
W. CHEN, J. CHENG, P. WANG: G&P PRODUCT QUANTIZATION 1

Towards Convolutional Neural Networks
Compression via Global&Progressive
Product Quantization

Weihan Chen1,2

chenweihan2018@ia.ac.cn

Peisong Wang1

peisong.wang@nlpr.ia.ac.cn

Jian Cheng1*

jcheng@nlpr.ia.ac.cn

1 NLPR & AIRIA, Institute of Automation,
Chinese Academy of Sciences
Beijing, China

2 School of Artificial Intelligence,
University of Chinese Academy of
Sciences
Beijing, China

Abstract

In recent years, we have witnessed the great success of convolutional neural networks
in a wide range of visual applications. However, these networks are typically deficient
due to the high cost in storage and computation, which prohibits their further exten-
sions to resource-limited applications. In this paper, we introduce Global&Progressive
Product Quantization(G&P PQ), an end-to-end product quantization based network com-
pression method, to merge the separate quantization and finetuning process into a con-
sistent training framework. Compared to existing two-stage methods, we avoid the time-
consuming process of choosing layer-wise finetuning hyperparameters and also make the
network capable of learning complex dependencies among layers by quantizing globally
and progressively. To validate the effectiveness, we benchmark G&P PQ by applying
it to ResNet-like architectures for image classification and demonstrate state-of-the-art
tradeoff in terms of model size vs. accuracy under extensive compression configurations
compared to previous methods.

1 Introduction
Recently, Convolutional Neural Networks(CNNs) have demonstrated record-breaking re-
sults for a wide range of visual applications, including image recognition [9], object detection
[16], etc. However, these unprecedented performances are mostly built on top of deeper and
wider network architecture with large model size, which leads to very high computation and
storage overhead. Consequently, it is intractable to deploy these models on resource-limited
hardware such as mobile phones and other embedded devices. Under this circumstance, a
variety of methods have been proposed, including knowledge distillation [10], low-precision
quantization [8], etc, to achieve CNNs compression and acceleration.

To exploit the spatial redundancy of information inherent to standard convolution fil-
ters [6], here we focus on Product Quantization(PQ). The essence of product quantization
is to decompose the original high-dimensional space into the Cartesian product of a finite

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Guo} 2018

Citation
Citation
{Denton, Zaremba, Bruna, LeCun, and Fergus} 2014

2 W. CHEN, J. CHENG, P. WANG: G&P PRODUCT QUANTIZATION

number of low-dimensional subspaces that are then quantized separately. In this way, the
original weight matrix can be represented by the codeword indexes of all the subvectors and
the corresponding codebook, which reduce the storage cost of the network significantly yet
maintain accuracy close to their uncompressed counterpart.

Given the compression advantages of product quantization, several prior works [7, 18,
20] have introduced it into the regime of network quantization. In summary, the procedure
of existing methods consists of two separate stages: (1) perform direct quantization on the
network sequentially by minimizing the reconstruction error of the weights or activations.
(2) finetune the codebooks of all the layers globally to compensate for the performance
drop due to quantization. However, we argue that there are two deficiencies in the above
procedure. First, to alleviate the accumulated performance drop while quantizing the deep
model sequentially, it is preferable to finetune locally after quantization of each layer or
block of layers. As different layer possesses different quantization sensitivity, it is time-
consuming to choose proper finetuning hyperparameters for each of them to achieve the best
performance. Second, though it is more accessible to handle separately by splitting the whole
compression process into two stages and quantizing each layer in sequence, the inconsistency
between quantization and finetuning and the imposed constraint on quantization order make
it difficult for the network to adapt to global and complex dependencies among layers and
hence incline to fall into poor local optimum.

To solve these problems, we introduce Global&Progressive Product Quantization(G&P
PQ), an end-to-end product quantization based network compression method that merges the
separate quantization and finetuning process into a consistent training framework. Compared
to prior works, instead of quantizing each subvector directly, we accomplish the progressive
quantization globally during the training process. In addition, as the original task-specific
loss function(e.g., classification loss) is kept and will gradually dominate the update of the
network as training goes on, the switch between quantization and finetuning is completed
progressively and automatically. As a result, our method is capable of modeling global de-
pendency among layers and optimizing quantization and finetuning process coordinately,
which leads to better compression performance. Finally, with only introduced hyperparame-
ter of a coefficient that controls the speed of quantization compared to standard training algo-
rithm, it is convenient to implement and deploy it to different network architectures and tasks
without the need of tuning hyperparameters for each layer. To validate the effectiveness, we
benchmark G&P PQ by applying it to ResNet-like architectures for image classification tasks
and demonstrate state-of-the-art tradeoff in terms of model size vs. accuracy.

2 Related Work
There is a large amount of literature on CNN compression and acceleration, here we only
review the works related to ours and refer the reader to recent survey [8] for a comprehensive
overview.
Low-Precision Quantization As full-precision parameters are not required in achieving
high performance in CNNs, low-bit quantization of deep network parameters has recently
received increasing interest. By utilizing fixed-point weights representation, the model size
can be dramatically reduced by an order of magnitude (up to∼ 32×). [22] proposed to quan-
tize the parameter incrementally and showed that with reduced weight precision to 2-5 bits,
classification accuracy on the ImgeNet dataset could be even slightly higher. Furthermore,
[3] constrained the weights to binary(e.g., −1 or +1) values to obtain acceleration in the

Citation
Citation
{Gong, Liu, Yang, and Bourdev} 2014

Citation
Citation
{Stock, Joulin, Gribonval, Graham, and J{é}gou} 2019

Citation
Citation
{Wu, Leng, Wang, Hu, and Cheng} 2016

Citation
Citation
{Guo} 2018

Citation
Citation
{Zhou, Yao, Guo, Xu, and Chen} 2017

Citation
Citation
{Courbariaux, Bengio, and David} 2015

W. CHEN, J. CHENG, P. WANG: G&P PRODUCT QUANTIZATION 3

inference stage by replacing many multiply-accumulate operations with simple accumula-
tions. However, acceleration gain via weight quantization is limited because of real-valued
intermediate activations. Recently, several works focused on quantizing both weights and ac-
tivations while minimizing performance degradation, which include [23], etc. Additionally,
[4] introduced BinaryNet with binary weights and activations at run-time. Hence during
the forward pass, most multiplications can be done by efficient popcnt − xnor operations.
[15] improved BinaryNet by introducing scale factors for both weights and activations dur-
ing the binarization process, which significantly contributes to accuracy improvement. To
further compensate for the accuracy loss of binarization, [13] introduced 1-bit CNNs aided
with a real-valued shortcut. On the other hand, multi-bit networks [12] decompose a single
convolution layer into K binary convolution operations to achieve higher accuracy.
Product Quantization Product Quantization is an effective vector quantization approach
that has been extensively studied in the context of fast approximate nearest neighbor search
[11]. To reduce the cardinality of the representation space, a high dimensional vector is
divided into several low dimensional subvectors, and each of them is vector-quantized to
its nearest codeword in a predefined codebook. Afterward, the inner product between two
vectors can be efficiently estimated from their codes in the symmetric way or the vector and
code in the asymmetric way [11]. To the best of our knowledge, [7] was the first to explore
vector quantization methods in CNN compression and focused upon how to compress the
fully-connected layers to reduce the storage of neural networks. After that, [20] proposed to
quantize by minimizing the estimation error of the activations at each layer, and introduced
a unified framework to apply product quantization to both convolutional and fully-connected
layers, which simultaneously accelerate and compress CNN models. Recently, [18] shared
the similar idea that employed each layer’s response reconstruction error as an alternative
optimization objective and verified product quantization’s effectiveness in ResNet-like net-
works that with complicated structures through combining other strategies such as codebook
finetuning and knowledge distillation.

3 Methodology

3.1 Formulation
Generally speaking, quantization is a destructive process that aims to reduce the cardinality
of the representation space while minimizing the task-specific distortion that comes with it.
In the context of product quantization, given a D-dimensional random vector x ∈ RD, we
first divide it into M contiguous parts of subvectors.

x = [x1,x2, . . . ,xD/M︸ ︷︷ ︸
x1T

, . . . ,xD−D/M+1, . . . ,xD︸ ︷︷ ︸
xMT

]T

= [x1T
, . . . ,xMT

]T , (1)

where the m-th subvector is denoted as xm ∈ RD/M for each m ∈ {1, . . . ,M}. To describe
formally, we first define a task-specific distortion function e : RD/M ×RD/M 7→ R+ which
measures the distance between the original subvector and quantized one. Then each quan-
tizer consists of two parts:

• a sub-codebook Cm = {cm
k }

K
k=1 for each m ∈ {1, . . . ,M} where we call cm

k ∈ RD/M as
a sub-codeword.

Citation
Citation
{Zhou, Ni, Zhou, Wen, Wu, and Zou} 2016

Citation
Citation
{Courbariaux, Hubara, Soudry, El-Yaniv, and Bengio} 2016

Citation
Citation
{Rastegari, Ordonez, Redmon, and Farhadi} 2016

Citation
Citation
{Liu, Wu, Luo, Yang, Liu, and Cheng} 2018

Citation
Citation
{Lin, Zhao, and Pan} 2017

Citation
Citation
{Jegou, Douze, and Schmid} 2010

Citation
Citation
{Jegou, Douze, and Schmid} 2010

Citation
Citation
{Gong, Liu, Yang, and Bourdev} 2014

Citation
Citation
{Wu, Leng, Wang, Hu, and Cheng} 2016

Citation
Citation
{Stock, Joulin, Gribonval, Graham, and J{é}gou} 2019

4 W. CHEN, J. CHENG, P. WANG: G&P PRODUCT QUANTIZATION

• a quantization function q : RD 7→ C1×·· ·×CM defined as the concatenation of M sub
ones qm : RD/M 7→ Cm.

Finally, we describe the quantization formally as solving the following optimization problem.

min
{Cm,qm}Mm=1

Ex[e(x,q(x))]

=
∫

x
p(x)e(x,q(x))dx, (2)

where p(x) denotes the probability density function of x. In practice, the above objective
function is approximated through Monte Carlo sampling according to the Law of Large
Numbers. Another thing that should be noted is that if Ci = C j for all i 6= j and i, j ∈
{1, . . . ,M} then we use a joint codebook for all the subvectors, which is the default setting
of this paper.

3.2 Compression for Single Layer

Here we focus on the fully-connected and convolutional layer as they dominate the weights
of convolutional networks. Without loss of generality, we omit to quantize the bias as its
storage cost is negligible.
Fully-Connected Layer For a fully-connected layer, we denote its weight matrix as W ∈
RCin×Cout , where Cin and Cout are the dimensions of layer input and output, respectively. The
weight vector W p is the p-th column of vector in W . Then we split each W p, p ∈ 1, . . . ,Cout
evenly into M contiguous subvectors and learn a joint codebook C = {ck}K

k=1 on the resulting
M×Cout subvectors. For simplicity, we suppose that Cin is a multiple of M, i.e., all the
subvectors have the same dimension d = Cin/M. Consequently, we denote the quantized
weight vector as

q(W p) = [c
ψ(W p

1)
T , . . . ,c

ψ(W p
M)

T]T , (3)

where ψ(W p
m) : Rd 7→ {1, . . . ,K} denotes the index of codeword in the codebook for the

mth subvector in W p. More specifically, in this paper we utilize Mean Square Error as
our distortion function, then we can minimize the objective of (2) alternatively via k-means
algorithm.
Convolutional Layer We denote W ∈ RCout×Cin×kh×kw as the weight matrix of a convolu-
tional layer with Cout output channles, Cin input channels, and kh× kw kernel size. There are
many ways to split a 4D matrix into a set of vectors and apply product quantization. In this
paper, we follow [7] that first reshape W into a 2D matrix Ŵ of size (Cin× kh× kw)×Cout
and then split along each column evenly into contiguous subvectors. As a result, we can deal
with the convolutional layer in the same way as the fully-connected layer.
Storage Analysis To employ the network after product quantization, we need to store
the codeword indexes and codebook of each quantized layer. As an example, for a fully-
connected layer with weight matrix W ∈ RCin×Cout and original size of 333222×××CCCin×××CCCout bit,
the storage cost of codeword indexes and codebook are MMM×××CCCout ××× llloooggg222(((KKK))) bit and 111666×××
(((CCCin///MMM)))×××KKK bit, respectively. Here we adopt length-fixed coding for codeword indexes and
store the codebook in half precision following the prior work [18].

Citation
Citation
{Gong, Liu, Yang, and Bourdev} 2014

Citation
Citation
{Stock, Joulin, Gribonval, Graham, and J{é}gou} 2019

W. CHEN, J. CHENG, P. WANG: G&P PRODUCT QUANTIZATION 5

3.3 Global&Progressive Product Quantization

Given a convolutional neural network of N layers with task-specific loss function f and
training images X , we denote its parameters set as {W (l)}N

l=1. Here we only consider weights
of fully-connected and convolutional layers, as explained earlier. Then we can formulate
product quantization on CNN as the following constrained optimization problem

min
{{W (l)

j }
M(l)
j=1 ,I(l)}Nl=1

f ({{q(W (l)
j)}M(l)

j=1}N
l=1;X)

s.t. q(W (l)
j) = c(l)

ψ(l)(W (l)
j)

c(l)k =argmin
c

1
|I(l)(k)| ∑

i∈I(l)(k)
e(W (l)

i ,c) (4)

l ∈ {1, . . . ,N}, j ∈ {1, . . . ,M(l)},k ∈ {1, . . . ,K(l)}

where we denote W (l)
j , M(l), K(l) as the j-th subvector and the number of subvectors, code-

words of layer l. Besides, we denote I(l)(k) as the index set of subvectors quantized to the
k-th codeword in layer l, based on which we can get ψ(l). Other notations follow the defini-
tions mentioned earlier. We only consider Mean Square Error as the distortion function and
hence rewrite (4) as

c(l)k =
1

|I(l)(k)| ∑
i∈I(l)(k)

W (l)
i . (5)

To solve the above problem, prior works adopt a two-stage pipeline, which first performs
direct quantization layer-by-layer and then finetunes the quantized weights to compensate
for performance drop. Due to the deficiencies mentioned earlier, we propose to merge the
separate stage into a consistent training framework. Specifically, we start from a pre-trained
model and calculate the index set I(l)(k) for each layer through k-means algorithm. Then
instead of quantizing each subvector directly according to the cluster index, we employ the
following gradient-based update rule to train the network end-to-end.

W (l)
j ←W (l)

j −η∆W (l)
j

∆W (l)
j =

1

|I(l)(ψ(l)(W (l)
j))|

∑
i∈I(l)(ψ(l)(W (l)

j))

∂ f

∂W (l)
i

+µ

(
W (l)

j − c(l)
ψ(l)(W (l)

j)

)
, (6)

where η and µ denote the learning rate and introduced hyperparameter that controls the
speed of quantization, respectively. To understand how the above rule works, let us split the
update term ∆W (l)

j into the former and latter part and analyze independently. First, we define
the quantization loss of network as

Γ =
1
N

N

∑
l=1

(1
M(l)

M(l)

∑
j=1

∥∥W (l)
j − c(l)

ψ(l)(W (l)
j)

∥∥2)
. (7)

6 W. CHEN, J. CHENG, P. WANG: G&P PRODUCT QUANTIZATION

Base on the above update formula and assume learning rate η = 1, it is easy to derive that
the quantization loss of the t-th and (t +1)-th iteration satisfy

Γ
t+1 = (1−µ)2×Γ

t . (8)

Therefore, with a properly chosen µ , we are mainly quantizing all the weights globally and
progressively in the initial phase of training. Then as the training goes on, on the one hand,
the decreased quantization loss causes the latter part of the update term infinitely small. And
on the other hand, task-specific loss(e.g., classification loss) increases gradually due to the
progressive quantization. Both of these lead the former part to dominates the update process.
Consequently, the update term is nearly equivalent to

∆W (l)
j =

1

|I(l)(ψ(l)(W (l)
j))|

∑
i∈I(l)(ψ(l)(W (l)

j))

∂ f

∂W (l)
i

=
1

|I(l)(ψ(l)(W (l)
j))|

∑
i∈I(l)(ψ(l)(W (l)

j))

∂ f

∂q(W (l)
i)

=
∂ f

∂c(l)
ψ(l)(W (l)

j)

, (9)

which actually finetunes the codeword by averaging the gradients of all the subvectors quan-
tized to it and compensates for the performance drop. Hence we can see the switch between
quantization and finetuning is completed progressively and automatically, and the relative
speed is controlled by choosing different µ . Once the training terminates, we get the quan-
tized network without the need for further finetuning. We will discuss the training dynamics
in detail in section 4.3. Besides, we can integrate the update rule into any other gradient-
based optimization algorithms without affecting the intrinsic mechanism. In this paper, we
combine the above formula with momentum to enhance its performance in deep network.

Architecture Compression Regime d3×3 d1×1 d f c K3×3 K1×1 K f c

ResNet-18 Small blocks 9 4 4 256 256 2048Large blocks 18 4

ResNet-50 Small blocks 9 4 4 256 256 1024Large blocks 18 8
Table 1: Compression configurations details. Here the 3th− 5th and 6th− 8th columns de-
note the subvector and codebook size of 3× 3 conv, 1× 1 conv and fully-connected layers,
respectively.

4 Experiments

4.1 Experimental Setup
To verify the effectiveness of the proposed method, we quantize standard ResNet-18 and
ResNet-50 [9] architectures with pre-trained weights. Unless explicit mention of the con-

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

W. CHEN, J. CHENG, P. WANG: G&P PRODUCT QUANTIZATION 7

trary, the models are pre-trained on ImageNet dataset [5] and taken from the Pytorch model
zoo∗. We detail our experimental setup below.
Compression Regimes To explore the tradeoff between compression ratio and accuracy,
we vary between small block size and large block size compression regimes. In the large
blocks regime, we utilize a larger subvector size of d for each layer, which leads to less
storage cost of codeword indexes and higher compression ratios. Except for subvector size,
we also adopt the codebook of different sizes for various architectures and types of layers.
We summarize the details of compression configurations in Table 1 as a reference. Note that
following [18] we also clamp the number of codewords to min(K,Cout ×M/4) for stability
and skip the quantization of the first convolutional layer of kernel size 7×7 as it represents
less than 0.1%(resp., 0.05%) of the weights of ResNet-18(resp., ResNet-50).
Training Hyparameters We train each network under different compression configura-
tions for 30 epochs with weight decay of 1e−8, momentum of 0.9, and initial learning rate
of 0.01. For memory reason, the batch size of ResNet-18 and ResNet-50 are 256 and 128,
respectively. As the method is robust to the value of µ in a broad range(see Table 5), we
set it to 1e− 3 by default. Besides, we utilize the ReduceLROnPlateau scheduler based on
PyTorch [14], which reduces the learning rate by 10× whenever the validation loss plateaus.

Compression Regime Method Size ratio Model size Top-1 (%)

Small blocks [18] 29× 1.54 MB 65.81
G&P PQ(Ours) 66.75

Large blocks [18] 43× 1.03 MB 61.10
G&P PQ(Ours) 63.31

Original - 1× 44.6 MB 69.76
Table 2: Compression Results for vanilla ResNet-18 with k = 256 centroids

Compression Regime Method Size ratio Model size Top-1 (%)

Small blocks [18] 19× 5.09 MB 73.79
G&P PQ(Ours) 75.22

Large blocks [18] 31× 3.19 MB 68.21
G&P PQ(Ours) 72.10

Original - 1× 97.5 MB 76.15
Table 3: Compression Results for vanilla ResNet-50 with k = 256 centroids

4.2 Classification Results
In this section, we compare our results against [18], the state of the art that applies prod-
uct quantization to CNNs compression with the two-stage pipeline, and some other low-
precision quantization methods .
Vanilla ResNet-18 and ResNet-50 First, we compress standard ResNet-18 and ResNet-
50 network with different configurations detailed in Table 1. The comparison results against

∗https://pytorch.org/docs/stable/torchvision/models

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Li} 2009

Citation
Citation
{Stock, Joulin, Gribonval, Graham, and J{é}gou} 2019

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, etprotect unhbox voidb@x penalty @M {}al.} 2019

Citation
Citation
{Stock, Joulin, Gribonval, Graham, and J{é}gou} 2019

Citation
Citation
{Stock, Joulin, Gribonval, Graham, and J{é}gou} 2019

Citation
Citation
{Stock, Joulin, Gribonval, Graham, and J{é}gou} 2019

Citation
Citation
{Stock, Joulin, Gribonval, Graham, and J{é}gou} 2019

Citation
Citation
{Stock, Joulin, Gribonval, Graham, and J{é}gou} 2019

https://pytorch.org/docs/stable/torchvision/models

8 W. CHEN, J. CHENG, P. WANG: G&P PRODUCT QUANTIZATION

[18] are summarized in Table 2 and 3. As shown in the tables, our method outperforms
[18] in all the configurations to a different extent. Besides, we can observe a general rule
from the results that the deeper the network and the higher the compression ratio are, the
larger the improvement is. In fact, the largest improvement comes from large blocks regime
in ResNet-50, in which we get a 3.9% absolute boost of Top-1 accuracy. As mentioned
earlier, we argue that the inconsistency between quantization and finetuning process and
the imposed constraint on quantization order of two-stage method make it difficult for the
network to adapt to global and complex dependencies among layers and hence incline to fall
into poor local optimum. Intuitively, these deficiencies will be further enlarged for deeper
networks with a higher compression ratio. Therefore we believe the improvements owe to
the fusion of quantization and finetuning so that we can optimize both processes globally
and coordinately.

To justify the method in a broader range of compression regimes, we vary the codebook
size of the convolutional layer among {256,512,1024,2048} in ResNet-18/50, and keep
other configurations the same for large blocks and small blocks regimes, respectively. The
results are summarized in Figure 1. It is clearly shown that our method exhibits superior
performance consistently under such extensive compression configurations. Also as shown
in 1, we compare our results with other low-precision quantization methods, which include
Trained Ternary Quantization [24], LR-Net [17], ABC-Net [12], Binary Weight Networks
[15], Deep Compression (DC)[2], Hardware-Aware Automated Quantization (HAQ)][1], to
demonstrate our advantages in the tradeoff between model size and accuracy compared to
other network compression methods. We believe these advantages owe to the exploitation of
spatial redundancy inherent to standard convolution filters through product quantization.

0 10 20 30 40
Compression Ratio

60

62

64

66

68

70

To
p-

1
Ac

cu
ra

cy
(%

)

ABC-Net(M=1)

ABC-Net(M=2)

ABC-Net(M=3)

ABC-Net(M=5)

BWN

TTQ

LR-Net(1 bit)

LR-Net(2 bits)

ResNet-18 on Imagenet

Original model
Stock et al. , small blocks
Stock et al. , large blocks
Ours(G&P PQ), small blocks
Ours(G&P PQ), large blocks
Reference models

0 10 20 30
Compression Ratio

68

70

72

74

76

To
p-

1
Ac

cu
ra

cy
(%

)

DC(2 bits)

DC(3 bits)

DC(4 bits)

HAQ(2 bits)

HAQ(3 bits)

HAQ(4 bits)
ResNet-50 on Imagenet

Original model
Stock et al. , small blocks
Stock et al. , large blocks
Ours(G&P PQ), small blocks
Ours(G&P PQ), large blocks
Reference models

Figure 1: Compression results for ResNet-18 and ResNet-50 architectures.

Semi-supervised ResNet-50 Recently, Yalniz et al. [21] use the publicly available YFCC-
100M dataset [19] to train a semi-supervised ResNet-50 that reaches 79.23% top-1 accuracy
on the standard validation set of ImageNet. We test our method on this particular model in
the small block regime with a 19× compression ratio. As shown in Table 4, our compressed
semi-supervised ResNet-50 reaches 77.55% top-1 accuracy, which outperforms the perfor-
mance of a vanilla and non-compressed ResNet-50 significantly, with the model size of only
5MB.

4.3 Method Analysis
Sensitivity Study Compared to standard network training, there is only one introduced
hyperparameter that controls the speed of quantization. We conduct a series of comparative
experiments on the large blocks regime of ResNet-18 with different values of µ . The results

Citation
Citation
{Stock, Joulin, Gribonval, Graham, and J{é}gou} 2019

Citation
Citation
{Stock, Joulin, Gribonval, Graham, and J{é}gou} 2019

Citation
Citation
{Zhu, Han, Mao, and Dally} 2016

Citation
Citation
{Shayer, Levi, and Fetaya} 2017

Citation
Citation
{Lin, Zhao, and Pan} 2017

Citation
Citation
{Rastegari, Ordonez, Redmon, and Farhadi} 2016

Citation
Citation
{Bengio and LeCun} 2016

Citation
Citation
{haq} 2018

Citation
Citation
{Yalniz, J{é}gou, Chen, Paluri, and Mahajan} 2019

Citation
Citation
{Thomee, Shamma, Friedland, Elizalde, Ni, Poland, Borth, and Li} 2016

W. CHEN, J. CHENG, P. WANG: G&P PRODUCT QUANTIZATION 9

Method Size ratio Model size Top-1 (%)

[18] 19× 5.09 MB 76.12
G&P PQ(Ours) 77.55

Uncompressed 1× 97.5 MB 79.23
Table 4: Compression Results for semi-supervised ResNet-50

Value of µ Top-1 (%) Top-5 (%)

1e−4 51.19 76.10
5e−4 63.20 85.10
111eee−−−333 63.31 85.11
5e−3 63.26 85.06
1e−2 62.22 85.06

Table 5: Ablation study for the effect of different values of µ .

are summarized in Table 5. Our conclusion consists of two parts. On the one hand, improper
selection of µ(e.g., 1e−4) would lead the network converges to a suboptimal accuracy. On
the other hand, our method still demonstrates robustness as it is able to achieve significant
improvement compared to the prior method for different µ(e.g., from 1e−3 to 1e−2) in a
broad range.
Training Dynamics We perform a quantitative study on the training dynamics of ResNet-
18 with large block compression regime and summarize the results in Figure 2. As the top
part of Figure 2(b) shows, quantization loss declines exponentially at the very beginning of
training, which conforms with the formula (8), and converges to infinitely small finally. Fur-
thermore, during the training process, we quantize the weights of the network and evaluate
its accuracy, which denoted as With Quantization, to compare with the accuracy of original
weights, which denoted as Without Quantization. As depicted in Figure 2(a), due to the
progressive quantization, With Quantization accuracy increases quickly at the beginning and
Without Quantization one decreases instead. As the quantization is completed progressively,
these two kinds of accuracy converge to the same. Meanwhile, we switch to the finetuning
process gradually and then compensate for the accuracy drop.

0 10 20 30
Num of Epochs

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

To
p-

1
Ac

cu
ra

cy
(%

)

= 5e 4 With Quantization
= 1e 3 With Quantization
= 5e 3 With Quantization
= 5e 4 Without Quantization
= 1e 3 Without Quantization
= 5e 3 Without Quantization

(a) The accuracy of network as training goes on

0 10 20 3016
12
8
4
0
4
8

lo
g 1

0(
Qu

an
t L

os
s)

= 5e 4
= 1e 3
= 5e 3

0 10 20 300
2
4
6
8

10

Cl
s L

os
s

= 5e 4 With Quantization
= 1e 3 With Quantization
= 5e 3 With Quantization

0 10 20 30
Num of Epochs

1

2

Cl
s L

os
s

= 5e 4 Without Quantization
= 1e 3 Without Quantization
= 5e 3 Without Quantization

(b) The losses of network as training goes on

Figure 2: Training dynamics of G&P PQ

Citation
Citation
{Stock, Joulin, Gribonval, Graham, and J{é}gou} 2019

10 W. CHEN, J. CHENG, P. WANG: G&P PRODUCT QUANTIZATION

5 Conclusion
We introduce Global&Progressive Product Quantization(G&P PQ), an end-to-end product
quantization based network compression method that merges the separate quantization and
finetuning process into a single training process. To verify its advantages, we apply it
to ResNet-like architectures for image classification task and demonstrated state-of-the-art
tradeoff in terms of model size vs. accuracy.

Acknowledgement
This work was supported in part by National Natural Science Foundation of China (No.61906193).

References
[1] IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long

Beach, CA, USA, June 16-20, 2019, 2018. Computer Vision Foundation / IEEE. URL
http://openaccess.thecvf.com/CVPR2019.py.

[2] Yoshua Bengio and Yann LeCun, editors. 4th International Conference on Learn-
ing Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Confer-
ence Track Proceedings, 2016. URL https://iclr.cc/archive/www/doku.
php%3Fid=iclr2016:accepted-main.html.

[3] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:
Training deep neural networks with binary weights during propagations. In Ad-
vances in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 3123–3131, 2015. URL http://papers.nips.cc/paper/
5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.

[4] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009,
Miami, Florida, USA, pages 248–255, 2009. doi: 10.1109/CVPRW.2009.5206848.
URL https://doi.org/10.1109/CVPRW.2009.5206848.

[6] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Ex-
ploiting linear structure within convolutional networks for efficient evaluation. In Ad-
vances in neural information processing systems, pages 1269–1277, 2014.

[7] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convo-
lutional networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

[8] Yunhui Guo. A survey on methods and theories of quantized neural networks. arXiv
preprint arXiv:1808.04752, 2018.

http://openaccess.thecvf.com/CVPR2019.py
https://iclr.cc/archive/www/doku.php%3Fid=iclr2016:accepted-main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2016:accepted-main.html
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations
https://doi.org/10.1109/CVPRW.2009.5206848

W. CHEN, J. CHENG, P. WANG: G&P PRODUCT QUANTIZATION 11

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778,
2016.

[10] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a
neural network. CoRR, abs/1503.02531, 2015. URL http://arxiv.org/abs/
1503.02531.

[11] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest
neighbor search. IEEE transactions on pattern analysis and machine intelligence, 33
(1):117–128, 2010.

[12] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural
network. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pages 344–352, 2017.

[13] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng.
Bi-real net: Enhancing the performance of 1-bit cnns with improved representational
capability and advanced training algorithm. In Computer Vision - ECCV 2018 - 15th
European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part
XV, pages 747–763, 2018. doi: 10.1007/978-3-030-01267-0_44. URL https://
doi.org/10.1007/978-3-030-01267-0_44.

[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems, pages 8024–8035, 2019.

[15] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural networks. In
Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part IV, pages 525–542, 2016.
doi: 10.1007/978-3-319-46493-0_32. URL https://doi.org/10.1007/
978-3-319-46493-0_32.

[16] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN:
towards real-time object detection with region proposal networks. In Advances
in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal, Que-
bec, Canada, pages 91–99, 2015. URL http://papers.nips.cc/paper/
5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.

[17] Oran Shayer, Dan Levi, and Ethan Fetaya. Learning discrete weights using the local
reparameterization trick. arXiv preprint arXiv:1710.07739, 2017.

[18] Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé Jégou.
And the bit goes down: Revisiting the quantization of neural networks. arXiv preprint
arXiv:1907.05686, 2019.

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://doi.org/10.1007/978-3-030-01267-0_44
https://doi.org/10.1007/978-3-030-01267-0_44
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks

12 W. CHEN, J. CHENG, P. WANG: G&P PRODUCT QUANTIZATION

[19] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Dou-
glas Poland, Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia
research. Communications of the ACM, 59(2):64–73, 2016.

[20] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized con-
volutional neural networks for mobile devices. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4820–4828, 2016.

[21] I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Mahajan.
Billion-scale semi-supervised learning for image classification. arXiv preprint
arXiv:1905.00546, 2019.

[22] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network
quantization: Towards lossless cnns with low-precision weights. In International Con-
ference on Learning Representations (ICLR), 2017. URL http://arxiv.org/
abs/1702.03044.

[23] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-
net: Training low bitwidth convolutional neural networks with low bitwidth gradients.
arXiv, abs/1606.06160, 2016. URL http://arxiv.org/abs/1606.06160.

[24] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantiza-
tion. arXiv preprint arXiv:1612.01064, 2016.

http://arxiv.org/abs/1702.03044
http://arxiv.org/abs/1702.03044
http://arxiv.org/abs/1606.06160

