
2706 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Unsupervised Network Quantization via
Fixed-Point Factorization

Peisong Wang , Xiangyu He, Qiang Chen , Anda Cheng, Qingshan Liu , Senior Member, IEEE,

and Jian Cheng , Member, IEEE

Abstract— The deep neural network (DNN) has achieved
remarkable performance in a wide range of applications at the
cost of huge memory and computational complexity. Fixed-point
network quantization emerges as a popular acceleration and
compression method but still suffers from huge performance
degradation when extremely low-bit quantization is utilized.
Moreover, current fixed-point quantization methods rely heavily
on supervised retraining using large amounts of the labeled
training data, while the labeled data are hard to obtain in the
real-world applications. In this article, we propose an efficient
framework, namely, fixed-point factorized network (FFN), to turn
all weights into ternary values, i.e., {−1, 0, 1}. We highlight that
the proposed FFN framework can achieve negligible degradation
even without any supervised retraining on the labeled data. Note
that the activations can be easily quantized into an 8-bit format;
thus, the resulting networks only have low-bit fixed-point addi-
tions that are significantly more efficient than 32-bit floating-point
multiply–accumulate operations (MACs). Extensive experiments
on large-scale ImageNet classification and object detection on MS
COCO show that the proposed FFN can achieve about more than
20× compression and remove most of the multiply operations
with comparable accuracy. Codes are available on GitHub at
https://github.com/wps712/FFN.

Index Terms— Acceleration, compression, deep neural
networks (DNNs), fixed-point quantization, unsupervised
quantization.

I. INTRODUCTION

DEEP neural networks (DNNs) have recently shown sig-
nificant improvements over traditional learning methods

in many fields. On one hand, these breakthroughs promote
the demands of applying the state-of-the-art DNN models

Manuscript received July 25, 2019; revised December 10, 2019 and
March 28, 2020; accepted June 28, 2020. Date of publication July 24, 2020;
date of current version June 2, 2021. This work was supported in part by
the National Natural Science Foundation of China under Grant 61906193,
in part by the Strategic Priority Research Program of the Chinese Acad-
emy of Science under Grant XDB32050200, in part the Advance Research
Program under Grant 31511130301, in part by National Key Research
and Development Plan of China under Grant 2018AAA0103304, and in
part by the Jiangsu Frontier Technology Basic Research Project under
Grant BK20192004. (Corresponding author: Jian Cheng.)

Peisong Wang, Xiangyu He, Qiang Chen, Anda Cheng, and Jian Cheng are
with the National Laboratory of Pattern Recognition, Institute of Automa-
tion, Chinese Academy of Sciences, Beijing 100049, China, and also
with the School of Artificial Intelligence, University of Chinese Academy
of Sciences, Beijing 100049, China (e-mail: peisong.wang@nlpr.ia.ac.cn;
xiangyu.he@nlpr.ia.ac.cn; qiang.chen@nlpr.ia.ac.cn; jcheng@nlpr.ia.ac.cn).

Qingshan Liu is with the B-Data Laboratory, Nanjing University of
Information Science and Technology, Nanjing 210044, China (e-mail:
qsliu@nuist.edu.cn).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2020.3007749

to real-world applications. On the other hand, these models
are hard to deploy in real-world systems due to the huge
computational complexity and the storage footprint, especially
for real-time but resource-limited systems. Take Alexnet [1] as
an example, which involves 61M floating-point parameters and
725M high-precision operations at the inference stage. More
powerful networks, such as VGG or ResNet, tend to have
even higher computational complexity. Such an amount of
resource consumption is prohibitive in real-world applications,
for example, in automatic driving cars, intelligent surveillance
cameras, and robotics. These devices usually have very limited
resources. The huge parameters and computations of deep
models may quickly exhaust the storage, memory, battery,
and computing units of these devices. Thus, it is of central
importance to reduce the complexity of networks, i.e., to
lower the huge parameter size and reduce the computational
complexity.

Under this circumstance, network compression and acceler-
ation have attracted widespread attention among researchers
throughout the world. Many distinguished approaches are
proposed and improved by the community, such as network
pruning [2]–[4], matrix/tensor decomposition [5]–[8], and net-
work quantization [9]–[11]. Network pruning can dramatically
reduce the parameter size, for example, the VGG16 can be
reduced by 13× with no loss of accuracy [2]. However,
the resulting sparse network is not hardware-friendly due to
the cache-miss problem; thus, the very limited speedup can
be achieved. In contrast, decomposition-based approaches can
notably speed up the execution; however, the compression is
not remarkable.

Among these approaches, fixed-point quantization is widely
used, which partially alleviates the abovementioned two draw-
backs, i.e., fixed-point quantization can not only dramatically
reduce the model size but also is hardware-friendly. In the
earlier works [12]–[14], network parameters are quantized into
low-bit numbers with no loss of accuracy. However, weight
quantization using higher than 2-bit still involves a large
amount of multiply operations. More recently, binary [9], [10],
[15], [16] or ternary quantization [17], [18] focuses on training
networks from scratch with binary (+1 and −1) or ternary
(+1, 0, and −1) weights. High performance is achieved on
simple tasks, such as character recognition. However, on more
complicated tasks, such as ImageNet classification or object
detection, the accuracy degradation is not negligible.

In addition to performance degradation, current fixed-point
quantization methods rely heavily on supervised training using

2162-237X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6384-0280
https://orcid.org/0000-0002-5512-6984
https://orcid.org/0000-0003-1289-2758
https://orcid.org/0000-0003-4373-2589


WANG et al.: UNSUPERVISED NETWORK QUANTIZATION VIA FIXED-POINT FACTORIZATION 2707

large amounts of labeled data. This quantization scheme
clearly has some prohibitive costs. First, massive training data
are hard to obtain due to the privacy policy. Moreover, even if
we have access to a large amount of data, data labeling is also
a tedious and time-consuming job. Moreover, for some areas,
such as medical images, domain knowledge is required for
data labeling. Thus, unsupervised network quantization using
limited unlabeled data is of central importance for applying
quantization techniques to real-world tasks.

In this article, we introduce a novel ternary weight (−1, 0,
and 1) quantization framework, named fixed-point factorized
networks (FFNs), to accelerate and compress DNN models
with only minor performance degradation. Instead of directly
quantizing the weights of a given network, FFN utilizes a
decomposition-based quantization scheme, i.e., to factorize the
full-precision weight matrix into the multiplication of multiple
low-bit matrices. The FFN can make full use of the pretrained
full-precision models, leading to superior performances among
others.

Besides the flexibility and high performance in the fully
supervised quantization scheme, we also propose the unsu-
pervised quantization scheme for FFN when no label or
even no data are provided. We show that FFN trained with
limited unlabeled data could outperform previous quantization
methods trained supervisely using labels. Even without any
training data, our FFN still works pretty well. We demonstrate
the effects of the proposed FFN on various CNN architectures,
including AlexNet [1], VGG-16 [19], and ResNet [20], on the
ImageNet classification task. Performance on MS COCO
object detection benchmark is also investigated. The main
contributions can be summarized as follows.

1) A unified FFN framework is proposed for DNN accel-
eration and compression, which is flexible and accurate.

2) Based on fixed-point factorization, we propose a novel
full-precision weight recovery method, which makes
it possible to make full use of the pretrained models
even for very deep architectures, such as deep residual
networks (ResNets).

3) We investigate the weight imbalance problem gener-
ally existing in matrix/tensor decomposition-based DNN
acceleration methods and propose an effective weight
balancing technique to stabilize the fine-tuning process
of DNN models.

4) An unsupervised version of FFN is developed to deal
with the circumstance where limited unlabeled data or
even no data are provided.

A preliminary work of this article has been presented in the
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) 2017 [21]. This article differs from the previously
published article from the following aspects: 1) we provide
more theoretical and experimental analysis on the fixed-point
factorization approach and compare FFN with more recent
quantization methods; 2) we extend the fully supervised FFN
to the unsupervised circumstance, demonstrating the effective-
ness of the proposed FFN framework; and 3) experiments on
object detection benchmark are also included to demonstrate

the generalization ability of FFN to other computer vision
tasks.

II. RELATED WORK

DNNs suffer from huge storage and memory consump-
tion as well as the low speed at inference time. Conse-
quently, a bulk of works [22] have emerged to deal with
the acceleration and compression of CNNs with tolerable
performance degradation, including but not limited to low-rank
decomposition, network pruning, quantization, and knowledge
distillation. We also review network compression approaches
with limited data.

A. Low-Rank Decomposition

DNNs are usually overparameterized, and the redundancy
can be removed using the low-rank approximation of the
filter matrix as shown in the work of [5]. Since then, many
low-rank-based methods have been proposed. Jaderberg [23]
proposed to use filter low-rank approximation and data recon-
struction to lower the approximation error. Zhang et al. [6]
presented a novel nonlinear data reconstruction method, which
allows asymmetric reconstruction to prevent error accumula-
tion across layers. Their method achieves high speedup on the
VGG-16 model with a minor increase on top-five error for
ImageNet [24] classification. Low-rank tensor decomposition
methods, such as CP-decomposition [25], the Tucker decom-
position [7], and block term decomposition (BTD) [8], are also
investigated and show high speedup and energy reduction.

B. Network Pruning

Based on the assumption that many parameters in CNNs
are unnecessary, network pruning methods are explored to
remove unimportant ones to significantly expand the spar-
sity of deep models, lowering the computation and storage
requirement. According to the granularity of pruning, these
methods can be divided into two groups: unstructured pruning
and structured pruning. Han et al. [2] first proposed to prune
the deep CNNs in an unstructured way that compressed
AlexNet by 9× without a drop in accuracy. To avoid the
potential risk of irretrievable network damage, [26] proposed
a dynamic network surgery framework that can recover the
incorrectly pruned connections. Aiming at working with the
existing efficient BLAS libraries for dense matrix operations,
structured sparsity methods are also investigated [3]. Luo et
al. [4] proposed a filter-level sparsity method by utilizing
the next layer’s feature map to guide filter pruning in the
current layer. By adding structured sparsity regularizer, [27]
proposed to reduced trivial filters, channels, or even layers.
In addition, [28] proposed to leverage the scaling factor of the
batch normalization layer to evaluate the importance of the
filters for channel pruning.

C. Quantization

Fixed-point quantization-based methods are also investi-
gated by several recent works [29], [30]. In BinaryCon-
nect (BC), Courbariaux et al. [9] proposed to use binary

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



2708 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

weights for forward and backward computation while keep a
full-precision version of weights for gradients accumulation.
Binary weight network (BWN) and XNOR-net were proposed
in a more recent work [10], which was among the first ones
to evaluate the performance of binarization on large-scale
data sets, such as ImageNet [24], and yielded good results.
To further compensate for the accuracy loss of binarization,
[31] introduced 1-bit CNNs aided with a real-valued shortcut.
On the other hand, multibit networks [32]–[34] decomposed
a single convolution layer into multiple binary convolutions
for higher accuracy. These methods train neural networks
from scratch and can barely benefit from pretrained networks.
Hwang and Sung [35] found a way by first quantizing pre-
trained weights using a reduced number of bits, followed
by retraining. However, their method achieved good results
only for longer bits on small data sets and heavily relied
on carefully choosing the step size of quantization using
exhaustive search. The scalability on large-scale data sets
remained unclear. Besides fixed-point quantization, product
quantization is also investigated in the work of [36] and [37]
to compress and speed up DNNs at the same time.

D. Knowledge Distillation

Different from the abovementioned compression and accel-
eration methods that do not change the original network struc-
ture, knowledge distillation aims at transferring the learned
knowledge from a teacher network to a student network, which
may be not relevant to the teacher network. It is common
that the student network is much smaller than the teacher
network; thus, the computation and storage can be reduced.
Hinton et al. [38] proposed to use dark knowledge, i.e., the
output of the softmax layer as labels to guide the training of a
student network. Later, FitNet was proposed by transferring
the knowledge learned from a teacher to a student, which
is deeper and thinner than the teacher. Different from [38],
FitNet also utilizes the feature maps from the hidden layers
for knowledge transfer. Besides feature map approximation,
[39] proposed to mimic the attention maps of the intermediate
layers, which allows the student to more about the important
features. Besides image recognition, knowledge distillation has
also shown advantages in object detection [40], [41] and visual
tracking [42].

E. Network Compression With Limited Data

Previous network compression approaches commonly rely
on all training data and labels. Recently, many works explore
network compression with limited data. Bhardwaj et al. [43]
proposed a data-independent compression approach by first
utilizing a small amount of metadata and the pretrained
model to generate many synthetic images and then using
these synthetic images for knowledge distillation. Chen et al.
[44] further proposed to use GAN to generate training
samples that are used for knowledge distillation. Different
from these two approaches, which generate training images
for network compression, Xu et al. [45] exploited massive
unlabeled data to find new training samples for knowledge
distillation. All these approaches utilize knowledge distillation

to learn a compact model, which relies on a large amount
of time-consuming backpropagation. Network quantization
without fine-tuning based on limited data is also studied.
He and Cheng [46] proposed the quasi-Lloyd-max and renor-
malization approach for 4-bit quantization. Banner et al. [47]
studied posttraining 4-bit quantization for rapid deployment.
Bit split is proposed in [48] for accurate posttraining quanti-
zation. Nagel et al. [49] proposed data-free quantization for
MobileNet. These quantization approaches only study network
quantization higher than 4 bit.

Unlike previous works, we explore fixed-point factorization
on the weight matrix. In the proposed FFN architecture,
we directly factorize the weight matrix into a fixed-point
format in an end-to-end way. Using only a small amount
of unlabeled data, our FFN can achieve negligible accuracy
degradation with ternary weights.

III. PRELIMINARIES

A general DNN is usually composed of multiple fully
connected (FC) layers and/or convolutional layers (CONV).
FC layers can be treated as 1× 1 CONV layers; thus, we will
focus on CONV layers in this article for consistency.

Typically, the parameters of a CONV layer form a 4-D
tensor W ∈ R

w×h×c×m, where w and h represent the kernel
width/height and c and m represent the number of input/output
feature maps. Thus, a CONV layer consists of m 3-D kernels
of size w× h × c. During the computation of a CONV layer,
the convolution can be transformed into matrix multiplication
[50]. Especially, the 4-D tensor W is rearranged into a 2-D
matrix W ∈ R

m×n (here, n = w ∗ h ∗ c), where the i th row wi

represents the i th kernel. Accordingly, the input feature maps
are also rearranged into a 2-D matrix, where each column
represents a convolutional volume. More details can be found
in [50].

The problem of fixed-point quantization of DNNs is to
transform the floating-point weight matrix W and/or input and
output feature maps into fixed-point format. More specifically,
for weight quantization, the problem is commonly to quantize
each kernel vector w into fixed-point vector ŵ, with an
optional floating-point scaling factor α

w ≈ αŵ. (1)

By the replacement shown in (1), the quantized model
represented by α and ŵ can be trained using stochastic
gradient descent (SGD). α can be calculated at each step of
SGD or fixed during training and can also be trained as a
network parameter using SGD. However, due to the discrete
nature of the quantized weights, the updates (weight gradients
multiplied by the learning rate) to ŵ during SGD are too small
to make a change.

To solve the abovementioned problem, the full-precision
weight vector w is also kept, which is used for the updates
accumulation. More specifically, during the forward and back-
ward propagations, the quantized weights ŵ are used for the
gradient computation, while the updates to the weights are
accumulated by the full-precision weights w (�w = α�ŵ).
During the next step of the SGD training process, the quantized

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: UNSUPERVISED NETWORK QUANTIZATION VIA FIXED-POINT FACTORIZATION 2709

weights ŵ are updated by

ŵ = q(w/α) (2)

where, for uniform fixed-point quantization, the function q is
commonly a rounding up operation.

IV. APPROACHES

The proposed FFN framework exploits weight matrix fac-
torization for network acceleration and compression. Different
from previous low-rank-based decomposition methods that
use floating-point values for the factorized submatrices, our
method aims at fixed-point factorization directly.

The FFN is presented in Section IV-A. For applications with
limited unlabeled data, we further propose the unsupervised
quantization scheme for FFN in Section IV-B. The conver-
gence and complexity of the proposed FFN framework are
analyzed in Sections IV-C and IV-D, respectively.

A. Fixed-Point Factorized Networks

We will introduce the fixed-point factorization framework
in detail. In this section, we mainly talk about the FFN
at the fully supervised quantization circumstance, where all
training data and labels are given. First, the direct fixed-point
factorization method is introduced in Section IV-A1. In order
to better fine-tune the quantized model after factorization,
the pseudofull-precision weight recovery and weight balancing
methods are discussed in detail in Sections IV-A2 and IV-A3,
respectively.

1) Fixed-Point Factorization of Weight Matrices: Deep net-
works commonly consist of multiple convolutional and FC
layers, which dominate the storage and computation of the
networks. The basic computation of both FC layers as well as
the convolutional layers is matrix multiplication [50], i.e., the
output signal vector so is computed as

so = φ(W si + b) (3)

where si is the input signal vector and W ∈ R
m×n and b ∈ R

m

are the weight matrix and the bias term, respectively.
The FFN process is conducted on the weight matrix W .

More precisely, FFN directly factorizes the weight matrix
W ∈ R

m×n into the weighted sum of the outer products of k
vector pairs with only ternary (+1, 0, and −1) entries, which
is referred to as the semidiscrete decomposition (SDD) in the
following format:
minimize

Û ,D,V̂
� W − Û DV̂ T �2

F
�= J (D, Û , V̂ )

= minimize
{di },{ûi },{v̂i }

� W −
k�
i

di ûi v̂
T
i �2

F (4)

where Û ∈ {−1, 0,+1}m×k, V̂ ∈ {−1, 0,+1}n×k, and D ∈
R

k×k
+ is a nonnegative diagonal matrix. Note that throughout

this article, we utilize the symbol k to represent the rank of
the SDD decomposition.

The advantage of fixed-point factorization over direct quan-
tization is that the approximation accuracy can be guaranteed.
By controlling the decomposition rank k, the approximation

to W can be accurate as possible. (Note that k could be larger
than both m and n). This also provides a way to choose
different k’s for different layers according to the redundancy
of that layer. Thus, the FFN can be much more flexible and
accurate than direct quantization methods.

The ternary constraints in (4) make the optimization of SDD
an NP-hard problem. Kolda and O’Leary [51], [52] proposed
to obtain an approximate solution greedily. Here, we utilize an
iterative optimization procedure for the minimization problem
of (4). Without loss of generality, we assume that the i th
entries are to be optimized with the rest of entries given.
By denoting Ri = W − �

j �=i d j û j v̂
T
j , the optimization of

the i th entries becomes

minimize
di ,ûi ,v̂i

�Ri − di ûi v̂
T
i �2

F
�= F(di , ûi , v̂i). (5)

For representation simplicity, we drop the index of i .
Expanding (5) gives

F(d, û, v̂) = �R − d ûv̂T �2
F

= �R�2
F − 2d ûT Rv̂ + d2�û�2

2�v̂�2
2. (6)

By setting (∂ F/∂d) = 0, the optimal value of d is given by

d∗ = ûT Rv̂

�û�2
2�v̂�2

2

. (7)

By substituting d∗ into (6), we obtain the equivalent opti-
mization problem as follows:

maximize
û,v̂

(ûT Rv̂)2

�û�2
2�v̂�2

2

. (8)

We use an alternating optimization for the problem of (8),
i.e., we fix v̂ to optimize û, then fix û to optimize v̂, and so
on. Solving (8) with fixed û or v̂ is equivalent to the following
optimization problem:

maximize
x̂

(x̂T t)2

�x̂�2
2

(9)

where x̂ could be either û or v̂. More specifically, x̂ = û and
t = Rv̂ for the optimization of û, or x̂ = v̂ and t = RT û for
the optimization of v̂.

Assuming that x̂ has exactly s nonzeros, the solution is
given by

x̂i =
�
−sign(ti ), abs(ti) in the top s of abs(t)

0, otherwise
(10)

where sign is the sign function and abs is the absolute value
function. When s traverses from 0 to the length of x̂, we can
get the global optimum x̂∗ for (9). We summarize the iterative
optimization procedure in Algorithm 1.

Given a pretrained model with full-precision weights,
we can conduct fixed-point factorization for each layer using
Algorithm 1. After fixed-point decomposition, the original
full-precision weight matrix W can be replaced by the fac-
torized ones, i.e., Û , V̂ , and D. More formally, each convo-
lutional layer of the pretrained model is replaced by three
layers: 1) a ternary convolutional layer with k filters of size
w×h× c; 2) a “channelwise scaling layer,” i.e., each of the k

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



2710 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Algorithm 1 Improved SDD Decomposition

Input: weight matrix W ∈ Rm×n

Input: non-negative integer k
Output: Û ∈ {+1, 0,−1}m×k

Output: V̂ ∈ {+1, 0,−1}n×k

Output: diagonal matrix D ∈ R
k×k
+

1: di ← 0 for i = 1, · · · , k
2: Select V̂ ∈ {−1, 0, 1}n×k

3: while outer iteration not converges do
4: for i = 1, · · · , k do
5: R← W −�

j �=i d j û j v̂
T
j

6: Set v̂i to the i -th column of V̂
7: while inner iteration not converges do
8: compute ûi ∈ {−1, 0, 1}m given v̂i and R
9: compute v̂i ∈ {−1, 0, 1}n given ûi and R

10: end while
11: Set di to the average of R ◦ ûi v̂

T
i over the non-zero

locations of ûi v̂
T
i

12: Set ûi as the i -th column of Û , v̂i the i -th column of
V̂ and di the i -th diagonal value of D

13: end for
14: end while

Fig. 1. New layers used in our FFN architecture. After the decomposition
of W → Û DV̂ T , the original convolution represented by weight matrix W is
replaced by three layers, i.e., the first h ×w convolution corresponds to V̂ T ,
followed by the second scaling layer represented by D, and the third 1× 1
convolution represented by Û .

feature maps is multiplied by a scaling factor; and 3) another
ternary convolutional layer with m filters of size 1 × 1 × k.
Fig. 1 shows the architecture of the new layers in the FFN
network.

2) Pseudofull-Precision Weight Recovery: Retraining
or fine-tuning fixed-point networks requires full-precision
weights for gradient accumulation (see Section III for more
details). However, after factorization, the full-precision
weights are discarded, i.e., the original W is replaced
by Û , V̂ , and D and, thus, cannot be used for gradient
accumulation. A simple solution is to use the floating-point
version of Û and V̂ as full-precision weights to accumulate
gradients. However, this is far from satisfactory, as can be
seen from Section V-A2.

To ease the retraining stage after factorization, we propose
a novel full-precision weight recovery method based on pre-
trained weights. By discarding the ternary constraints in (4),
we recovery the full-precision version of Û and V̂ , indicated
by U and V , which can better approximate W . Note that
at each step during the retraining process, the full-precision

weights are quantized using a quantization function [(11) in
our case] into fixed-point weights that are used for for-
ward/backward computation. Thus, to recover the appropriate
full-precision weights, it must be guaranteed that, initially,
U and V will be quantized into Û and V̂ using the same
quantization function. We turn this problem into an optimiza-
tion problem as follows:

min
U,V
� W −U DV T �2

F

s.t. |Ui j − Ûi j | < 0.5 ∀i, j

|Vi j − V̂i j | < 0.5 ∀i, j . (11)

Here, the two constraints are introduced to ensure that U
and V will be quantized to Û and V̂ . The problem can
be efficiently solved by the alternative method. During the
retraining stage, the full-precision weights U and V are
quantized according to the following equation:

q(Ai j) =

⎧⎪⎨
⎪⎩
+1, 0.5 < Ai j < 1.5

0, −0.5 ≤ Ai j ≤ 0.5

−1, −1.5 < Ai j < −0.5.

(12)

Note that the full-precision weights U and V are only
used for gradient accumulation during the fine-tuning stage,
which can be discarded after retraining. Only the quantized
weights Û and V̂ are used for prediction. The full-precision
weight recovery method can be treated as an inversion of com-
mon fixed-point quantization methods. In fixed-point quantiza-
tion, each floating-point element is quantized into its nearest
fixed-point value, while, in our method, we first obtain the
fixed-point weights through fixed-point factorization (4), and
then, we need to determine from what values the fixed-point
elements are quantized.

3) Weight Balancing: After weight matrix factorization and
full-precision weight recovery, the quantized networks can be
retrained using training data. However, it is noticed that the
retraining process becomes unstable. We innovatively identify
this phenomenon as the weight imbalance problem, which
is caused by the nonuniqueness of the decomposition. It is
worth noting that weight imbalance is a general problem in
decomposition-based methods, such as in [6]. In this section,
we thoroughly analyze the cause of this problem and propose
a weight balancing approach to solve it.

The forward computation of an L-layer network can be
represented by the following equations:

z(l+1) = W (l)a(l) + b(l)

a(l+1) = φ(z(l+1)). (13)

For backward computation, the error terms of layer l and the
corresponding gradients are updated as follows:

δ(l) = ((W (l))T δ(l+1)) • φ
(z(l)) (14)

∇W (l) = δ(l+1)(a(l))T (15)

where “•” denotes the Hadamard product operator. The input,
output, and error vectors for layer l are represented by a(l),
a(l+1), and δ(l), respectively.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: UNSUPERVISED NETWORK QUANTIZATION VIA FIXED-POINT FACTORIZATION 2711

Fig. 2. Illustration of the cause of weight imbalance problem generally existing in decomposition-based methods. The blue lines represent the forward
information propagation, while the red lines represent the backward error propagation. The black dashed lines indicate that the gradients of weights are
computed from the multiplication of the output error term δ and input activation a. Left: by the decomposition of W = P Q, which means that the convolutional
layer with weight matrix W is factorized into two layers parameterized by Q and P . Right: by setting P 
 = P/α and Q
 = α ∗ Q, the decomposition also
holds, i.e., W = P 
Q
. By comparing the weights and gradients of Q and Q
, as well as P and P 
, it can be concluded that the bigger the weights are,
the smaller the gradients will become, which makes training unstable. (a) Forward and backward propagations. (b) Propagation after setting Q
 = α ∗ Q and
P 
 = P/α.

Considering the decomposition of W = P Q, which means
that the convolutional layer with weight matrix W is factor-
ized into two layers parameterized by Q and P , as shown
in Fig. 2(a). By setting P 
 = P/α and Q
 = α ∗ Q,
the decomposition also holds, i.e., W = P 
Q
, as shown
in Fig. 2(b). By comparing the weights and the corresponding
gradients of Q and Q
, as well as P and P 
, we can find
that the bigger the weights are, the smaller the gradients
will become. This will make the training procedure unstable.
Supposing α � 1, during backward computation, P will
change drastically, while Q almost stays unchanged. This
requires one to set different learning rates for different layers,
which is impractical especially for very DNNs.

In the FFN framework, the weight matrix W ∈ R
m×n is

decomposed into U DV T , where the values of U ∈ R
m×k

and V ∈ R
n×k are in the range of −1.5∼1.5. However,

the values of D are much smaller, ranging from 0.00001 to
0.01. Inspired by the weight initialization approach proposed
by [53], we develop the weight balancing approach from the
following aspects.

First, U and V should be balanced into the appropriate
scales by their corresponding scaling factors εU and εV , which
are proportional to the square root of their rows and columns.

Second, the diagonal matrix D that corresponds to the
channelwise scaling factors should be close to the identity
matrix after balancing. Making D close to the identity matrix
will not affect the calculation of gradients. To achieve this,
we set the mean value of the diagonal elements to be one.

The abovementioned two objectives can be realized by
using (16), where Ũ , Ṽ , and D̃ correspond to the balanced
weight matrices. Note that ϕ is introduced to guarantee that
the two scaling factors εU and εV are in proportion to the
square root of the rows and columns of U and V

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ũ = εU ∗U = ϕ√
m + k

∗U

Ṽ = εV ∗ V = ϕ√
n + k

∗ V

D̃ = D

εU ∗ εV

mean(D̃) = 1.

(16)

After weight balancing, the balanced weights Ũ , D̃, and Ṽ
can be used for retraining, which makes the retraining process
more stable.

B. FFN With Limited Unlabeled Data

In Section IV-A, we have presented the FFN framework
under the fully supervised quantization circumstance, where
all training data and labels are accessible. However, in many
real-world applications, the label information is hard to obtain.
Moreover, due to privacy policies, we may have no access to
a large amount of data. In this section, we extend our FFN to
the unsupervised quantization scheme.

1) Response Matrix Factorization: In this section, we will
extend our FFN from weight matrix factorization to response
matrix factorization as follows:

min
D,Û ,V̂

� Y − Û DV̂ T X �2
F

s.t. Û ∈ {−1, 0,+1}m×k

V̂ ∈ {−1, 0,+1}n×k

D ∈ R
k×k
+ (17)

where Y ∈ R
m×t represents the output response matrix of

a given convolutional layer, and X ∈ R
n×t represents the

corresponding input matrix of the pretrained model. Here,
t represents the number of response vectors. Formally, we have
Y = W X . Note that we only need to sample some responses
for the optimization problem of (17).

Similar to fixed-point weight matrix factorization, we utilize
an iterative greedy optimization procedure. At each step i ,
we solve the following problem:

min
di ,ûi ,v̂i

� Ei − di ûi v̂
T
i X �2

F

s.t. ûi ∈ {−1, 0,+1}m
v̂i ∈ {−1, 0,+1}n

di ∈ R+ (18)

where Ei = Y −�
j �=i d j û j v̂

T
j X represents the residual to be

minimized at step i . For simplicity, we will discard the index i ,

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



2712 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

and the abovementioned optimization problem becomes

minimize
d,û,v̂

� E − d ûv̂T X �2
F
�= H (d, û, v̂). (19)

To minimize (19), we utilize an alternating solver to opti-
mize d , û, and v̂.

a) Subproblem of d: In this case, û and v̂ are fixed. The
minimization problem of (19) turns into the minimization of
the following problem:

H (d) =� E �2F −2d v̂T X ET û + d2 � ûv̂T X �2
F . (20)

Equation (20) has only one variable, and it is easy to get that

d = v̂T X ET û

� ûv̂T X �2
F

. (21)

b) Subproblem of û: In this case, d and v̂ are fixed. The
minimization problem of (19) turns into the minimization of
the following problem:

H (û) = � E �2
F −2d v̂T X ET û + d2v̂T X X T v̂ · ûT û

= γ ûT û + tT û + const (22)

where γ = d2v̂T X X T v̂ and t = −2d E X T v̂.
The integer programming of (22) has 3m feasible points;

thus, an exhaustive search method is impractical to use.
However, û ∈ {−1, 0, 1}m ; thus, the term ûT û equals to the
number of nonzeros of û. In this way, the minimization of (22)
can be solved by checking m possibilities. Assuming that û
has exactly s nonzeros, the solution is given by

ûi =
�
−sign(ti), abs(ti ) in the top s of abs(t)

0, otherwise
(23)

where sign is the sign function and abs is the absolute value
function. When s traverses from 0 to m, we can get the global
optimum û∗ for (22).

c) Subproblem of v̂: In this case, d and û are fixed. The
minimization problem of (19) turns into the minimization of
the following problem:

H (v̂) =� E �2
F −2d ûT E X T v̂ + d2 ûT û � X T v̂ �2

F . (24)

It is not easy to minimize (24). Here, we utilize the
cyclic coordinate descent algorithm to obtain an approximate
solution. More specifically, during each descent step, we only
update one element of v̂ but fix all the other elements.
Assuming that v̂ j is unknown, the quadratic form of (24) can
be transformed into the following formulation:

� X T v̂ �2
F =� v̂ j X T

j + X̄ T
j

¯̂v j �2
F (25)

where v̂ j is the j th element of v̂, and ¯̂v j represents the
other elements excluding v̂ j . Similarly, X T

j is the j th column
of X T , and X̄ T

j represents the other columns excluding X T
j .

To optimize v̂ j and by setting t = 2d X ET û and s = X̄ T
j

¯̂v j ,
(24) can be written as

H (v̂ j) = � E �2
F −2d tT v̂ + d2ûT û � v̂ j X T

j + X̄ T
j

¯̂v j �2
F

= γ v̂2
j + ηv̂ j + const (26)

where γ = d2ûT ûX T
j X j and η = (2d2ûT ûX T

j s − t j ). t j

represents the j th element of t. Note that v̂ j ∈ {−1, 0, 1},
and thus, the optimal value of v̂ j is given by

v̂ j =
�
−sign(η), γ − abs(η) < 0

0, otherwise
(27)

where sign is the sign function and abs is the absolute value
function. By iteratively optimize v̂ j for j = 1, . . . , n, we can
get an approximate solution v̂∗ to (24).

2) Response Factorization With Error Correction: So far,
we have presented our response matrix factorization frame-
work for unsupervised quantization circumstances. From (17),
it can be seen that for a given network, each layer is processed
independently. This quantization scheme could result in accu-
mulated errors when the whole network is quantized.

To solve this problem, we make a change to the optimization
problem of (17) as follows:

min
D,Û ,V̂

� Y − Û DV̂ T X̂ �2
F

s.t. Û ∈ {−1, 0,+1}m×k

V̂ ∈ {−1, 0,+1}n×k

D ∈ R
k×k
+ (28)

where X̂ represents the quantized inputs (i.e., the outputs
from the previous layer of the quantized model) to the layer
that is currently processing. Using this quantization scheme,
the approximation error of the previous layer can be absorbed
during the quantization of the current layer, thus preventing
the error from accumulating across layers.

C. Convergence Analysis

In [52], it has been proved that the SDD algorithm converges
linearly to the original matrix with respect to rank k. The
convergence also holds for the improved SDD algorithm.
In this section, we further show that the improved SDD
decomposition of Algorithm 1 also converges in terms of the
cost function (J ) with fixed rank k.

1) Convergence of Inner Iteration With Respect to F:
The inner iteration of Algorithm 1 solves the minimization
problem of F (5). According to the definition, F measures
the sum of squared distances between the target matrix Ri

and the SDD component di ûi v̂
T
i . Thus, F is bounded from

below (F ≥ 0). The inner iterations of Algorithm 1 is exactly
coordinate descent on F , in which each coordinate descent step
has an optimal solution. Thus, F will monotonically decrease.
By now, we have demonstrated that F is bounded from below,
and each inner iteration will monotonically reduce F . Accord-
ing to the convergence of a bounded monotonic sequence,
the value of F will converge.

2) Convergence of Outer Iteration: The outer iteration of
Algorithm 1 solves the minimization problem of J (4) with
respect to D, Û , and V̂ . According to the definition, J mea-
sures the sum of squared distances between the original matrix
W and the SDD decomposition Û DV̂ T . Thus, J is bounded
from below (J ≥ 0). We will prove that J will monotonically
decrease.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: UNSUPERVISED NETWORK QUANTIZATION VIA FIXED-POINT FACTORIZATION 2713

Algorithm 1 decomposes the minimization problem of J
with respect to D, Û , and V̂ into k steps, by minimizing J
with respect to {(di , ûi , v̂i ); i = 1, . . . , k}. To demonstrate that
the outer iteration will reduce the value of J , we instead by
demonstrating that each of the k steps will reduce the value
of J . At the i th step, only the i th SDD components will be
updated. We denote the i th SDD components after update
by (d 
i , û
i , v̂



i ). Similarly, the value of J after the i th step is

denoted by J 
. Then, we have

J 
 = �
⎛
⎝W −

�
j �=i

d j û j v̂
T
j

⎞
⎠− d 
i û



i v̂

T
i �2

F

= �Ri − d 
i û


i v̂

T
i �2

F

≤ �Ri − di ûi v̂
T
i �2

F

= �
⎛
⎝W −

�
j �=i

d j û j v̂
T
j

⎞
⎠− di ûi v̂

T
i �2

F = J. (29)

By now, we have demonstrated that J is bounded from
below, and each outer iteration will monotonically reduce J .
According to the convergence of a bounded monotonic
sequence, the value of J will converge.

D. Complexity Analysis

The computing complexity of the proposed FFN framework
is thoroughly analyzed in this section. The analysis is based on
convolutional layers, which dominates most of the operations
in a convolutional network.

For a convolutional layer with kernels of size w×h×c×n,
the operations of multiplication and addition are given by

Cmul = Cadd = W 
 ∗ H 
 ∗ (w ∗ h ∗ c ∗ n) (30)

where W 
 and H 
 represent the height and width of the output
feature maps. By comparison, the operations required by FFN
architecture are

Cmul = W 
 ∗ H 
 ∗ k

Cadd = (1− α) ∗W 
 ∗ H 
 ∗ (w ∗ h ∗ c + n) ∗ k

≈ (1− α) ∗W 
 ∗ H 
 ∗ (w ∗ h ∗ c ∗ n) (31)

where α denotes the proportion of zeros after fixed-point
factorization. For convolutional layers, c, n, and k are usually
in the same order of magnitude. Thus, the multiply operations
of FFN can be dramatically reduced because w∗h ∗c∗n � k.
At the same time, the addition operations required by FFN can
also be reduced by about (1− α) times. As can be seen from
the experiments sections, the sparsity α after quantization is
around 0.5, which means that only about half of operations
are required, compared with previous binary quantization
methods. We refer to Section V-E for more detail.

V. EXPERIMENTS

In this section, we comprehensively evaluate the proposed
method on ILSVRC-12 [24] image classification and MS
COOC object detection benchmarks. We first examine the
effects of each individual component of FFN, i.e., fixed-point

Fig. 3. Weight approximation error and classification accuracy on ImageNet
when choosing different k’s for the second convolutional layer of AlexNet.

factorization, full-precision weight recovery, and weight bal-
ancing, in Section V-A. Then, in Section V-B, the performance
of FFN with fully supervised quantization scheme is evaluated
based on AlexNet [1], VGG-16 [19], and ResNet [20]. Next,
in Section V-C, we evaluate the performance of the proposed
FFN under the circumstance when very limited unlabeled
or even no data are provided. We also evaluate the FFN
framework on object detection task in Section V-D. Finally,
the experimental robustness and efficiency analysis are given
in Section V-E.

A. Effectiveness of Each Part

In this section, the effectiveness of each part of our uni-
fied FFN framework is thoroughly analyzed by controlled
experiments. For fast evaluation, we only utilize the relatively
smaller AlexNet [1] model for experiments.

1) Fixed-Point Factorization: In Section IV-A1, we have
demonstrated that the FFN can infinitely approximate the
full-precision weight matrix W by choosing large decom-
position rank k. It also allows us to utilize different k’s
for different layers, making the FFN framework much more
accurate and flexible than direct quantization methods. In this
section, we experimentally evaluate the relationship between
the classification accuracy and the weight approximation error
under different k’s. Here, the weight matrix approximate error
is defined as

r = � W − Û DV̂ T �2
F

� W �2
F

. (32)

Experiments are based on the second convolutional layer of
AlexNet, which dominates most of the operations during the
inference phase. This layer consists of two groups. The kernel
size for each group is 5× 5× 48× 128. We choose the same
decomposition rank k for these two groups. The approximation
error is averaged for evaluation.

Fig. 3 shows the relationship between the approximation
error (the blue line) and the accuracy (the pink lines) on the
ImageNet classification task, for varying k. Fig. 3 shows that as
k increases, the approximation error decreases to zero, and the
accuracy approaches the original AlexNet. The results indicate
that the proposed FFN framework can be accurate enough as
we want, as long as we use large enough k. However, using
too large k may also increase the storage requirement and
computing time. An appropriate way is to choose k where the

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



2714 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

TABLE I

RESULTS OF DIFFERENT SETTINGS ON ALEXNET

marginal gain becomes inconspicuous. In Fig. 3, we notice that
when k is larger than 128, the accuracy increment becomes
subtle, i.e., setting the rank similar to the number of output
channels could be an appropriate choice.

The classification accuracy after all layers are quantized is
given in the second row of Table I (denoted as FFN-SDD).
By comparing with the original AlexNet model, it can be seen
that the accuracy of FFN drops drastically without retraining.
Thus, a later fine-tune stage is necessary for higher accuracy.
However, our fixed-point factorized method can indeed pro-
vide a reasonable initialization.

2) Full-Precision Weight Recovery: In this section, we eval-
uate the effect of the proposed full-precision weight recovery
method. During the retraining stage, full-precision weights are
used for gradients accumulation. Thus, the retraining proce-
dure could be affected by the initial values of the full-precision
weights. We first evaluate the performance of the recovered
weights on AlexNet to demonstrate that the recovered weights
can actually represent the original weights. The accuracy is
shown in the third row of Table I (FFN-Recovered), which is
very close to that of the original AlexNet model.

To further demonstrate the effect of the weight recov-
ery strategy on the retraining procedure, we compare the
accuracy of FFN with or without full-precision weight
recovery in Table I. Without full-precision weight recovery
(FFN-W/O-FWR), the top-five accuracy decreases by about
1.8%.

3) Weight Balancing: Weight balancing can make the
retraining process more stable, which is demonstrated
in Table I. We compare the results of using weight balanc-
ing (FFN) and that without weight balancing (FFN-W/O-WB).
The results on AlexNet show that the weight balancing tech-
nique greatly helps the retraining, leading to a 3.6%/2.4%
improvement in the top-one/top-five classification accuracy.

To further understand the gradients imbalance problem and
how the weight balancing method works, we investigate the
gradients’ distribution of the second layer of AlexNet during
the retraining stage, as shown in Fig. 4. The three rows
from top to bottom correspond to the gradient distribution
of V̂ , D, and Û , respectively. The left and right columns
represent the gradient distribution before and after applying
our weight balancing method.

From the left column of Fig. 4, we discover that with-
out weight balancing, the gradient distribution of the three
decomposed layers differs significantly from each other. The
gradients to D could be thousands of times larger than the
gradients to Û and V̂ . Moreover, the gradients to Û tend to be
several times larger than those of V̂ . The experimental results

Fig. 4. Gradient distribution of the second convolutional layer of AlexNet
before (left column) and after (right column) weight balancing. Three rows
correspond to V̂ , D, and Û , respectively.

are consistent with the analysis in Section IV-A3 and Fig. 2,
i.e., after decomposition, the matrix with larger elements tends
to have smaller gradients, and the matrix with more elements
also tends to have smaller gradients.

While after weight balancing (the right column of Fig. 4),
most gradients lie between −0.1 and 0.1 for all layers. The
weight balancing technique allows us to use the same learning
rate for all layers, which is very important for network
retraining, especially for very deep networks, such as ResNet.

B. Supervised Experiments on ILSVRC-12

In this section, the performance of the proposed FFN frame-
work on the ImageNet classification task is evaluated under a
fully supervised quantization scheme. The quantization proce-
dure is first to approximate the original weight matrices using
the proposed fixed-point factorization, full-precision weight
recovery, and weight balancing method. Then, the quantized
networks are retrained on the ImageNet classification data
set to retain accuracy. Most of the commonly used CNN
models, such as AlexNet [1], VGG-16 [19], ResNet-50 [20],
and ResNet-101 [20], are used for evaluation.

1) AlexNet: We first conduct experiments on AlexNet [1].
This network has about 61M parameters, most of which reside
in the last three FC layers. To achieve a higher compression
rate, we utilize smaller decomposition rank k for the FC layers.
More specifically, for the convolutional layers with kernels in
the shape of w × h × c × n, we choose decomposition rank
k = min(w ∗ h ∗ c, n), while, for the last three FC layers, k is
set to be 2048, 3072, and 1000, respectively.

For comparison, the performance of previous quantization
methods is also given. Note that previous methods, such
as BC [9] and BWN [10], report their results with batch
normalization [54]. For fair comparison, we also report our
results with batch normalization using the same settings.

1) BC [9]: Using binary weights, reported by [10].
2) BWN [10]: Using binary weights and floating-point

scaling factors.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: UNSUPERVISED NETWORK QUANTIZATION VIA FIXED-POINT FACTORIZATION 2715

TABLE II

COMPARISON ON ALEXNET (BATCH NORMALIZATION [54] IS USED)

TABLE III

COMPARISON ON VGG-16

3) BWN via Hashing (BWNH) [15]: Using binary weights
and floating-point scaling factors.

4) Ternary Weight Network (TWN) [17]: Using ternary
weights and floating-point scaling factors.

5) Trained Ternary Quantization (TTQ) [18]: Using ternary
weights and asymmetric floating-point scaling factors.

6) TWN-ADMM [55]: TWN trained using alternating direc-
tion method of multipliers (ADMM).

7) LDR [14]: Logarithmic data representation, 4-bit loga-
rithmic activation, and 5-bit logarithmic weights.

8) APPRENTICE [56]: TWN via knowledge distillation.
9) TGA [57]: TWN by simultaneously optimizing weight

and quantizer.
10) QNet [58]: TWN using differentiable nonlinear

function.

The results are shown in Table II. The suffix B N indi-
cates that batch normalization [54] is used. From the results,
we can see that under a fully supervised quantization scheme,
the accuracy of the quantized networks is very close to that
of the full-precision counterparts. For the top-one accuracy
of AlexNet, our method (denoted by FFN) outperforms the
previous best result by 2.1%. These results show that FFN
can achieve comparable accuracy to full-precision baselines
and dramatically outperforms current state-of-the-art methods.

2) VGG-16: The VGG-16 [19] model consists of 13 convo-
lutional layers and three FC layers, which is much wider and
deeper than AlexNet. It is also more challenging to quantize
the VGG-16 model. We use the same policy for choosing the
rank k as in Section V-B1, and we set k = 3138, 3072, and
1000 for three FC layers, respectively, resulting in about the
same number of parameters as the original VGG-16 model.

The quantization results as well as the baselines are shown
in Table III. It is easy to conclude that after ternary quantiza-
tion, our method even outperforms the full-precision VGG-16
model by 0.2% on top-five accuracy. The results demonstrate
the effectiveness of the proposed FFN framework.

3) ResNets: To further demonstrate the advantages of
the proposed FFN framework, we conduct experiments on

TABLE IV

COMPARISON ON RESNET-50 AND RESNET-101

TABLE V

COMPARISON WITH CURRENT STATE-OF-THE-ART METHODS ON

RESNET-50 CLASSIFICATION TASK

the challenging ResNet architecture, i.e., ResNet-50 and
ResNet-101. Unlike AlexNet and VGG-16, the ResNet is
much harder to quantize because it has taken computation
and storage into consideration during the design of network
architecture. This is achieved by utilizing bottleneck architec-
ture [20], which dramatically reduces the redundancy.

The ResNet architecture only has one FC layer. There is
a global average pooling layer before the FC layer; thus,
the ResNet has much fewer parameters than AlexNet [1] and
VGG-16 [19]. To make the number of parameters unchanged,
we set k = ((w ∗ h ∗ c) ∗ n/w ∗ h ∗ c + n) for all layers,
i.e., keeping the same number of parameters for every layer.
In this setting, our method still achieves promising results.
As shown in Table IV, the top-five accuracy of the proposed
FFN (denoted by FFN-ResNet-50*) drops by 1.7%.

Choosing a higher k for convolutional layers as done for
AlexNet and VGG-16 could further reduce the classification
error. More specifically, for the convolutional layers with 4-D
weights of size w×h×c×n, we choose decomposition dimen-
sion k = min(w ∗ h ∗ c, n). The results are shown in Table IV
(denoted by FFN-ResNet-50 and FFN-ResNet-101). It is clear
that choosing a higher k can remarkably boost the accuracy,
i.e., for the ResNet-50, the top-five accuracy can be improved
from 90.9% to 91.7%. The improvement also illustrates the
flexibility of the proposed FFN method, i.e., for networks
with less redundancy, a relatively higher k could be utilized to
guarantee the classification accuracy. In this way, our FFN
achieves only 0.9% and 0.7% top-five accuracy drops for
ResNet50 and ResNet101, which shows that the performance
of FFN is comparable to the full-precision networks.

To further compare FFN with the current state of the art,
we report the accuracy before and after quantization based
on ResNet-50 in Table V. From the results, we can see
that under a supervised quantization scheme, the proposed

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



2716 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Algorithm 2 Response Factorization With Error Correction

Input: Pretrained networks with weight matrices {W l}Ll=1
Input: A batch of unlabeled data X0

Output: Ternary weight matrices {Û l}Ll=1 and {V̂ l}Ll=1
Output: Diagonal matrices {Dl}Ll=1
1: Init Dl , Û l and V̂ l using Algorithm 1
2: Forward propagation of pretrained model to get Y l

3: Forward propagation of quantized model to get X̂ l−1

4: for l = 1, · · · , L do
5: while outer iteration not converges do
6: for i = 1, · · · , k do
7: E ← Y l −�

j �=i d j û j v̂
T
j X̂ l

8: while inner iteration not converge do
9: Update di given ûi and v̂i according to (21)

10: Update ûi given di and v̂i according to (23)
11: for j = 1, · · · , n do
12: Update the j th element of v̂i given di and ûi

according to (27)
13: end for
14: end while
15: end for
16: end while
17: end for

TABLE VI

UNSUPERVISED QUANTIZATION RESULTS OF VARIOUS MODELS ON

IMAGENET. ALL FFN MODELS ARE QUANTIZED INTO TERNARY

WEIGHTS. THE SUFFIX “INT8” INDICATES 8-Bit FIXED-POINT
QUANTIZATION OF ACTIVATIONS, IN ADDITION TO

TERNARY WEIGHT QUANTIZATION

FFN can achieve comparable or higher accuracy than current
state-of-the-art approaches.

C. Unsupervised Experiments on ILSVRC-12

In this section, we thoroughly evaluate the performance of
FFN on the ImageNet classification task under an unsupervised
quantization scheme, where only limited unlabeled data are
provided, or even no data are provided. We use the same
evaluation approach as in Section V-B.

1) Unsupervised Quantization Results: In this section,
we evaluate the performance of the unsupervised FFN
approach, i.e., the proposed response factorization with the
error correction method, as illustrated in Algorithm 2. No fine-
tuning is conducted after quantization.

Table VI compares our unsupervised ternary quantization
methods with full-precision counterparts on various models.

Fig. 5. Accuracy curve of AlexNet on ImageNet after layerwise fixed-point
factorization.

Without fine-tuning, our FFN achieves results comparable to
the full-precision models. The top-five accuracy drops 1.5%,
1.7%, 1.2%, and 2.3% on AlexNet, VGG-16, ResNet-50,
and ResNet-101, respectively. The degradation is acceptable
considering that no label and fine-tuning are needed.

By comparing the results to current state-of-the-art methods
shown in Table II, it can be seen that our unsupervised FFN
outperforms most of the current fully supervised quantization
methods.

In order to eliminate the floating-point operations, we fur-
ther quantize all activations into a fixed-point format using
8-bit quantization. The results are also given in Table VI.
The suffix “Int8” indicates 8-bit fixed-point quantization of
activations. From the results, it can be concluded that the 8-bit
activation quantization has little impact on the accuracy.

2) Error Correction: To further show the effect of the
proposed response factorization as well as error correc-
tion, we have conducted extensive experiments based on the
AlexNet model. All layers except the first one are quantized
sequentially. The results are shown in Fig. 5, which shows the
classification accuracy versus the number of quantized layers.
We summarize the controlled experiments as follows.

1) FFN-WMF: FFN using weight matrix factorization.
2) FFN-RMF: FFN using response matrix factorization

without error correction.
3) FFN-RMF-EC: FFN using response matrix factorization

with error correction.

From Fig. 5, we can see that FFN with weight matrix
factorization alone can achieve about 72.4% top-five accuracy,
which shows the powerful reconstruction ability of the pro-
posed fixed-point factorization method. However, degradation
is still not acceptable.

To demonstrate the advantages of response factorization
over the weight matrix factorization, we give the results
of FFN using response matrix factorization without error
correction, where multilayers are processed simultaneously.
With the help of response factorization, FFN-RMF consistently
outperforms FFN-WMF by a large margin for all layers.

We notice that when coupled with error correction,
the FFN-RMF-EC could outperform FFN-WMF by more
than 0.3%, which indicates that the accumulative error due
to multilayer approximation can be reduced by the error
correction mechanism.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: UNSUPERVISED NETWORK QUANTIZATION VIA FIXED-POINT FACTORIZATION 2717

TABLE VII

IMAGENET CLASSIFICATION ACCURACY OF ALEXNET AND
VGG16 AFTER RESPONSE MATRIX FACTORIZATION

BASED ON DIFFERENT CALIBRATION DATA

3) FFN Without Training Data: So far, we have demon-
strated the effects of the unsupervised FFN approach with
unlabeled data. Furthermore, we apply our method under
circumstances where no training data are available.

Note that as indicated in (17), our response matrix factoriza-
tion method actually learns a mapping between the inputs and
the outputs while ignoring the real content. Thus, instead of
conducting fixed-point factorization based on target images,
we could use other heterogeneous images that are publicly
available, for example, images collected from the website.
Here, we evaluate the unsupervised FFN on the ImageNet
classification task; however, no ImageNet data are used during
fixed-point factorization. Instead, we consider two cases. First,
a small number of unlabeled images, which come from similar
distribution as training data, are available. For this case, we use
images from the test set of ImageNet for experiments, denoted
by FFN-ImageNet-TestSet. Second, no training images or sim-
ilar images are available. We use images from the Pascal VOC
data set [60] for the factorization learning process, denoted
by FFN-VOC. The evaluation results based on AlexNet and
VGG16 are reported in Table VII.

From Table VII, we can see that using images from training
data set or from similar distribution as the training data
set could achieve very similar accuracy performance. Using
images from very different distributions as training data results
in a bit accuracy degradation, however, the accuracy is still
comparable to that using original training data. Thus, we can
conclude that even though no data are available, the proposed
FFN still works well.

D. Experiments on Object Detection

In Sections V-B and V-C, we have thoroughly evaluated the
proposed method on the image classification task. It is worth
noting that our method could be readily used to other computer
vision tasks, which commonly involves DNNs. In this section,
we evaluate the performance of the proposed unsupervised
FFN on object detection and instance segmentation tasks.

We use Mask RCNN [61] for demonstration, which is cur-
rent state-of-the-art object detection and instance segmentation
approach. The challenging MS COCO data set is used for
evaluation. The model is trained on 80k training images and
35k of validation images (trainval35k) and is evaluated on
the remaining 5k validation images (minival). Input images
are resized to 800 pixels in the shorter edge. We choose the

TABLE VIII

OBJECT DETECTION (BOUNDING BOX AP) AND INSTANCE
SEGMENTATION (MASK AP) RESULTS ON COCO

MINIVAL SET

ResNet-18 architecture as the backbone, which is quantized
using the proposed FFN approach. Note that only the backbone
is ternarized using the proposed unsupervised quantization
scheme. The results are shown in Table VIII. It can be
concluded that there are 2.8 points and 2.7 points degradation
in box AP and mask AP, respectively, which demonstrates the
generalization ability of the proposed FFN framework. It is
worth noting that the accuracy could be further improved if
we fine-tune the factorized networks using labels. The results
on Mask RCNN have shown that the proposed FFN also
works on object detection tasks and more fine-grained instance
segmentation tasks.

E. Robustness and Efficiency Analysis

In this section, we thoroughly analyze the robustness of the
proposed weight matrix factorization (4) and response matrix
factorization (17). Then, the computational complexity and
storage requirement of the proposed FFN are analyzed and
compared with the original networks as well as BWNs.

1) Robustness of Factorization: In this section, we explore
the robustness of the optimization procedure of the proposed
ternary factorization. We use an iterative optimization strategy
for the optimization of (4) and (17), i.e., the weight matrix
factorization and response matrix factorization. Note that each
subproblem of (4) and (17) can steadily reduce the quantiza-
tion error of the corresponding optimization problem.

To show that the iterative optimization procedure can
steadily reduce the quantization error, we first define the infor-
mation loss for weight matrix factorization (Lw) and response
matrix factorization (Lr ), corresponding to (4) and (17),
respectively. The information losses are defined as follows:

Lw = � W − Û DV̂ T �2
F

� W �2
F

(33)

Lr = � Y − Û DV̂ T X �2
F

� Y �2
F

. (34)

Then, we check the information loss during the iterative
optimization procedure, and the results are shown in Fig. 6.
From Fig. 6, we can see that the information loss for both
weight matrix factorization and response matrix factorization
can be steadily reduced with more iterations.

2) Inference Efficiency: FFN utilizes ternary weights, and
we empirically find that about half of weights are zeros. Fig. 7
shows the sparsity of all layers within the residual blocks of
ResNet-101. The sparsity is calculated based on the ratio of
zeros in Û and V̂ after fixed-point factorization. The sparsity
ranges from 40% to 70%, and different layers have different

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



2718 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Fig. 6. Information loss for the optimization of (a) weight matrix factorization and (b) response matrix factorization. For both cases, the information loss
can be steadily reduced with more optimization iterations.

Fig. 7. Sparsity of all layers within the residual blocks of ResNet-101 after ternary quantization. The sparsity is calculated based on the ratio of zeros in Û
and V̂ after fixed-point factorization. Each consecutive three points correspond to the sparsity of three layers of a bottleneck. As a baseline, we have checked
the sparsity of full-precision ResNet-101, for which each layer has a sparsity of 0%.

sparse ratios. It can also be seen that lower layers, i.e., layers
from the first residual block, have higher sparsity than upper
layers. We also notice that, within each bottleneck structure
(each consecutive three points correspond to the sparsity of
three layers of a bottleneck), the first 1×1 convolutional layer
tends to have higher sparsity.

Fig. 7 shows that the sparsity of the factorized weights is
about 50%. As a baseline, we have checked the sparsity of
full-precision ResNet-101, for which each layer has a sparsity
of 0. The sparsity for binary-based methods is also 0. Thus,
the computational complexity is about half of binary-based
methods, such as BC [9].

Table IX shows the detailed computation and storage com-
plexity of AlexNet, VGG-16, ResNet-50, and ResNet-101.
For the computation complexity, multiplication and addition
operations needed by the inference of one input image are
given, which are indicated by “Mul” and “Add,” respectively.
As for storage consumption, we report the number of bytes
needed to store the whole models. To make a comparison,
we report the computation and storage complexity of the
original full-precision models, the binary quantized models,
as well as our FFN quantized models. Note that we do not
make a difference between different binary approaches, such
as BWN, because most of the binary approaches, including
BWN, have almost the same resource consumption.

TABLE IX

OPERATIONS AND STORAGE REQUIREMENTS. MUL AND ADD

REPRESENT THE NUMBER OF MULTIPLY AND ADDITION

OPERATION. BYTES INDICATES THE NUMBER OF BYTE
NEEDED TO STORE THE WEIGHTS. ALL NUMBERS

ARE ACCOUNTED FOR CONVOLUTIONAL

LAYERS AND FC LAYERS

From Table IX, it can be concluded that both binary methods
and the proposed FFN can dramatically remove multiplication
operations. For some architecture, such as ResNet-50 and
ResNet-101, the FFN has about half multiplications compared
with binary methods, which is due to the small factorization
rank of FFN. For additions, binary approaches have the same
addition operations as full-precision counterparts because there
is no sparsity of binary approaches. By contrast, the FFN
only needs about half additions due to the ∼ 50% sparsity

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: UNSUPERVISED NETWORK QUANTIZATION VIA FIXED-POINT FACTORIZATION 2719

of factorized weights. The disadvantage of using ternary
weights is that it needs a little more storage than binary
weights. Especially, our ternary method has about 1.5-bit
weight representation because of the sparsity. Thus, the storage
consumption of FFN is about 1.5× of binary approaches.

VI. CONCLUSION

We introduce a novel fixed-point factorized framework,
named FFN, for DNN acceleration and compression. To make
full use of the pretrained models, we propose a novel full-
precision weight recovery method, which makes the fine-
tuning more efficient and effective. Moreover, we present a
weight balancing technique to stabilize the retraining process.
An unsupervised version of FFN is also developed to deal
with the circumstance where limited unlabeled data or even
no data are provided. Extensive experiments on the ImageNet
classification and object detection on MS COCO show that,
even without labels, the proposed FFN with ternary weights
can achieve comparable accuracy to the full-precision coun-
terparts, resulting in about more than 20× compression and
removing most of the multiply operations.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[2] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 1135–1143.

[3] R. Abbasi-Asl and B. Yu, “Structural compression of convolu-
tional neural networks,” 2017, arXiv:1705.07356. [Online]. Available:
http://arxiv.org/abs/1705.07356

[4] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method for
deep neural network compression,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Venice, Italy, Oct. 2017, pp. 5068–5076.

[5] M. Denil et al., “Predicting parameters in deep learning,” in Proc. Adv.
Neural Inf. Process. Syst., 2013, pp. 2148–2156.

[6] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convo-
lutional networks for classification and detection,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 38, no. 10, pp. 1943–1955, Oct. 2015.

[7] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Com-
pression of deep convolutional neural networks for fast and low power
mobile applications,” 2015, arXiv:1511.06530. [Online]. Available:
http://arxiv.org/abs/1511.06530

[8] P. Wang and J. Cheng, “Accelerating convolutional neural networks
for mobile applications,” in Proc. ACM Multimedia Conf., 2016,
pp. 541–545.

[9] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in Proc.
Adv. Neural Inf. Process. Syst., 2015, pp. 3123–3131.

[10] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
Computer Vision (Lecture Notes in Computer Science), vol. 9908. Cham,
Germany: Springer, 2016, pp. 525–542.

[11] P. Wang, Q. Hu, Y. Zhang, C. Zhang, Y. Liu, and J. Cheng, “Two-
step quantization for low-bit neural networks,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 4376–4384.

[12] T. Dettmers, “8-bit approximations for parallelism in deep
learning,” 2015, arXiv:1511.04561. [Online]. Available: http://arxiv.
org/abs/1511.04561

[13] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proc. 32nd Int. Conf.
Mach. Learn. (ICML), Jul. 2015, pp. 1737–1746.

[14] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neural net-
works using logarithmic data representation,” 2016, arXiv:1603.01025.
[Online]. Available: http://arxiv.org/abs/1603.01025

[15] Q. Hu, P. Wang, and J. Cheng, “From hashing to CNNs: Training binary
weight networks via hashing,” in Proc. AAAI, Feb. 2018, pp. 3247–3254.

[16] P. Wang, X. He, G. Li, T. Zhao, and J. Cheng, “Sparsity-inducing
binarized neural networks,” in Proc. AAAI, 2020, p. 12192–12199.

[17] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” 2016,
arXiv:1605.04711. [Online]. Available: http://arxiv.org/abs/1605.04711

[18] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quanti-
zation,” 2016, arXiv:1612.01064. [Online]. Available: http://arxiv.org/
abs/1612.01064

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[21] P. Wang and J. Cheng, “Fixed-point factorized networks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 4012–4020.

[22] J. Cheng, P. Wang, G. Li, Q. Hu, and H. Lu, “Recent advances in
efficient computation of deep convolutional neural networks,” Frontiers
Inf. Technol. Electron. Eng., vol. 19, no. 1, pp. 64–77, Jan. 2018.

[23] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” 2014, arXiv:1405.3866.
[Online]. Available: http://arxiv.org/abs/1405.3866

[24] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[25] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lem-
pitsky, “Speeding-up convolutional neural networks using fine-
tuned CP-decomposition,” 2014, arXiv:1412.6553. [Online]. Available:
http://arxiv.org/abs/1412.6553

[26] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1379–1387.

[27] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 2074–2082.

[28] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2755–2763.

[29] Z. Cheng, D. Soudry, Z. Mao, and Z. Lan, “Training binary
multilayer neural networks for image classification using expecta-
tion backpropagation,” 2015, arXiv:1503.03562. [Online]. Available:
http://arxiv.org/abs/1503.03562

[30] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2849–2858.

[31] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K. Cheng, “Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational
capability and advanced training algorithm,” in Proc. 15th Eur. Conf.,
Munich, Germany, Sep. 2018, pp. 747–763.

[32] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolu-
tional neural network,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 344–352.

[33] S. Zhu, X. Dong, and H. Su, “Binary ensemble neural network: More
bits per network or more networks per bit?” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4923–4932.

[34] J. Fromm, S. Patel, and M. Philipose, “Heterogeneous bitwidth binariza-
tion in convolutional neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 4010–4019.

[35] K. Hwang and W. Sung, “Fixed-point feedforward deep neural network
design using weights+1, 0, and- 1,” in Proc. IEEE Workshop Signal
Process. Syst. (SiPS), Oct. 2014, pp. 1–6.

[36] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 4820–4828.

[37] J. Cheng, J. Wu, C. Leng, Y. Wang, and Q. Hu, “Quantized CNN:
A unified approach to accelerate and compress convolutional networks,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 4730–4743,
Oct. 2018.

[38] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” 2015, arXiv:1503.02531. [Online]. Available:
http://arxiv.org/abs/1503.02531

[39] S. Zagoruyko and N. Komodakis, “Paying more attention to atten-
tion: Improving the performance of convolutional neural networks
via attention transfer,” 2016, arXiv:1612.03928. [Online]. Available:
http://arxiv.org/abs/1612.03928

[40] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, “Learning
efficient object detection models with knowledge distillation,” in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 742–751.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



2720 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

[41] T. Wang, L. Yuan, X. Zhang, and J. Feng, “Distilling object detectors
with fine-grained feature imitation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4933–4942.

[42] G. Zhu, J. Wang, P. Wang, Y. Wu, and H. Lu, “Feature distilled tracking,”
IEEE Trans. Cybern., vol. 49, no. 2, pp. 440–452, Feb. 2019.

[43] K. Bhardwaj, N. Suda, and R. Marculescu, “Dream distillation: A data-
independent model compression framework,” 2019, arXiv:1905.07072.
[Online]. Available: http://arxiv.org/abs/1905.07072

[44] H. Chen et al., “Data-free learning of student networks,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 3514–3522.

[45] Y. Xu et al., “Positive-unlabeled compression on the cloud,” in Proc.
Adv. Neural Inf. Process. Syst., 2019, pp. 2561–2570.

[46] X. He and J. Cheng, “Learning compression from limited unlabeled
data,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 752–769.

[47] R. Banner, Y. Nahshan, and D. Soudry, “Post training 4-bit quantization
of convolutional networks for rapid-deployment,” in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 7948–7956.

[48] P. Wang, Q. Chen, X. He, and J. Cheng, “Towards accurate post-training
network quantization via bit-split and stitching,” in Proc. 37nd Int. Conf.
Mach. Learn. (ICML), Jul. 2020, pp. 243–252.

[49] M. Nagel, M. V. Baalen, T. Blankevoort, and M. Welling, “Data-free
quantization through weight equalization and bias correction,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1325–1334.

[50] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in Proc. 10th Int. Workshop
Frontiers Handw. Recognit., 2006, pp. 1–8.

[51] T. G. Kolda and D. P. O’Leary, “A semidiscrete matrix decomposition for
latent semantic indexing information retrieval,” ACM Trans. Inf. Syst.,
vol. 16, no. 4, pp. 322–346, Oct. 1998.

[52] T. G. Kolda and D. P. O’Leary, “Algorithm 805: Computation and uses
of the semidiscrete matrix decomposition,” ACM Trans. Math. Softw.,
vol. 26, no. 3, p. 415–435, Sep. 2000, doi: 10.1145/358407.358424.

[53] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” J. Mach. Learn. Res., vol. 9,
pp. 249–256, May 2010.

[54] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” 2015,
arXiv:1502.03167. [Online]. Available: http://arxiv.org/abs/1502.03167

[55] C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin, “Extremely low bit neural
network: Squeeze the last bit out with ADMM,” in Proc. 32nd AAAI
Conf. Artif. Intell., 2018, pp. 3466–3473.

[56] A. Mishra and D. Marr, “Apprentice: Using knowledge distillation
techniques to improve low-precision network accuracy,” in Proc. Int.
Conf. Learn. Represent., 2018, pp. 1–15.

[57] Z. He and D. Fan, “Simultaneously optimizing weight and quantizer
of ternary neural network using truncated Gaussian approximation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, p. 11.

[58] J. Yang et al., “Quantization networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Dec. 2019, pp. 7308–7316.

[59] M. Simon, E. Rodner, and J. Denzler, “ImageNet pre-trained models
with batch normalization,” 2016, arXiv:1612.01452. [Online]. Available:
http://arxiv.org/abs/1612.01452

[60] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The Pascal visual object classes challenge:
A retrospective,” Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136,
Jan. 2015.

[61] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 2961–2969.

Peisong Wang received the B.E. degree in software
engineering from Shandong University, Jinan, China,
in 2013, and the Ph.D. degree in computer science
from the Institute of Automation, Chinese Academy
of Sciences, Beijing, China, in 2018.

He is currently an Assistant Researcher with the
National Laboratory of Pattern Recognition, Institute
of Automation, Chinese Academy of Sciences. His
current research interests include computer vision
and network acceleration and compression.

Xiangyu He received the B.E. degree in informa-
tion security from Beijing University of Posts and
Telecommunications, Beijing, China, in 2017. He is
currently pursuing the Ph.D. degree with the Insti-
tute of Automation, Chinese Academy of Sciences,
Beijing.

His current research interests include deep
learning, image retrieval, and high-performance
computing.

Qiang Chen received the B.S. degree from Beihang
University, Beijing, China, in 2016. He is cur-
rently pursuing the Ph.D. degree with the Insti-
tute of Automation, Chinese Academy of Sciences,
Beijing.

His current research interests include object detec-
tion and image segmentation.

Anda Cheng received the B.S. degree from the
School of Information Science, Northeastern Uni-
versity (NEU), Shenyang, China, in 2017. He is cur-
rently pursuing the Ph.D. degree with the Institute of
Automation, Chinese Academy of Sciences, Beijing,
China.

His main research interests include semantic seg-
mentation and metalearning.

Qingshan Liu (Senior Member, IEEE) received
the Ph.D. degree from the National Laboratory of
Pattern Recognition (NLPR), Chinese Academy of
Sciences, Beijing, China, in 2003.

He was with NLPR. From April 2006 to
August 2011, he was with the Department of Com-
puter Science, Computational Biomedicine Imag-
ing and Modeling Center, Rutgers University, New
Brunswick, NJ, USA. He is currently a Professor
with the B-Data Laboratory, Nanjing University
of Information Science and Technology, Nanjing,

China. His current research interests include image and vision analysis,
computer vision, and pattern recognition.

Jian Cheng (Member, IEEE) received the B.S. and
M.S. degrees in mathematics from Wuhan Univer-
sity, Wuhan, China, in 1998 and 2001, respectively,
and the Ph.D. degree in pattern recognition and
intelligent systems from the Institute of Automa-
tion, Chinese Academy of Sciences, Beijing, China,
in 2004.

He is currently a Professor with the Institute of
Automation, Chinese Academy of Sciences. His cur-
rent major research interests include deep learning,
computer vision, and chip design.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 07,2021 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1145/358407.358424


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


