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Abstract
Large neural networks are difficult to deploy on
mobile devices because of intensive computation
and storage. To alleviate it, we study ternariza-
tion, a balance between efficiency and accuracy that
quantizes both weights and activations into ternary
values. In previous ternarized neural networks, a
hard threshold ∆ is introduced to determine quan-
tization intervals. Although the selection of ∆
greatly affects the training results, previous work-
s estimate ∆ via an approximation or treat it as a
hyper-parameter, which is suboptimal. In this pa-
per, we present the Soft Threshold Ternary Net-
works (STTN), which enables the model to auto-
matically determine quantization intervals instead
of depending on a hard threshold. Concretely, we
replace the original ternary kernel with the addi-
tion of two binary kernels at training time, where
ternary values are determined by the combination
of two corresponding binary values. At inference
time, we add up the two binary kernels to obtain
a single ternary kernel. Our method dramatically
outperforms current state-of-the-arts, lowering the
performance gap between full-precision network-
s and extreme low bit networks. Experiments on
ImageNet with AlexNet (Top-1 55.6%), ResNet-18
(Top-1 66.2%) achieves new state-of-the-art.

1 Introduction
Deploying deep neural networks to resource limited devices
is still a challenging problem due to the requirements of abun-
dant computing and memory resources. A variety of meth-
ods have been proposed to reduce the parameter size and
accelerate the inference phase, such as compact model ar-
chitecture design (in a handcrafted way or automatic search
way) [Howard et al., 2017; Zoph and Le, 2016], network
pruning [Han et al., 2015; He et al., 2019], knowledge dis-
tilling [Hinton et al., 2015], low-rank approximation [Jader-
berg et al., 2014; Jaderberg et al., 2014], etc. Besides, recent
works [Courbariaux et al., 2014; Gupta et al., 2015] show
that full-precision weights and activations are not necessary
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Figure 1: Comparison between soft and hard threshold. The weight
distributions are drawn from ResNet-18 on ImageNet. We take Lay-
er1.0.conv1 as an example. (a) Our soft threshold ternarization.
(b) Hard threshold ternarization which splits intervals with ∆. The
blue/red/green distribution comes from floating point weights quan-
tized to -1/0/1, respectively. The blue/red/green lines below distribu-
tions denote positions of floating point weights that will be quantized
to -1/0/1 when sorting weights from small to large.

for networks to achieve high performances. This discovery
indicates that both weights and activations in neural networks
can be quantized to low-bit formats. In this way, both storage
and computation resources can be saved.

The extreme cases of network quantization are binary and
ternary quantization ({−1, 1} and {−1, 0, 1}). In computa-
tionally heavy convolutions, multiply-accumulate consumes
most of the operation time. Through binarization or ternariza-
tion, multiply-accumulate can be replaced by cheap bitwise
xnor and popcount operations [Courbariaux et al., 2016].
Although binary networks can achieve high compression rate
and computing efficiency, they inevitably suffer from a long
training procedure and noticeable accuracy drops owing to
poor representation ability.

In order to make a balance between efficiency and accura-
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cy, ternary CNNs convert both weights and activations into
ternary values. Theoretically, ternary CNNs have stronger
representation ability than binary CNNs, and should have a
better performance. Although many works [Li et al., 2016;
Zhu et al., 2016; Wang et al., 2018; Wan et al., 2018] pro-
vide tremendous efforts on ternary neural networks, we argue
that there are two main issues in existing works: 1) All pre-
vious ternary networks use a hard ∆ to divide floating point
weights into three intervals (see Eq.3 for more details), which
introduces an additional constraint into ternary networks. 2)
Although the theoretical optimal ∆ can be calculated through
optimization, calculating it at each training iteration is too
time-consuming. Therefore, previous methods either use a
hyper-parameter to estimate ∆ or only calculate the exact ∆
at the first training iteration then keep it for later iterations,
which further limits ternary network accuracy. A brief sum-
mary: they introduce an additional constraint based on ∆.
Further more, a suboptimal ∆ is used instead of the exact
one.

In this paper, we propose Soft Threshold Ternary Network-
s (STTN), an innovative method to train ternary networks.
STTN avoids the hard threshold and enables the model to
automatically determine which weights to be −1/0/1 in a
soft manner. We convert training ternary networks into train-
ing equivalent binary networks (more details in section 3.2).
STTN enjoys several benefits: 1) The constraint based on ∆
is removed. 2) STTN is free of calculation of ∆. 3) As shown
in Figure 1 (a), weights are ternarized in a soft manner, which
is why we name it soft threshold.

Our contributions are summarized as follows.

• We divide previous ternary networks into two cata-
logues: Optimization-based method and Learning-based
method. Analysis is given about issues in the existing
ternary networks that prevent them from reaching high
performance.

• We propose STTN, an innovative way to train ternary
networks by decomposing one ternary kernel into two
binary kernels during training. No extra parameters or
computations are needed during inference. Quantizing
to -1/0/1 is determined by two binary variables rather
than decided by a hard threshold.

• We show that our proposed ternary training method pro-
vides competitive results on the image classification, i.e.
CIFAR-10, CIFAR-100 and ImageNet datasets. Quali-
tative and quantitative experiments show that it outper-
forms previous ternary works.

2 Related Work
Low-bit quantization of deep neural networks has recently re-
ceived increasing interest of deep learning communities. By
utilizing fixed-point weights and feature representations, not
only the model size can be dramatically reduced, but also in-
ference time can be saved.

The extreme cases of network quantization are binary neu-
ral networks (BNN) and ternary neural networks (TNN).

BNN [Courbariaux et al., 2016] constrains both the
weights and activations to either +1 or -1, which produces

reasonable results on small datasets, such as MNIST and
CIFAR-10. However, there is a significant accuracy drop on
large scale classification datasets, such as ImageNet. Some
improvements based on BNN have been investigated. For
example, [Darabi et al., 2018] introduces a regularization
function that encourages training weights around binary val-
ues. [Tang et al., 2017] proposes to use low initial learn-
ing rate. Nevertheless, there is still non-negligible accu-
racy drop. To improve the quality of the binary feature
representations, XNOR-Net [Rastegari et al., 2016] intro-
duces scale factors for both weights and activations during
binarization process. DoReFa-Net [Zhou et al., 2016] fur-
ther improves XNOR-Net by approximating the activation-
s with more bits. Since ABC-Net [Lin et al., 2017], sev-
eral works propose to decompose a single convolution lay-
er into K binary convolution operations [Liu et al., 2019;
Zhu et al., 2019]. Although higher accuracy can be achieved,
K× extra parameters and computations are needed for both
training and inference time, which defeats the original pur-
pose of binary networks.

To make a balance between the efficiency and accura-
cy, ternary CNNs convert both weights and activations into
ternary values. We will review previous ternary works in de-
tail in section 3.1.

3 Methodology
We first revisit the formulation of previous ternary networks.
We divide them into two catalogues and show their common
issues in calculating the appropriate ∆. We then present our
novel Soft Threshold Ternary Networks in detail, including
scaling coefficient constraint and backward approximation.
We show that our method can avoid the previous issue in a
simple but effective way.

3.1 Review of Previous Ternary Networks
Problem Formulation
Full precision convolution or inner-product can be formed
as: Y = σ(WTX). Here σ(·) represents the nonlinear ac-
tivation function, such as ReLU. W ∈ Rn×chw and X ∈
Rchw×HW are float point weights and inputs respectively,
where (n, c, h, w) are filter number, input channels, kernel
height and kernel width, and (H,W ) are height and width of
output feature maps. Ternary networks convert both weights
and inputs into ternary values: T ∈ {+1, 0,−1}n×chw and
Xt ∈ {+1, 0,−1}chw×HW .

As for weights ternarization, α is used to estimate the float-
ing weight W alone with ternary weight T .

W ≈ αT (1)

Previous works formulate ternarization as a weight approx-
imation optimization problem:{

α∗, T ∗ = arg min
α,T

J(α, T ) = ‖W − αT‖22

s.t. α ≥ 0, Ti ∈ {−1, 0, 1}, i = 1, 2, ..., n.
(2)

A hard threshold ∆ is then introduced by previous works
to divide quantization intervals, which sets an additional con-
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straint on ternary networks:

Ti =


−1, if Wi > ∆

0, if |Wi| ≤ ∆

+1, if Wi < ∆

(3)

As illustrated in Figure 1(b), ∆ plays a role as hard thresh-
old here, splitting the floating point weights into {−1, 0, 1}.
We will show that the above constraint can be avoided in our
method. According to methods of calculating α and ∆, we
divide previous ternary networks into 1) optimization-based
ternary networks, and 2) learning-based ternary networks.

Optimization-based Ternary Networks
TWN [Li et al., 2016] and TSQ [Wang et al., 2018] formulate
the ternarization as Eq.(2).

In TWN, T is obtained according to threshold-based con-
straint Eq.(3). They give exact optimal α∗ and ∆∗ as follows:

α∗∆ = 1
|I∆|

∑
i∈I∆
|Wi|; ∆∗ = arg max

∆>0

1
|I∆| (

∑
i∈I∆
|Wi|)2 (4)

Note that ∆∗ in Eq.(4) has no straightforward solution. It
can be time and computing consuming if using discrete op-
timization to solve it. In TWN, they adopt an estimation
∆′ ≈ 0.7 · E(|W |) to approximate the optimal ∆∗. Obvi-
ously there is a gap between ∆∗ and ∆′. What’s more, the
optimal scaling factor α∗ in Eq.(4) will also be affected be-
cause of dependence on ∆.

In TSQ, they try to obtain T ∗ by directly solving Eq.(2).
They give exact optimal α∗ and T ∗ as follows1:

α∗ =
WTT

TTT
; T ∗ = arg max

T

(WTT )2

TTT
(5)

Note that there is still no straightforward solution for T ∗
in Eq.(5). TSQ proposes OTWA(Optimal Ternary Weights
Approximation) to obtain T ∗. However, sorting for |Wi| is
needed in their algorithm. Time complexity is higher than
O(N log(N)), where N is the number of elements in kernel
weights. To avoid time consuming sorting, they only calcu-
late ∆ at the first training iteration and then keep it for later
iterations, which is suboptimal.

Learning-based Ternary Networks
TTQ [Zhu et al., 2016] tries another way to obtain scaling
factor α and threshold ∆. They set α as a learnable parameter
and set ∆ as a hyper-parameter. Based on TTQ, RTN [Li
et al., 2019] introduces extra float point scaling and offset
parameters to reparameterize ternary weights.

Because the search space of hyper-parameter ∆ is too
large, both of TTQ and RTN set ∆ the same across all lay-
ers, e.g. ∆ = 0.5 in RTN. We argue that ternary methods
with hyper-parameter are not reasonable as following:

In Figure 2, we visualize the weight distribution of ResNet-
18 on ImageNet from different layers and from different ker-
nels in the same layer, respectively. From the figure, we can
observe that the distributions are different from layer to layer.
Even for kernels in the same layer, their weight distributions

1WT denotes transpose of matrixW . T denotes ternary weights.
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Figure 2: Weight distribution of ResNet-18 on ImageNet. (a) Dis-
tributions from different layers. (b) Distributions from different ker-
nels in the same layer. ”Layer1.0.conv2[36]” denotes the 37th kernel
in Layer1.0.conv2. The blue/red/green lines below each distribution
denote positions of floating point weights that will be quantized to
-1/0/1, which are obtained through our STTN.

can be diverse. Therefore, 1) it is not reasonable for previous
works to set a fixed threshold for all kernels (e.g. ∆ = 0.5 in
TTQ and RTN). 2) What’s more, their ternarization also use
hard threshold: once ∆ is set, their quantized intervals are
determined according to Eq.(3).

So can we remove the hard ∆ constraint Eq.(3), solving
ternary networks in another way?

3.2 Soft Threshold Ternary Networks
Due to the issues analyzed above, we propose our novel
STTN. Our motivation is to enable the model to automati-
cally determine which weights to be -1/0/1, avoiding the hard
threshold ∆.

We introduce our methods via convolution layers. The
inner-product layer has a similar form. Concretely, at train-
ing time, we replace the ternary convolution filter T with t-
wo parallel binary convolution filters B1 and B2. They are
both binary-valued and have the same shape with ternary fil-
ter: n × chw. Due to the additivity of convolutions with the
same kernel sizes, a new kernel can be obtained by:

T = B1 +B2 (6)

A key requirement for T to have ternary values is that those
two binary filters should have the same scaling factors: α.
With αB1, αB2 ∈ {+α,−α}n×chw, the sum of αB1 and
αB2 is ternary-valued, i.e. αT ∈ {+2α, 0,−2α}n×chw.
Note that we only decompose the filters at training time. After
the training, the two trained parallel binary filters are added
up to obtain the ternary filter. Thus there is no extra computa-
tion when deploying trained models to devices. An example
is illustrated in Figure 3.

Zeroes are introduced in ternary filters (white squares in
Figure 3 at positions where two parallel filters have opposite
values). And -1/1 is obtained at positions where two parallel
filters have the same signs. In this way, ternary values are
determined by the combination of two corresponding binary
values.
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Figure 3: We illustrate our method with a 2D convolution for sim-
plicity. The top of the figure are two training-time binary convolu-
tion kernels. Their weights are binary-valued:{+α,−α}. The bot-
tom of the figure is an inference-time ternary convolution kernel who
takes the same input. The inference-time kernel can be obtained by
easily adding the corresponding two binary kernels. The weights
are ternary-valued: {+2α, 0,−2α}. The additivity of convolutions
tells us: the inference-time model can produce the same outputs as
the training-time.

It is obvious that the outputs of training-time model are
equal to the outputs of inference-time model:

Y = σ(αBT1 X + αBT2 X) = σ(αTTX) (7)

In our proposed STTN, we convert training ternary net-
works into training equivalent binary networks. We abandon
the constraint in Eq.(3). Not only ∆ can be avoided, but also
quantization intervals can be divided in a soft manner.

Scaling Coefficient
As mentioned above, a key requirement is that the corre-
sponding two parallel binary filters should have the same scal-
ing factors to guarantee the sum of them are ternary. Taking
the two parallel binary filters into consideration, we obtain
the appropriate {α1, α2} by minimizing the following weight
approximation problem:

J(α1, α2, B1, B2) = ‖W1 − α1B1‖22 + ‖W2 − α2B2‖22
s.t. α1 = α2; α1, α2 ≥ 0

(8)
Here B1 and B2 are the two parallel binary filters. And

W1 and W2 are the corresponding float point filters. With
constraint α1 = α2, we use α to denote them. Through ex-
panding Eq.(8), we have

J(α1, α2, B1, B2) = α2(BT1 B1 +BT2 B2)− 2α(BT1 W1 +BT2 W2) + C

(9)
C = WT

1 W1 + WT
2 W2 is a constant because W1 and W2

are known variables. In order to get α∗, the optimal B∗1 and
B∗2 should be determined. Since B1, B2 ∈ {+1,−1}n×chw,
BT1 B1+BT2 B2 = 2nchw is also a constant. From Eq.(9),B∗1
andB∗2 can be achieved by maximizingBT1 W1 +BT2 W2 with
constraint condition that B1, B2 ∈ {+1,−1}n×chw. Obvi-
ously the optimal solution can be obtained when binary kernel
has the same sign with the corresponding float point kernel at
the same positions, i.e. B∗1 = sign(W1), B∗2 = sign(W2).

Based on the optimal B∗1 and B∗2 , α∗ can be easily calcu-
lated as:

α∗ =
BT1 W1 +BT2 W2

BT1 B1 +BT2 B2
=

1

2N
(
N∑
i=1

|W1i|+
N∑
i=1

|W2i|) (10)

where N = nchw, is the number of elements in each weight.
W1i and W2i are elements of W1 and W2, respectively.

Backward Approximation
Since we decompose one ternary filter into two parallel bi-
nary filters at training time, binary weights approximation is
needed in both forward and backward processes. During the
forward propagation, the two related weights can be binarized
through sign function along with the same scaling factor cal-
culated by Eq.(10). However, during the backward propaga-
tion, the gradient of sign function is almost everywhere zero.
Assume ` as the loss function and W̃ = αB = α · sign(W )
as the approximated weights, XNOR-Net [Rastegari et al.,
2016] alleviates this problem through Straight-Through Esti-
mator (STE):

∂`

∂Wi
=

∂`

∂W̃i

∂W̃i

∂Wi
=

∂`

∂W̃i

( 1

N
+ α

∂sign(Wi)

∂Wi

)
(11)

Here, sign(Wi) is approximated withWi1|Wi|≤1. N is the
number of elements in each weight.

However, note that an important requirement in our STTN
is that the related two parallel binary filters should have the
same scaling factors. The exact approximated weights should
be:

W̃ = αB =
1

2N
(
N∑
i=1

|W1i|+
N∑
i=1

|W2i|) · sign(W ) (12)

Because Eq.(10) indicates that α is dependent on bothW1 and
W2. When calculating the derivatives of W1i, the effect of
other kernelsW1j andW2j should be considered. But Eq.(11)
ignores the effect of W1j and W2j , which is not suitable for
our backward approximation.

Taking above analysis into consideration, we propose to
calculate derivatives of W in a more precise way:

∂`

∂W1i
=

2∑
k=1

N∑
j=1

∂`

∂W̃kj

∂W̃kj

∂W1i

=
2∑
k=1

N∑
j=1

∂`

∂W̃kj

[ 1

2N

∂|W1i|
∂W1i

sign(Wkj) + α
∂sign(W1i)

∂W1i

]

=
1

2N
sign(W1i)

2∑
k=1

N∑
j=1

[ ∂`

∂W̃kj

sign(Wkj)
]

+ α
∂sign(W1i)

∂W1i

2∑
k=1

N∑
j=1

∂`

∂W̃kj

(13)
HereWk = [Wk1,Wk2, ...,WkN ] ( k ∈ {1, 2}) are the two

parallel kernels respectively. ∂`/∂W2i can be calculated in
the same way as Eq.(13).

Activation
In this paper, we also convert activations into ternary val-
ues. We use the same ternarization function as RTN [Li et
al., 2019]. Given floating point activation X , the ternary acti-
vation is calculated by the following equation. The difference
between ours and RTN is that we do not introduce extra pa-
rameters or calculations.

Xt
i = Ternarize(Xi) =

{
sign(Xi), if |Xi| > 0.5

0, otherwise
(14)

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2301



Method TWN TTQ Ours

‖W − αT‖22 537.76 439.46 379.25

Table 1: L2 distance between approximated ternary weights and
float point weights. (We add up distances of all convolution layers
together.)

During the backward process, as previous binary/ternary
works [Courbariaux et al., 2016; Rastegari et al., 2016;
Liu et al., 2018], gradients propagated through ternarization
function are estimated by Straight-Through Estimator (STE).

4 Experiments
In this section, we evaluate the proposed STTN in terms
of qualitative and quantitative studies. Our experiments are
conducted on three popular image classification datasets:
CIFAR-10, CIFAR-100 and ImageNet (ILSVRC12). We test
on several representative CNNs including: AlexNet, VGG-
Net, and ResNet.

4.1 Implementation Details
We adopt the standard data augmentation scheme. In all CI-
FAR experiments, we pad 2 pixels in each side of images and
randomly crop 32×32 size from padded images during train-
ing. As for ImageNet experiments, we first proportionally
resize images to 256×N (N × 256) with the short edge to
256. Then we randomly sub-crop them to 224×224 patches
with mean subtraction and randomly flipping. No other data
augmentation tricks are used during training.

Following RTN [Li et al., 2019], we modify the block
structure as BatchNorm→ Ternarization→ TernaryConv→
Activation. Following XNOR-Net [Rastegari et al., 2016],
we place a dropout layer with p = 0.5 before the last lay-
er for AlexNet. For VGG-Net, we use the same architecture
VGG-7 as TWN [Li et al., 2016] and TBN [Wan et al., 2018].
We do not quantize the first and the last layer as previous bi-
nary/ternary works. We replace all 1×1 downsampling layers
with max-pooling in ResNet.

We use Adam with default settings in all our experiments.
The batch size for ImageNet is 256. We set weight decay as
1e−6 and momentum as 0.9. All networks on ImageNet are
trained for 110 epochs. The initial learning rate is 0.005, and
we use cosine learning rate decay policy. All our models are
trained from scratch.

4.2 Weight Approximation Evaluation
In this section, we explore the effect of the proposed STTN
from qualitative view.

Previous works quantize weights into {−1, 0, 1} by set-
ting a hard threshold ∆. Different from them, the proposed
STTN generates soft threshold, quantizing weights more flex-
ibly. We illustrate the impact of threshold calculation on the
performance of TNN based on ResNet-18. We first calculate
the distance between trained floating weights W and trained
ternary weights T . L2 norm is used as the criterion for mea-
surement as Eq.(2). We compare our method with TWNand
TTQ. The results are shown in Table 1.

We can see that STTN obtains the smallest gap between
trained floating weights and trained ternary weights, which
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Figure 4: Weight sparsity rate of different layer in our STTN on
ImageNet with ResNet-18. Here we illustrate it with 16 convolution
layers in building blocks of ResNet.

indicates that our methods can realize a good weight approxi-
mation. Intuitively, the smaller the approximated weight error
we get, the higher precision the model can obtain. The results
show the effect of STTN qualitatively and further quantitative
analyses are given in section 4.3.

We also analyze the reason why our STTN can obtain a
smaller approximation error than previous ternary method.
An essential effect of STTN is to quantize weights into
{+1, 0,−1} in a soft manner, just as shown in Figure 1(a) and
Figure 2. The effect comes from that STTN throws the hard
threshold away. That is, Eq.(3) is no more a constraint to the
weight approximation optimization problem. By comparing
Figure1(a) with (b): this provides more flexible ternarization
intervals.

Besides, we find that STTN adjust the weight sparsity reg-
ularly. Figure 4 shows the weight sparsity rates (the percent-
age of zeros) of different layers in our STTN on ResNet-18.
From the figure we can see that the sparsity rates gradually
decrease from the first layer to the last layer. This probably
because high-level semantics need dense kernels to encode.

4.3 Network Ternarization Results
In this section, we evaluate the STTN from quantitative view
by comparing with the state-of-the-art low-bit networks on
various architectures. We ternarize both weights and activa-
tions. Experiments on only quantizing weights are also given.

Results on CIFAR-10
We first conduct experiments on CIFAR-10 dataset. We use
the same network architecture as TWN, denoted as VGG-7.
Compared with the architecture VGG-9 adopted in BNN and
XNOR, the last two fully connection layers are removed. Ta-
ble 2 shows the STTN results. Note that for VGG-7, STTN
with ternary weights and activations can even obtain better
performance than the full-precision model.

Results on CIFAR-100
In addition, we also evaluate STTN on CIFAR-100 dataset.
We compare our STTN with a strong multi-bit baseline CBC-
N [Liu et al., 2019]. CBCN replaces each convolution lay-
er with several parallel binarized convolution layers. For
fair comparisons, we use the same architecture as CBCN
(ResNet-18 with 32-64-128-256 kernel stage). Note that in
CBCN, the number of channels in one layer is 4×. Table 3
shows our results that although CBCN uses 4× channels than
ours, we obtain higher accuracy with fewer computations.
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Bit-width Method Error(%)

32+32 Floating point [Li et al., 2016] 7.12

1+32† BWN [Courbariaux et al., 2015] 8.27
1+1† BNN [Courbariaux et al., 2016] 10.15
1+1† XNOR [Rastegari et al., 2016] 9.98
2+32 TWN [Li et al., 2016] 7.44
1+2 TBN [Wan et al., 2018] 9.15

2+2 Ours 7.07

Table 2: The error rates on CIFAR-10 with VGG-7. The number
before and after ”+” in the first column denotes the weight and ac-
tivation bit-width respectively. † denotes the architecture is VGG-9,
which adds two more FC layers at last.

Model Kernel Stage Accuracy(%)

Float(32+32) 32-64-128-256 73.62

CBCN(1+1) (32-64-128-256)×4 70.07
Ours(2+2) 32-64-128-256 72.10

Table 3: Accuracy on CIFAR-100 with ResNet-18 (32-64-128-256).
Our ternary networks can outperform multi-bit method significantly.

From this experiment, we argue that ternary networks can be
considered before resorting to multi-bit methods.

Results on ImageNet
For the large-scale dataset, we evaluate our STTN over
AlexNet and ResNet-18 on ImageNet. We compare our
method with several exiting state-of-the-art low-bit quanti-
zation methods: 1) only quantizing weights: BWN [Cour-
bariaux et al., 2015], TWN [Li et al., 2016] and TTQ [Zhu
et al., 2016]; 2) quantizing both weights and activations:
XNOR [Rastegari et al., 2016], Bi-Real [Liu et al., 2018],
ABC [Lin et al., 2017], TBN [Wan et al., 2018], HWGQ [Cai
et al., 2017], PACT [Choi, 2018] and RTN [Li et al., 2019].

The overall results based on AlexNet and ResNet-18 are
shown in Tabel 4 and 5. We highlight our accuracy im-
provement (up to 15% absolute improvement compared with
XNOR-Net and up to 1.7% compared with state-of-the-art
ternary models, without pre-training). These results show
that the STTN outperforms the best previous ternary method-
s. Such improvement indicates that our soft threshold signifi-
cantly benefits extreme low-bit networks.

What’s more, compared with PACT and RTN, we high-
light additional improvements apart from accuracy: 1) Both
PACT and RTN introduce extra floating point parameters (the
activation clipping level parameter in PACT and reparame-
terized scale/offset in RTN) into the networks, which needs
extra storage space and computation. 2) The extra introduced
learnable parameters in PACT and RTN need careful manual
adjustments, such as learning rate, weight decay and so on.
Extensive manual tuning have to be tested for different net-
works on different datasets. However, our method is free of
extra hyper-parameters to be tuned. Further more, we argue
that our method can combine with those methods for further
accuracy improvement. 3) For RTN, they argue that initial-

Model Bit-width Top-1(%) Top-5(%)

XNOR 1+1 44.2 69.2
TBN 1+2 49.7 74.2
HWGQ 2+2 52.7 76.3
PACT∗ 2+2 55.0 −
RTN 2+2 53.9 −
Ours 2+2 55.6 78.9

Table 4: Comparison with the state-of-the-art methods on ImageNet
with AlexNet. ”−” means the accuracy is not reported. ”∗” indicates
the networks use quaternary values instead of ternary values for 2
bits representation.

Model Bit-width Top-1(%) Top-5(%)

Floating 32+32 69.3 89.2

TWN 2+32 61.8 84.2
TWN∗∗ 2+32 65.3 86.2
TTQ∗∗ 2+32 66.6 87.2
RTN∗∗∗ 2+32 68.5 −
Ours 2+32 68.8 88.3
XNOR 1+1 51.2 73.2
Bi-Real∗∗∗ 1+1 56.4 79.5
ABC-5 (1×5)+(1×5) 65.0 85.9
TBN 1+2 55.6 79.0
HWGQ 1+2 56.1 79.7
PACT∗ 2+2 64.4 −
RTN∗∗∗ 2+2 64.5 −
Ours 2+2 66.2 86.4

Table 5: Comparison with the state-of-the-art methods on ImageNet
with ResNet-18. ”∗” indicates the model uses quaternary values in-
stead of ternary values for 2 bits representation. ”∗∗” indicates the
filter number of the network is 1.5×. ”∗ ∗ ∗” indicates the model
needs full-precision pre-trained models to initialize. ”×” in ”ABC-
5” denotes multi-bit networks with multi-branch.

ization from pre-trained full-precision models is vitally im-
portant for their methods (since the small architecture modi-
fication such as changing the order of BN and Conv layer in
low-bit quantization, full-precision models released by open
model zoo can not be used directly) . However, our method
shows that training from scratch can still obtain state-of-the-
art results.

5 Conclusion

In this paper, we propose a simple yet effective ternarization
method, Soft Threshold Ternary Networks. We divide pre-
vious ternary works into two catalogues and show that their
hard threshold is suboptimal. By simply replacing the origi-
nal ternary kernel with two parallel binary kernels at training,
our model can automatically determine which weights to be
-1/0/1 instead of depending on a hard threshold. Experiments
on various datasets show that STTN dramatically outperform-
s current state-of-the-arts, lowering the performance gap be-
tween full-precision networks and extreme low bit networks.
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