mAP Precision Recall F1 score

Mask R-CNN R-50-C4 Train 75.81 72.21 83.51 72.13 Test 76.64 70.29 83.58 71.04
Mask R-CNN R-50-FPN Train 76.78 74.24 84.73 73.99 Test 77.43 72.65 86.06 73.13
Mask R-CNN R-101-FPN Train 78.46 75.12 85.70 75.52 Test 77.93 72.92 85.34 73.68
Mask R-CNN X-101-32x8d-FPN Train 80.78 76.12 86.61 77.46 Test 78.44 71.79 83.55 73.18
Ours SFDN-l Train 83.90 78.75 88.23 80.78 Test 79.81 73.21 84.32 74.91

Table 2
Evaluations of Ensembles on IML-DET Dataset.

Models Bottles mAP Precision Recall F1 score Bottles mAP Precision Recall F1 score

SFEN-l Train 72.21 68.03 79.81 67.22 Test 68.19 63.78 77.09 61.41
SFEN-l + CNN Train 67.86 67.71 77.48 64.67 Test 65.81 64.97 76.69 61.21
SFEN-l + CNN + SP Train 79.75 75.14 84.27 76.38 Test 76.16 70.82 81.88 71.42
SFEN-l + CNN + SP + LRCN Train 79.71 75.22 84.49 76.41 Test 75.73 70.69 81.85 71.10
SFEN-m Train 48.71 56.44 60.77 46.20 Test 49.13 54.45 58.93 44.64
SFEN-m + CNN Train 51.08 60.22 64.61 49.82 Test 51.60 57.96 63.62 48.70
SFEN-m + CNN + SP Train 60.46 65.26 71.19 58.94 Test 62.38 63.40 71.37 58.94
SFEN-m + CNN + SP + LRCN Train 59.94 66.96 72.95 58.88 Test 62.35 63.46 71.47 58.95
SFEN–h Train 48.34 54.17 57.53 44.73 Test 47.96 53.44 57.63 42.77
SFEN–h + CNN Train 52.13 58.11 62.49 49.87 Test 54.08 57.88 64.33 50.08
SFEN–h + CNN + SP Train 64.36 65.95 72.66 62.08 Test 68.07 66.49 76.26 64.11
SFEN–h + CNN + SP + LRCN Train 63.71 66.96 73.87 61.91 Test 68.34 67.50 77.92 64.74
SFDN-l Train 80.87 75.02 86.46 76.72 Test 75.64 68.58 81.84 69.20
SFDN-l + CNN Train 71.70 70.74 80.90 68.81 Test 69.14 67.34 79.66 64.78
SFDN-l + CNN + SP Train 83.90 78.75 88.23 80.78 Test 79.81 73.16 84.20 74.88
SFDN-l + CNN + SP + LRCN Train 82.31 77.82 87.92 79.37 Test 79.81 73.21 84.32 74.91
SFDN-m Train 45.75 50.55 51.04 41.23 Test 48.82 51.27 52.92 41.93
SFDN-m + CNN Train 50.32 55.42 58.59 47.54 Test 52.91 55.05 59.45 47.87
SFDN-m + CNN + SP Train 62.14 61.93 67.01 58.99 Test 66.36 61.84 68.44 60.53
SFDN-m + CNN + SP + LRCN Train 62.23 64.25 70.22 59.98 Test 66.58 63.97 72.13 61.91
SFDN–h Train 41.12 48.37 47.17 37.64 Test 41.58 49.16 48.27 37.31
SFDN–h + CNN Train 45.95 54.22 56.19 44.34 Test 46.93 55.30 59.05 44.38
SFDN–h + CNN + SP Train 58.89 63.62 68.91 57.30 Test 61.53 63.48 71.43 58.39
SFDN–h + CNN + SP + LRCN Train 58.47 65.19 70.62 57.33 Test 61.89 64.84 73.50 59.14

Fig. 9. ROC curves of classification models: ‘‘lrcn -train” and ‘‘lrcn - test” correspond
to a roc curve using the long-term reccurent network evaluated on training data
and counterpart predicted on test data, while ‘‘cnn - train” and ‘‘cnn - test”
represent a roc curve using the region proposal classifier computed on training data
and that evaluated on test data.
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(3) End-to-end object detectors outperforming methods with
independently trained sub-modules in single-image detec-
tions might be partially explained using our experimental
results. Taken our modules as an example, inputs of our
region proposal classifier are randomly sampled and may
be inconsistent with outputs of siamese fusion networks,
but inputs of the object classification network are directly
the outputs of the region proposal network in the end-to-
end object detection framework. Therefore, some examples
trained for our region proposal classifier might never be gen-
erated by siamese fusion models, which leads to the ineffi-
cient training of our region proposal classifier.

(4) Trajectory-based attention models improve detection per-
formances by a large margin. mAPs of all the different
ensembles such as SFEN-l + CNN increase by more than
10% after adding SP modules. Fortunately, relying on trajec-
tory information between consecutive frames in our task,
ensembles with independently trained modules even sur-
pass performances of some state-of-the-art end-to-end
object detectors. For instance, the mAP of SFDN-l + CNN
+ SP on test data is 79.81%, and this is higher than those of
Mask R-CNNs with 101-layer ResNet backbones.

(5) Long-term recurrent convolutional networks can be used to
further refine detection performances. Specifically, preci-
sions and recalls of all the ensembles including LRCNs except
the SFEN-l based model are improved, but the increases are
much less than those from SPs. For instance, the precision of
SFDN-m + CNN + SP increase from 61.84% to 63.97% after
adding an LRCN, and its recall climbed by 3.69%. However,
in some cases, mAP decreases while all the other metrics
increase. For example, mAP of SFEN-l + CNN + SP combined
with LRCN drops from 79.75% to 79.71% on training data.
Theoretically, continuous appearance changes should be
captured using LRCNs, however, sequential region proposals
provided by SPs might not be continuous, and training
examples provided in IML-SEQ dataset may not be consis-
tent with outputs of SPs. Therefore, slight improvements in
practice are obtained with long-term recurrent convolu-
tional networks.



Table 3
Evaluations of Ensembles with Criss-cross Attention on IML-DET Dataset.

Models Bottles mAP Precision Recall F1 score Bottles mAP Precision Recall F1 score

SFEN-l + CA Train 61.76 63.06 74.55 57.29 Test 56.58 59.57 71.77 51.05
SFEN-l + CA + CNN Train 62.98 65.71 75.20 60.15 Test 59.27 62.75 73.71 55.45
SFEN-l + CA + CNN + SP Train 77.41 73.81 83.17 74.28 Test 75.09 70.57 81.93 70.95
SFEN-l + CA + CNN + SP + LRCN Train 77.36 74.02 83.57 74.34 Test 74.76 70.54 82.02 70.43
SFEN-m + CA Train 11.05 41.70 10.39 10.04 Test 12.32 43.93 12.26 11.07
SFEN-m + CA + CNN Train 14.68 38.65 12.88 13.07 Test 17.25 41.82 15.59 15.04
SFEN-m + CA + CNN + SP Train 29.49 30.77 22.65 24.83 Test 35.68 35.64 27.07 29.02
SFEN-m + CA + CNN + SP + LRCN Train 29.59 30.93 22.89 24.99 Test 35.58 36.16 27.90 29.39
SFEN–h + CA Train 16.15 39.20 16.68 14.40 Test 18.59 42.72 20.55 16.27
SFEN–h + CA + CNN Train 22.37 38.54 23.14 19.81 Test 26.37 43.20 29.36 22.78
SFEN–h + CA + CNN + SP Train 45.06 41.87 38.56 38.36 Test 51.43 46.35 44.33 42.87
SFEN–h + CA + CNN + SP + LRCN Train 45.49 43.29 40.50 39.58 Test 51.64 47.33 45.82 43.71
SFDN-l + CA Train 80.28 74.43 85.94 76.02 Test 72.56 66.51 79.48 66.04
SFDN-l + CA + CNN Train 71.76 70.80 80.97 68.88 Test 66.77 65.50 76.63 62.32
SFDN-l + CA + CNN + SP Train 84.48 79.22 88.58 81.36 Test 78.64 72.28 83.25 73.70
SFDN-l + CA + CNN + SP + LRCN Train 84.31 79.19 88.83 81.27 Test 78.28 72.17 83.32 73.44
SFDN-m + CA Train 42.13 52.73 54.61 40.01 Test 44.26 53.37 56.72 40.83
SFDN-m + CA + CNN Train 48.05 58.44 61.96 46.95 Test 47.88 57.58 62.58 45.81
SFDN-m + CA + CNN + SP Train 57.89 64.31 69.49 56.68 Test 59.37 62.72 70.09 56.59
SFDN-m + CA + CNN + SP + LRCN Train 58.45 65.81 71.27 57.43 Test 59.52 63.35 71.02 56.91
SFDN–h + CA Train 10.32 35.07 15.79 9.74 Test 11.47 37.53 15.54 10.65
SFDN–h + CA + CNN Train 22.97 39.00 31.28 21.78 Test 23.91 40.83 31.70 22.16
SFDN–h + CA + CNN + SP Train 43.55 46.69 45.34 40.81 Test 44.07 45.55 42.91 39.26
SFDN–h + CA + CNN + SP + LRCN Train 44.89 49.16 48.83 42.72 Test 45.35 48.31 47.32 41.48
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By comparing impurity detection results in Table 3, we analyze
from the following two perspectives:

(1) The criss-cross attention deteriorates the region proposal
segmentation model when trained from scratch. For exam-
ple, mAP of SFDN-l decreases from 75.64% to 72.56% after
adding CA. This is probably because the criss-cross attention
may be more suitable for re-aggregating complex feature
maps from ResNet-50 or ResNet-101 already trained with
a large amount of data.

(2) Even in the above-mentioned case, the trajectory-based
attention model still improves the overall performances
when siamese fusion networks do not perform well. For
instance, the mAP of SFDN-l + CA increases up to 78.64%
after adding CNN and SP.

5. Conclusion and discussion

In this paper, we propose a sequential framework for impurity
detections in opaque glass bottles. Specifically, a siamese FE-net
or a siamese FD-net is designed to segment region proposals, then
a trajectory-based attention model based on image features and
motion priors is proposed to select a sequential region proposal,
finally, a long-term recurrent convolutional network is constructed
to classify these proposals. Experimental results demonstrate that
our framework outperforms the state-of-the-art end-to-end object
detector only relying on independent static images.

In the future, we plan to address two major problems about this
impurity detection framework: on the one hand, since our
trajectory-based attention model is not a general temporal atten-
tion model, which limits its applications to other tasks with unpre-
dictable long-term motions, therefore, when motion priors cannot
be found, visual attention methods for region proposal segmenta-
tion in this task require further studies; on the other hand, to make
detectors with the independent training outperform those trained
end-to-end, data preprocessing to ensure the consistency of data
distributions between two neighboring modules remains tedious,
so a more compact automatic sampling scheme during training is
necessary for this framework.
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Appendix A. Generation and augmentation of pseudo semantic
labels

Pixel-wise labeling is far more time consuming than bounding
box labeling, so an auxiliary approach is proposed to generate
semantic pixels. Bounding box labels can be employed to simulte-
nously update masks and region classes during trainning [59],
dense conditional random fields (Dense CRF [52]) have been
applied to segment pixel labels with only bounding box annota-
tions [60], and saliency maps can be generated using existing
unsupervised salient object detectors [32]. Inspired by the afore-
mentioned works, we generate semantic pixels using Dense CRF.
Given bounding boxes B in a m� n gray image I and a same-
sized differential image D, the output mask R is generated as
follows:

M ¼ max
b2B

Xm

i¼0

Xn

j¼0

rðpij 2 bÞ: ð4Þ

where b is a bounding box belonging to the set B;pij is a pixel at the
image location ði; jÞ, and r is an indicator function, so M is a black
mask filled with white bounding boxes.

IoUðb;MÞ ¼ areab \ areaM

areab [ areaM
: ð5Þ
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where areao is the area inside an object region o, and IoU represents
the overlapped ratio between a bounding box b and a refined mask
f crf ðMÞ using Dense CRF f crf .

wðb;MÞ ¼ rðIoUðb; f crf ðMÞÞ > 0Þ: ð6Þ

R ¼ max
b2B

fwðb;MÞf crf ðMÞ þ ð1�wðb;MÞÞMg: ð7Þ

where wðb;MÞ indicates whether Dense CRF segments object inside
b successfully. If not, the original mask M is used to compensate for
this mistake. As a result, the final mask R is obtained as pixel labels
for semantic segmentation, and a sample in IML-SEG dataset con-
tains two inputs I and D, and its label is R.
Appendix B. Generation and augmentation of sequential region
proposals

An image sequence is taken as an example to illustrate the sam-
pling and augmentation of a sequential region proposal. Augment-
ing these proposals containing impurities can be seen from Step a)
to Step d), and expanding background proposals is described from
Step e) to Step f).

(a) Sampling a mask sequence: assume that an image at time
step t is It , and its groundtruth bounding box is bt . Then a
gray image patch pt is cropped from the region located using
bt (the center of pt and that of bt is coincident, and the size of
pt is 120� 120), when no bt exists in the frame, cropping is
skipped. pt is put into a completely black mask which size is
the same as the original image, and a mask at time step t Mt

is obtained.
(b) Augmenting a mask sequence: all the masks are rotated in

the same sequence simultaneously, and a different angle
can be used to rotate each sequence.

(c) Augmenting a sequential region proposal: an augmented
mask M0t is taken as an example, contours are found from
a mask: if the contour area s0t > 10, the minimum enclosing
rectangle b0t is reserved, and a gray image patch p0t is
cropped at the location of b0t (the center of p0t is the same
as that of b0t , and its size is 40� 40, regions inside the
boundary are maintained and resized when b0t meets the
image boundary.)

(d) Multiple gray image patches p01; p02; p03; . . . p0TþðTþ < 13Þ
make up a positive sequential region proposal including
impurities.

(e) A center belonging to a background bounding box qt is ran-
domly selected in a given image It (ranges of horizontal
coordinates and vertical counterparts are ð80;400Þ, and their
size are all 40� 40). IoUs between bt and qt are computed: if
IoU is larger than 0, then reselect qt randomly until IoU
equals to 0. A gray image patch dt is then cropped from
the region of qt .

(f) Multiple gray image patches d01; d02; d03; . . . d0T�ðT� < 13Þ
make up a negative sequential region proposal that include
backgrounds.

Positive sequential region proposals generated as the above
contain many impurities and a few backgrounds, and all the nega-
tive counterparts have backgrounds. In fact, a real sequential
region proposal may contain a few impurities or backgrounds or
have both of them. Therefore, part of gray image patches should
better be blocked. We take a sequential region proposal as an
example: suppose the number of blocked region proposals is
nl;nl time steps are randomly chosen from ½0;11�, region proposals
at other time steps remain the same, and complete black image
patches are used to replace original ones at the blocked time steps.
As for a positive sequential region proposal, nl 2 ½0;4�, unblocked
patches are automatically labeled as 1s, while others are 0s; as
for a background region proposal, nl 2 ½0;11�, all the image patches
are labeled as 0s.
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