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Abstract
Recognition of handwritten mathematical expressions (MEs) is an important problem that has wide applications in practice.
HandwrittenME recognition is challenging due to the variety of writing styles andME formats. As a result, recognizers trained
by optimizing the traditional supervision loss do not perform satisfactorily. To improve the robustness of the recognizer with
respect to writing styles, in this work, we propose a novel paired adversarial learning method to learn semantic-invariant fea-
tures. Specifically, our proposed model, named PAL-v2, consists of an attention-based recognizer and a discriminator. During
training, handwritten MEs and their printed templates are fed into PAL-v2 simultaneously. The attention-based recognizer is
trained to learn semantic-invariant features with the guide of the discriminator. Moreover, we adopt a convolutional decoder
to alleviate the vanishing and exploding gradient problems of RNN-based decoder, and further, improve the coverage of
decoding with a novel attention method. We conducted extensive experiments on the CROHME dataset to demonstrate the
effectiveness of each part of the method and achieved state-of-the-art performance.

Keywords Handwritten ME recognition · Paired adversarial learning · Semantic-invariant features · Convolutional decoder ·
Coverage of decoding
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1 Introduction

Handwritten mathematical expression recognition (HMER)
has received considerable attention for its potential appli-
cations in many areas such as education, office automation
and conference systems. This problem still faces a mountain
of technical challenges since the images of handwritten MEs
containmuchmore complicated two-dimensional (2D) struc-
tures and spatial relations than general images in computer
vision (Aneja et al. 2018; Jaderberg et al. 2016; Krishna et al.
2017; Ordonez et al. 2016; Zhou et al. 2013). Furthermore,
HMER also suffers from the writing-style variations (see an
example in Fig. 1) and the scarcity of annotated data.

HMERhas been studied since the 1960s (Anderson 1967).
Traditional approaches (Chan and Yeung 2000; Zanibbi and
Blostein 2012) use predefined grammars to handle symbol
segmentation, symbol recognition, and structural analysis
sequentially or simultaneously. Although grammar-driven
approaches (Alvaro et al. 2014, 2016; Chan andYeung 2001;
MacLean and Labahn 2013) perform fairly well in several
CROHME competitions, they require a large amount ofman-
ual work to design grammars. Recently, methods based on
deep neural networks (DNNs) have been proposed (Deng
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Fig. 1 MEs written by different
people (top) and the standard
printed template (center) with
same ground-truth sequence
(bottom). Red cells indicate
attention regions with high
probabilities. Symbols could be
written in very different styles
while share invariant features
that represent the same semantic
meaning (Color figure online)

Fig. 2 Illustration of discriminative and semantic-invariant features
learning. Circle points in the figure represent features of class i , square
points indicate features of class j , where i �= j , red and green represent
features of handwritten symbols, and yellow indicates features come
from printed templates (Color figure online)

et al. 2017; Le and Nakagawa 2017; Zhang et al. 2017a, b,
2018, 2019). Essentially, they treat HMER as a special case
of the general image-to-sequence problem and solve it under
the encoder-decoder framework. Compared to traditional
approaches, DNNs have promoted the recognition perfor-
mance significantly.

Despite these efforts, the accuracy of HMER methods is
still limited due to the enormous challenge of the problem.
Previously, to overcome the writing-style variation, we pro-
posed the paired adversarial learning (PAL) method based
on DNNs and adversarial learning (Wu et al. 2018b). The
core idea of PAL is to make the recognizer learn semantic-
invariant features by mapping handwritten MEs to their
printed templates in the feature space (see Fig. 2). Another
contribution of PAL is the adoption of the convolutional
decoder, which is easier and faster to optimize compared
with the more commonly used RNN decoder.

In this paper, we propose a new HMER method, named
PAL-v2, which extends PAL in the following three aspects:

1. For the encoder, since MEs are featured by the com-
plex 2D structure and long-range dependence, we aim to
incorporatemore contextual information by replacing the
VGG-based CNN feature extractor with a DenseNet and
designing a novel densely connected multi-directional
RNN block on top of the CNN feature extractor.

2. For the decoder, it is extremely important to pay close
attention to all the symbols in the ME images. In this

work, we improve the convolutional decoder with a novel
attention method named Pre-aware Coverage Attention
(PCA) to enhance the coverage of decoding while allow-
ing parallel computing. In addition, we also utilize an
N -gram statistical language model to assist the decod-
ing.

3. For the adversarial learning pipeline, it is similar to our
previous work. However, in this study, we demonstrate
that the proposed adversarial training method is flexible
to the recognizer with different structures. Furthermore,
we employ the discriminators at different stages of the
recognizer and explore different capacities of the dis-
criminators. We also visualize the feature distributions
learned by the recognizer to explain the inner working of
our proposed method.

The main contributions of our work are highlighted as
follows:

1. To improve the robustness of the recognizer with respect
towriting styles, we introduce paired adversarial learning
to learn semantic-invariant features fromhandwrittenME
images and their printed templates.

2. We adopt a convolutional decoder to alleviate the vanish-
ing and exploding gradient issues of RNN based decoder
and propose a novel attentionmethod to improve the cov-
erage of decoding.

3. To capture 2D long-range contextual dependencies, we
design a new densely connected multi-directional RNN
block for the encoder.

4. The proposed PAL-v2 model boosts the expression
recognition rate (ExpRate) of PAL from 39.66 to 48.88%
and achieves state-of-the-art performance on the bench-
mark datasets CROHME 2014 and 2016.

The rest of this paper is organized as follows. Section 2
briefly reviews existing HMER approaches and other related
works. Section 3 details the proposed model and algorithms.
Section 4 presents extensive experimental results. Finally, we
conclude our work in Sect. 5.
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2 RelatedWorks

2.1 A Brief Review of HMERMethods

HMER has received intensive attention, and many previ-
ous works have been surveyed in Chan and Yeung (2000)
and Zanibbi and Blostein (2012). These approaches usu-
ally involve three main parts: symbol segmentation, symbol
recognition, and structural analysis. A variety of predefined
grammars have been used to solve these tasks, such as
the stochastic context-free grammar for HMER in Alvaro
et al. (2014, 2016). Such grammar-based approaches have
achieved outstanding performance in several CROHME
competitions.Othermanually designedmathgrammars, such
as definite clause grammars (Chan andYeung 2001) and rela-
tional grammars (MacLean andLabahn2013), have also been
used for HMER.

Depending on the organization of the three steps, the
previous approaches can be categorized into sequential solu-
tions and global ones. Sequential solutions (Alvaro et al.
2016; Mouchère et al. 2016b) implement these three parts
in turn which is in line with human reading. The disad-
vantage is that errors in sequential steps will accumulate.
Different from sequential solutions, a global solution (Awal
et al. 2014) segments symbols implicitly while recognizing
them and analyzing structures. However, the computation
time of global optimization tends to increase exponentially
with the number of symbols.

Compared with approaches based on human-designed
grammars, the recently presented attentional framework
(Deng et al. 2017; Le and Nakagawa 2017; Zhang et al.
2017a, b, 2018, 2019) shows superior learning power for
HMERandhas significantly advanced the recognition perfor-
mance on HMER. These attentional recognizers learn math
grammars from training data via embedded language mod-
els and can segment symbols in MEs automatically with a
data-driven attention mechanism. However, these attentional
recognizers are only trained to learn discriminative features
and the writing-style variation is not treated adequately.

2.2 Domain-Invariant Features Learning

The main difference between domains of handwritten and
printedMEs lies in thewriting style.We reduce the intra-class
variance of handwritten symbols by guiding the recognizer to
learn semantic-invariant features. In a related work, invariant
representation of different domainswas learnedwith the gen-
erative adversarial network (GAN) (Goodfellow et al. 2014)
for domain adaptation.

GAN is a well-known adversarial learning method origi-
nally presented for generative learning by Goodfellow et al.
It generally consists of a generator G and a discriminator D,
which are trained with conflicting objectives:

min
G

max
D

V (G, D)

= Ex∼pdata(x) log D(x) + Ez∼pz(z) log(1 − D(G(z))),
(1)

where x denotes the target real sample, z is the input
noise and D(x) is the probability that the sample is real.
G tries to forge real samples to confuse D while D tries
to distinguish fake samples from real ones. Extensions of
GANs have been proposed to find domain-invariant rep-
resentations of different domains (Bousmalis et al. 2017;
Radford et al. 2015). Recently, an adversarial-learning-based
method was proposed for improving the generation perfor-
mance of offline handwritten character recognizers (Zhang
et al. 2018). Specifically, it incorporates prior knowledge
of printed templates, and utilize a discriminator for guid-
ing traditional feature extractor to learn writer-independent
features of characters. A parallel work (Liu et al. 2018)
for text recognition shares similar idea in learning invariant
features.

2.3 Encoder-Decoder with Attention

RNN-based encoder-decoder with attention was widely
used for dealing with image-to-sequence and sequence-to-
sequence problems, such as image captioning (Cho et al.
2015; Li et al. 2017; Xu et al. 2015), scene text recognition
(Shi et al. 2018), machine translation (Bahdanau et al. 2014)
and speech recognition (Chorowski et al. 2015). However,
in contrast to CNNs, RNNs often suffer from gradient van-
ishing and exploding problems. Furthermore, the inherently
sequential processing of RNNs makes it hard to be imple-
mented in parallel.

Recently, a series of entirely convolutional neural net-
works with attention have been proposed to address the
aforementioned problems faced by the recurrent encoder-
decoder and have shown efficacy in both accuracy and
training time (Aneja et al. 2018; Bai 2018; Gehring et al.
2017;Wu et al. 2018a, b). Despite the benefits, convolutional
decoders face a serious problem, namely, lack of coverage
(Tu et al. 2016), which means some regions in the images
are over-attended or under-attended in the decoding pro-
cess. Recurrent decoders (Zhang et al. 2017a, b, 2018, 2019)
manage to overcome this problem by utilizing all of histori-
cal attention maps as additional information for guiding the
attention of the current step. Parallel computing of convo-
lutional decoders becomes a disadvantage in this case since
attentionmaps at every step are calculated independently and
simultaneously. In this work, in order to retain the advantages
of both convolutional and recurrent decoders, we introduce
a novel attention method in Sect. 3.2.2.
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Fig. 3 Architecture of our proposed model. During training procedure,
each handwritten ME image is input with its printed template (bottom
left). The encoder-decoder recognizer and the discriminator are trained

alternately. We equip the convolutional decoder with a novel pre-aware
coverage attention for improving the coverage of decoding

3 ProposedModel

In this paper, we treat HMER as a special case of the gen-
eral image-to-sequence problem. Specifically, given an ME
image, our method outputs the LaTeX code of the ME.

The proposed PAL-2 model is comprised of an attentional
encoder-decoder recognizer R and a discriminator D.

The encoder in R encodes input ME images into feature
maps and then the decoder parses these feature maps into
LaTeX. When R attends to the related regions of symbols
in the feature map, D guides R to learn semantic-invariant
features formaking Rmore robust towriting-style variations.

PAL-v2 is learned in an adversarial learning manner.
Specifically, handwritten MEs paired with their printed tem-
plates are fed into the model together. R is trained with two
aims: 1. Correctly recognize both handwritten MEs and their
printed templates. 2. Fool D by making the features of the
paired images indistinguishable. D is optimized to judge
whether the features are from handwritten or printed MEs.
R and D are updated alternately.

See Fig. 3 for the overall architecture of PAL-v2.
In the following sections, we first introduce each part of

PAL-v2 in Sects. 3.1–3.3. Then, we describe the training
procedure of our proposed model in Sect. 3.4 and the com-
bining of the recognizer R and a statistical language model
for decoding in Sect. 3.5.

3.1 Dense Encoder

Our encoder consists of a CNN-based feature extractor and
a RNN-based feature extractor. In this work, we utilize
DenseNet (Huang et al. 2017) as the CNN feature extractor.
The main idea of DenseNet is adopting concatenated output
feature maps of all previous layers as input of current layer.

We use a RNN-based feature extractor after the CNN-
based extractor to perceive more contextual information
(Deng et al. 2016, 2017; Le and Nakagawa 2017). Inspired
by the success of DenseNet, we design a novel densely
connected MDLSTM, named DenseMD, to mitigate the
vanishing gradient problem of deep RNN. Specifically, we
replaced the 3× 3 convolution in the DenseNet block with a
MDLSTM.EachMDLSTMlayer employs fourLSTMlayers
in up, down, left and right directions in parallel. The feature
maps in different directions are summed up to get output. We
combined the final output xlast ∈ R

H×W×C of theDenseMD
with the absolute position embedding (Gehring et al. 2017)
to enhance the model’s sense of order:

ei, j = xlasti, j + φ(px,i ) + ϕ(py, j ), (2)

where φ(px,i ) = Wφ px,i and ϕ(py, j ) = Wϕ py, j denote
the position embeddings in horizontal and vertical direction,
respectively (see details in Fig. 3). px,i and py, j are one-hot
vectors of the input coordinates i and j . The weight param-
eters Wϕ and Wφ are learned by back-propagation. Later, a
shallow convolution with residual connection is applied to
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Fig. 4 Architecture of the convolutional decoder. y0 = 〈S〉 and yT =
〈E〉 indicates the beginning and the end of the target sequence, respec-
tively. a = (a1, . . . , aT ) ∈ R

T×C denote the output feature sequence
of the last decoder block. at , t = 1, . . . , T is then classified with an
MLP based classifier

e for better fusing semantic and positional information. The
final output feature map is denoted as f ∈ R

H×W×C .

3.2 Attentional Decoder

The complex structure of ME images makes it hard for the
recognizer to accurately locate all the symbols of an ME
in parallel. We solve this problem by applying a convolu-
tional decoder based on the improved attention mechanism
(see Fig. 4), named pre-aware coverage attention (PCA). We
introduce the convolutional decoder in Sect. 3.2.1 and the
novel attention mechanism PCA in Sect. 3.2.2.

3.2.1 Convolutional Decoder with Attention

The recurrent decoder sequentially attends to related regions
at each decoding step and suffers from vanishing and explod-
ing gradient problems. Different from the recurrent decoder,
our attention-based decoder is a multi-block convolutional
neural network (Gehring et al. 2017). Each decoder block
comprises a one-dimensional causal convolution and a sub-
sequent separate attentionmechanism (seeFig. 4). The causal
convolution is equipped with a gated linear unit (GLU)
(Dauphin et al. 2017) for nonlinear activation. Output of the
lth decoder block is predicted based on both the previous
block output and related regions in the encoder output fea-
ture map. Related regions are chosen via an attention map
αl
t ∈ R

H×W . With this notation at hand, the weight αl
t,(i, j)

of the attention map is calculated as:

hlt = Wlzlt + st + bl , (3)

αl
t,(i, j) = exp(hlt · fi, j )

∑H
n=1

∑W
m=1 exp(h

l
t · fn,m)

, (4)

where zlt is the output of the lth causal convolution, st is the
embedding of previous target symbols, and Wl are trainable
weights. The attended context vector of the image is obtained
by:

clt =
H∑

i=1

W∑

j=1

αl
t,(i, j)( fi, j + ei, j ), (5)

where ei, j is the embedded feature in Eq. (2). According to
the key-value memory network (Su et al. 2016), we run fi, j
and fi, j + ei, j as the keys and values, respectively. Then,
clt and zlt are combined to get the output of the lth decoder
block by alt = clt + zlt .

The output of the last block alastt is taken for predicting
the current symbol via:

p̂t = softmax(Woa
last
t + bo) ∈ R

K , (6)

ŷt = argmax( p̂t ), (7)

where Wo and bo are the parameters of the fully connected
layer, K is the size of the LaTeX symbol set.

3.2.2 Pre-aware Coverage Attention

Classic attention described above tends to ignore past align-
ment information (Tu et al. 2016), which can result in
over-attention and under-attention. Humans have a priori
knowledge of reading from left to right. When we pay atten-
tion to the current word, we are aware of areas that have
been read on the left side. Recurrent decoders could mimic
the human reading process by utilizing the coverage of all
historical attention locations.

Since the convolutional decoder predicts all symbols in
the image simultaneously during training, in order to enable
the current step to be pre-aware of the coverage of attention
locations in previous steps, we redefine the attention map in
Eq. (4) as:

αl
t,(i, j) = exp(P(hlt ) · fi, j )

∑H
m=1

∑W
n=1 exp(P(hl , t) · fm,n)

, (8)

where P(∗) denotes the mapping function of the pre-aware
unit and is defined as:

P(hlt ) = V l
1Wpa,t h

l + V l
2h

l
t , (9)
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where V l
1 and V l

2 are trained weights, while Wpa,t is the t th
row of the pre-aware matrix Wpa ∈ R

T×T :

Wpa =

⎡

⎢
⎢
⎢
⎣

0
1 0 0
...

...
. . .

1 1 · · · 0

⎤

⎥
⎥
⎥
⎦

. (10)

The i th element of Wpa,t is zero when i ≥ t . Thus, it is easy
to get:

P(hlt ) · fi, j =
(

V l
1

t−1∑

k=1

hlk

)

· fi, j + (V l
2h

l
t ) · fi, j , (11)

where the first item contains forecast information of previous
t − 1 steps attention weights, and the second item contains
information about the original weight of the current step.
The combination of information is learned via the trained
weights V l

1 and V
l
2 . In this way, the original parallel structure

of the convolutional decoder can be maintained. Moreover,
the semantic and positional information of previous symbols
can be utilized more effectively in the current step.

In order to improve the back propagation of the gradient,
we apply residual connections (He et al. 2016) to the pre-
aware unit defined in Eq. (9):

P(hlt ) = (V l
1Wpa,t h

l + V l
2h

l
t ) + hlt . (12)

If the learned weights V l
1 and V

l
2 are zeros, P(hlt ) will be the

original form of attention mechanism.

3.3 Adversarial Semantic-Invariant Features
Learning

Traditional recognizers are usually trained to learn only
discriminative features for differentiating between symbol
classes. So, they cannot handle the writing-style variation
very well. Our method matches the handwritten symbols in
an HME image with printed symbols in the corresponding
printed ME image by using the attention mechanism. Then
our recognizer learns semantic-invariant features under the
guidance of a discriminator.

Concretely, let a(x, y, θR) = (a1, . . . , aT ) ∈ R
T×C

denote the output feature sequence of the last decoder block.
Here, x is the input image of a handwritten ME xh or its
printed template xp, y = (y0, . . . , yT−1) denote the previous
LaTeX targets and θR are the parameters of the recognizer R.
The discriminator D guides the recognizer to learn semantic-
invariant features by judging whether the feature vector at
comes from the t th symbol in the handwritten ME image
or its printed template. The probability that at comes from
a printed image is calculated by D(at (xp, y0:t−1, θR), θD),

where y0:t−1 is the abbreviation for y0, . . . , yt−1 and θD are
the parameters of D. The objective function is defined as:

LD = E(X ,Y )Et (log D(at (xp, y0:t−1, θR), θD) (13)

+ log(1 − D(at (xh, y0:t−1, θR), θD)),

where t ∈ {1, . . . , T }, and (X ,Y ) = {((xh, xp), y)} indi-
cates the training set of paired ME images. D is optimized
to maximize LD , that is, maximize the probability of cor-
rectly classifying handwritten/printed image sources. On the
contrary, R is trained to learn semantic-invariant features to
confuse D. This optimization problem can be regarded as
minimizing the loss that at is classified from a printed image:

LDadv
= −E(X ,Y )Et (log D(at (xh, y0:t−1, θR, θD)), (14)

Moreover, the primary goal of the recognizer is to cor-
rectly identify each symbol in the input image. Thus, the
output feature at at each decoding step should be classified
as yt with a high probability. The objective function of clas-
sifying features learned from the handwritten ME image is
defined as:

LCh = −E(Xh ,Y )

T∑

t=1

log p(yt |xh; y0:t−1; θR), (15)

where (Xh,Y ) = {(xh, y)} is the training set of handwritten
images and p(yt |xh; y0:t−1; θR) is given by the yt -th entry
of p̂t defined in Eq. (6).

Similarly, the loss function of classifying features learned
from printed templates is defined as:

LCp = −E(X p,Y )

T∑

t=1

log p(yt |xp; y0:t−1; θR), (16)

where (X p,Y ) = {(xp, y)} is the training set of printed tem-
plates.

In summary, we train the attentional recognizer by mini-
mizing the loss function of:

LR = LCh + LCp + λLDadv
, (17)

where λ is a hyperparameter that controls the trade-off
between semantic-invariant features and discriminative fea-
tures.Whenλ = 0 , themethod is a general recognizer trained
on paired samples. When λ increases, the method will focus
more on learning semantic-invariant features and extract less
discriminative features for the classification layer to generate
prediction results.
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Algorithm 1: Paired adversarial learning algorithm.

1 Get printed template xp for xh by compiling its label y to obtain
the training set ((xh, xp), y) ∈ (X , Y );

2 Initialize the recognizer model and the discriminator randomly
with parameters θR and θD ;

3 repeat
4 Sample bsz pairs of samples {(xh , xp)(1), . . . , (xh, xp)(bsz)}

from the training set;
5 //Update the recognizer
6 Update the recognizer by:

θR ← θR + optim(− ∂(LCh +LCp+λLDadv
)

∂θR
, ηR);

7 //Update the discriminator for m steps
8 for m steps do
9 Update the discriminator by:

θD ← θD + optim( ∂LD
∂θD

, ηD);

10 end
11 until LCh + LCp + λLDadv

converged;
12 //Get the final model for HMER
13 Parameterize the recognizer by: θR ;
14 return The recognizer R;

3.4 Training Strategy

During training time, the recognizer R and the discrimina-
tor D are optimized jointly under the adversarial learning
mechanism. D is trained to distinguish sequences of fea-
tures extracted from images of handwritten MEs or their
printed templates.On the contrary, the recognizer is trained to
extract sophisticated semantic-invariant features for fooling
D. Meanwhile, R is also optimized to maximize the proba-
bility of getting the right recognition results for the input ME
images. The importance of these two objective functions is
balanced via the hyperparameter λ.

See details in Algorithm 1.We sampleminibatch of paired
samples to train the recognizer and D for every training cycle.
The recognizer model is trained one time first, and D is
trained m times then. Specifically, we update parameters for
the recognizer as:

θR ← θR + optim

(

−∂
(LCh + LCp + λLDadv

)

∂θR
, ηR

)

.

(18)

And for the discriminator by:

θD ← θD + optim

(
∂LD

∂θD
, ηD

)

, (19)

where optim(∗) is the optimization function of the adap-
tive moment estimation (Adam) with the input gradient and
learning rate and output the updated value, ηR denotes the
learning rate for the recognizer and ηD denotes the learning
rate of the discriminator, respectively.

3.5 Decoding with Statistical LanguageModel

Assume that the target sequence includes T symbols (y1, . . . ,
yT ). A forward language model can measure the probability
of the sequence by modeling the probability of symbol yt for
a given history (y1, . . . , yt−1):

p(y1, . . . , yT ) =
T∏

t=1

pLM (yt |y1:t−1). (20)

For instance, an N -gram language model considers the pre-
vious N − 1 symbols:

p(y1, . . . , yT ) =
T∏

t=1

pLM (yt |yt−N+1:t−1). (21)

When there is no external language model, the recog-
nizer first embeds the target symbols and the input image
to the same semantic space. Then, at each decoding step, the
decoder of the recognizer makes a prediction of the current
word through the recognized words and the attention mech-
anism:

p(y1, . . . , yT |x; θR) =
T∏

t=1

pR(yt |x; y0:t−1; θR). (22)

In this work, we utilize an extra 4-gram statistical language
model to assist decoding with the beam search algorithm
(Cho 2015):

log p̃(y1, . . . , yT |x; θR)

=
T∑

t=1

log((1 − γ )pR(yt |x; y0:t−1; θR)

+ γ pLM (yt |yt−3:t−1)), (23)

where the value of γ is set by experiments and the out-
put probabilities of the 4-gram statistical language model
pLM (yt |yt−3:t−1) are approximated by statistical data from
the corpus.

4 Experiments

The proposed method is validated on the large public
dataset available from the Competition on Recognition of
Online Handwritten Mathematical Expressions (CROHME)
(Mouchère et al. 2016a). We conduct extensive experiments
to analyze the effectiveness of each part of our proposed
model and compare the performance with the state-of-the-
art approach.
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4.1 Experimental Settings

4.1.1 Datasets

The CROHME dataset, which was collected for competition,
is currently the largest public dataset for HMER. There are
101 math symbol classes in this dataset. The recent compe-
titions include CROHME 2013, 2014 and 2016, which used
different test sets while sharing the same training set. The
shared training set contains 8835 handwritten MEs and the
test sets for CROHME2013, 2014 and 2016 contain 671, 986
and 1147 handwrittenMEs, respectively. Consistent with the
participants in CROHME, we use the test set of CROHME
2013 as a validation set during training and use the test sets
of CROHME2014 and 2016 to evaluate our proposedmodel.

In the CROHME dataset, each handwritten ME is stored
in InkML format, which records the trajectory coordinates
of handwritten strokes as well as the LaTeX and MathML
format ground truth. In this study, we use the LaTeX for-
mat ground truth as other works presented recently (Deng
et al. 2016; Le and Nakagawa 2017; Zhang et al. 2017a,
2018, 2017b). Since our model is proposed for offline ME
recognition, we did not use the online trajectory information
of strokes (Zhang et al. 2019), but instead, we transformed
the MEs to offline images by connecting adjacent coordinate
points of the same strokes.

As the training of PAL-v2 needs the printed templates
of the handwritten ME images, we generated the printed
template of each handwritten ME simply by compiling the
LaTeX format label with a general LaTeX editor. All the ME
images were normalized to the height of 64 pixels. Our mod-
els were implemented in Torch and optimized on 4 Nvidia
TITANXGPUs. The batch size was set as 5 for eachGPU. In
each batch, after images are centered, short images are zero-
padded to the length of the longest image. Target sequences
whose lengths are short in the batch are padded with constant
〈P〉 at the end. The category 〈P〉 does not participate in the
calculation of cross-entropy loss.

4.1.2 Model Configurations

The configurations of our proposed model are listed in Table
1. We use DenseNet (Huang et al. 2017) as the CNN feature
extractor of the encoder. In Table 1, “G” denotes the growth
rate and “s” denotes the stride. Then a DenseMD block is
added after DenseNet to extract more context information.
Different from the original work (Huang et al. 2017), we do
not adopt the down sampling method with a 2 × 2-stride
convolution and a subsequent 2 × 2-stride max pooling for
input images. We use three 1 × 1-stride convolution and
two 2 × 2-stride max pooling before the first dense block,
so that the information in the input image is not lost too
much. Furthermore, the convolutional layer of the encoder is

Table 1 Configurations of the proposed model

Input: H(64) × W × D(1) binary image

Encoder

Convolution 3 ×3 conv, 32, s 1 × 1

Convolution 3 ×3 conv, 32, s 1 × 1

Transition layer 2 ×2 max pooling, s 2 × 2

Convolution 3 ×3 conv, 48, s 1 × 1

Transition layer 2 ×2 max pooling, s 2 × 2

Dense block (1)

[
1 × 1, conv
3 × 3, conv

]

× 14, G 24, s 1 × 1

Transition layer 1 ×1 conv, 128, s 1 × 1

2 ×2 average pooling, s 2 × 2

Dense block (2)

[
1 × 1, conv
3 × 3, conv

]

× 16, G 24, s 1 × 1

Transition layer 1 ×1 conv, 256, s 1 × 1

Dense block (3)

[
1 × 1, conv
3 × 3, conv

]

× 8, G 24, s 1 × 1

Transition layer 1 ×1 conv, 224, s 1 × 1

DenseMD block

[
1 × 1, conv
MDLSTM

]

× 6, G 8, s 1 × 1

Transition layer MDLSTM, 400, s 1 × 1

Position ResBlock 2D position embedding

[ 3×3 conv ]×4, 400, s 1 × 1

Decoder

Decoder block [ 3, causal conv ] × 3, 256, s 1

FC layer 256 units

FC layer K units, softmax

Discriminator

FC layer 512 units

FC layer 1 unit, sigmoid

equippedwith a batch normalization layer (Ioffe andSzegedy
2015) and a rectified linear unit (ReLU) (Krizhevsky et al.
2012).

Consistent with the method in Gehring et al. (2017), each
causal convolution in the decoder block is equipped with a
gated linear unit (GLU) (Dauphin et al. 2017) for nonlinear
activation, and a weight normalization layer (Salimans and
Kingma 2016) is implemented as a regularization measure.
Channel dimensions of the featuremap output by the encoder
are mapped to the same as the hidden state before calculating
attention. The discriminator D is an MLP with two fully
connected (FC) layers.

We employ dropout (Srivastava et al. 2014) to prevent
overfitting. Specially, for the 3×3 convolutional layer, Drop-
Block (Ghiasi et al. 2018) is used instead. Weight noise
(Graves 2011) and weight decay (Krogh and Hertz 1991)
are also implemented as regularization during training pro-
cedure.
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Table 2 Performance of the recognizer on handwritten datasets and
generated printed datasets

ExpRate (%) CROHME 2014 CRHOME 2016

Handwritten 43.81 43.77

Printed 83.87 81.60

4.2 Exploratory Experiments of Paired Adversarial
Learning

4.2.1 Discriminative Feature Learning

We first train the recognizer with handwritten MEs only and
evaluate the performance of the recognizer on the CHROME
2014 and 2016 test sets. Then for comparing handwritten
ME recognition and printed ME recognition, we train a new
recognizer on the generated printed training set and evalu-
ate the performance on the printed test sets. The recognition
results are shown in Table 2. The performance ismeasured by
ExpRate, defined as the percentage of correctly recognized
expressions. ExpRate is the index that ranks the participating
systems in the CROHME competitions.

It is shown in Table 2 that although the handwritten MEs
and printed templates have the same contents, there is a big
difference in recognition accuracy when two recognizer are
trained separately to learn discriminative features. In this
case, the ExpRates on the handwritten CROHME 2014 and
2016 datasets are nearly 40% lower than those on printed
ones.

4.2.2 Influence of Hyperparameter �

We run experiments with different values of the hyperpa-
rameter λ in Eq. (17) to examine its effect on our proposed
PAL-v2model. Models are all optimized with paired images.
We explore differentλ for themodelwhile keeping other con-
figurations fixed. The recognition results on CROHME 2014
and 2016 test sets are shown in Fig. 5.

The hyperparameter λ controls the trade-off between
semantic-invariant features and discriminative features
learned by the recognizer. When λ is small, discriminative
features comprise the majority loss of the recognizer and
dominate gradients back propagated. With increasing λ, the
recognizer masters more semantic-invariant features of same
symbols in handwritten ME images and their printed tem-
plates. However, with too large λ, the model will focus too
much on semantic-invariant features learning and even try
to generate same feature sequences for both printed and
handwritten ME images to confuse the discriminator. This
will lead to less discriminative features for different sym-
bol categories and deteriorate the recognition accuracy. For
an extreme case, the recognizer may only pay attention to
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Fig. 5 Comparison of different λ on CROHME 2014 and 2016 test sets

regions of background or other irrelevant regions at each
step to fool the discriminator D. Therefore, an appropriate λ

plays an important role in the PAL-v2 model.

4.2.3 Analysis of Loss Function

In this section, we remove different components in the loss
function to examine the effectiveness of printed templates
and style discrimination in the learningprocedure. The recog-
nition results using difference combinations of loss functions
are is listed in Table 3, where ticks indicate that the corre-
sponding loss function terms are selected when training the
model. Model configurations in Table 3 are consistent with
those in the Table 1 and λ is fixed as 0.4. In fact, when only
the supervision loss LCh is used, it is equivalent to train-
ing the traditional recognizer on handwritten MEs only as in
Table 2. When LCp is not used, it is hard to ensure that fea-
tures of printedME images at each decoding step arematched
with handwritten ones. One can observe that the trainingwith
LCh + LDadv

leads to a 1% accuracy improvement over the
original recognizer.

Interestingly, when we optimize the recognizer on paired
printed and handwritten imageswithLCh+LCp , the accuracy
is increased by 2% more on CROHME 2014 test set and 3%
more on CROHME 2016 test set. Traditional recognizers
with LCh only are trained on weakly labeled handwritten
ME images. It is difficult for the recognizers to learn the 2D
structural relations due to the variations of writing style and
layout. In contrast, the printed templates have more stable
shape appearance and can help the recognizer to learn the 2D
structure of the MEs and therefore improve the recognition
accuracy.

Actually, mismatch between two sequences of feature
vectors can easily cause the discriminator converging to
irrelevant features, and thus losing the ability to guide the rec-
ognizer for learning semantic-invariant features. Therefore,
we utilize the supervision lossLCp to enable the recognizer to
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Table 3 Analysis of the loss function for PAL-v2

LCh LCp LDadv
CROHME 2014 CROHME 2016

√
- - 43.81 43.77√
-

√
44.83 45.60√ √

- 46.75 47.60√ √ √
48.20 49.00

The accuracy is measured by ExpRate (%)

Table 4 Configurations of different discriminators

Discriminator 1

Convolution 3 ×3 conv, 256, s 1 × 1

Pooling layer 2 ×2 max pooling, s 2 × 2

Convolution 3 ×3 conv, 256, s 1 × 1

Convolution 3 ×3 conv, 1, s 1 × 1

Pooling layer Global average pooling, sigmoid

Discriminator 2

Pooling layer Global average pooling

FC layer 512 units

FC layer 1 unit, sigmoid

Discriminator 3

FC layer 512 units

FC layer 1 unit, sigmoid

Table 5 Performance of recognizers trained with different discrimina-
tors

ExpRate(%) CROHME 2014 CRHOME 2016

Without discriminator 46.75 47.60

D1 after encoder 47.36 48.65

D2 after encoder 47.16 48.56

D3 after attention 48.20 49.00

extract precise features by matching with printed templates.
At the same time, we use LDadv

to guide it to learn semantic
invariant features. The performance of the recognizer model
has been further improved by about 1.5% on both two test
sets. Compared with training the recognizer with LCh only,
PAL boosts the performance of the recognizer more than 5%
on the CROHME 2016 test set.

4.2.4 Comparison of Different Discriminators

Weemploy the discriminators at different stages of the recog-
nizer and consider different capacities of the discriminators
(See Table 4). In Table 5 we report the performance of rec-
ognizers trained with these discriminators.

Recognizers in Table 5 are all trained with paired images.
D1 and D2 are applied to the same stage of the recognizer
(the feature map e + f ), but D1 owns a higher capacity

than D2. The difference between D2 and D3 is that D2
gets the image vector through a global average pooling layer
instead of the attention mechanism. Since the ME images
have variable scales, we use global average pooling to get
the image vector for discriminators applied on earlier feature
maps.

From Table 5, we can observe the following results: (1)
adding discriminator for guiding the recognizer to learn
semantic invariant features benefits the recognition. (2) Dis-
criminator with higher capacity leads to better performance.
(3) Attending to specific symbols ofME imageswith compli-
cated 2Dstructuresworks better than applying global average
pooling to get the image vector.

Although a discriminator with higher capacity gives
improvement on the performance, we noticed that strong
discriminators tend to suffer from the problem of gradient
disappearance during training. To ensure the stability of the
training process, we set the discriminator and classifier to the
same number of layers.

4.2.5 Visualization of Features

To show the inner working of our proposed paired adver-
sarial learning method, we visualize the features of different
symbol classes learned by the recognizer in Fig. 6. Specif-
ically, we select 9 common symbols from both CROHME
2014 test set and the generated printed set, including Ara-
bic numerals, English and Greek letters. We input all the
previous target symbols to the decoder to predict the cur-
rent symbols and then visualize the features before the first
FC layer of the classifier. The 256D features are reduced to
2D by t-distributed stochastic neighbor embedding (t-SNE)
(Maaten and Hinton 2008).

Figure 6 shows that by training the traditional recognizer,
there is significant overlap between the features of different
handwritten symbol classes in (a). In contrast, features of dif-
ferent printed symbol classes learned by the recognizer have
better separability between symbol classes. By training the
recognizer with PAL, handwritten features are drawn closer
to their corresponding printed templates in the feature space
(see details in (b)) and become more separable.

4.3 Analysis of Pre-aware Coverage Attention

4.3.1 Effect of Pre-aware Coverage Attention

To verify the effect of Pre-aware Coverage Attention (PCA)
in our proposed model, we compare the recognition results
with different decoders in Table 6. All the models are trained
to learn semantic-invariant features on pairedME images via
PAL.

The recognizer model with classic attention based convo-
lutional decoder (see “CA” in Table 6) achieves ExpRate
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(a) (b) (c)

Fig. 6 Visualization of features learned with PAL. From (a) to (c) are
the handwritten features learned by the traditional recognizer, the hand-
written features learned by the recognizer trained with PAL, and the

printed features learned by the recognizer trained with PAL, respec-
tively. Feature vectors are reduced to 2D for visualization

Table 6 Recognition results of recognizer models with different
decoders

ExpRate (%) CROHME 2014 CRHOME 2016

CA 45.13 46.47

PCA 48.20 49.00

PCA Norm 46.96 47.70

PCA noRes 47.77 49.00

CA: classic attention based convolutional decoder; PCA: pre-aware cov-
erage attention based decoder; PCANorm: decoder based on PCAwith
normalized forecast information; PCA noRes: decoder based on PCA
without the residual connection.

45.13% and 46.47% on CROHME 2014 and 2016 test
sets, respectively. After we equip the recognizer model with
“PCA”, the performance has been significantly improved
with about 3% on both two test sets.

Table 6 also gives the results of two variants of “PCA”,
namely “PCA Norm” and “PCA noRes”. “PCA Norm” dif-
fers from “PCA” in the forecast information of attention
weights for all previous steps. Specifically, for “PCANorm”,
the forecast information is normalized by multiplying the
t th row of Wpa in Eq. (10) with 1/(t − 1), t = 2, . . . , T .
Although “PCA Norm” has outperformed “CA” on both two
test sets, its perception of previous steps is significantlyworse
than that of “PCA”. “PCA noRes” is obtained by removing
the residual connection in the pre-aware unit of “PCA” in Eq.
(12). The recognition performance with this decoder turns
out to be affected only slightly. Nevertheless, we still retain
the residual connection, because the recognizer model some-
times has a gradient explosion problem after removing the
residual connection.

It is also interesting to investigate the performance of rec-
ognizers with “CA” and “PCA” on MEs of different target
lengths. The experimental results are shown in Fig. 7. From
the histogram, we can see that majority of the MEs in the
CHROMEdataset do not exceed 30 symbols.Generally,MEs
with longer target sequence are more likely to own larger
widths and more complex structures. These MEs make the
recognizer model tend to over-attention and under-attention.
With the appending of PCA, it is observed that for most tar-
get length intervals the recognition accuracy is increased on
both two test sets.More interestingly, onCROHME2014 test
set, after equipping PCA, some handwritten MEs with more
than 40 symbols are correctly identified. In other words, by
equipping PCA, the model can more accurately attend to the
relevant areas in decoding.

4.3.2 Attention Visualization

Attending to right areas inME images is essential for learning
semantic-invariant features and discriminative features. We
visualize PCA during test procedure to illustrate the recogni-
tion process of PAL-v2 model in Fig. 8. Since there are three
decoder blocks in the decoder, we average the three atten-
tion maps at each decoding step and visualize the averaged
weights. Attention weights are visualized in red and darker
red denotes a higher weight in the attention map.

To analyze the 2D structure of a handwritten ME, target
symbols and input images are mapped to the same semantic
space. At each decoding step, the decoder has made a rough
prediction of the current symbol through previous recognized
ones. Then, the decoder utilizes the predicted state to attend
to relevant regions for fine prediction with attention mech-
anism. As shown in Fig. 8, entity symbols such as Arabic
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Fig. 7 Performance on handwrittenMEs of different target lengths. The
horizontal axis is the length of the LaTeX target and the vertical axis
is the number of MEs. Blue rectangle represents total MEs of the test
set for the length interval. Orange rectangle and gray rectangle indicate
MEs correctly recognized by recognizer models with PCA and CA,
respectively (Color figure online)

numerals and English letters, like “2” and “a”, are easy to
learn by focusing attention to symbols written in the image.
Moreover, by paying attention to some special locations, spa-
tial relation operators are successfully parsed by PAL-v2. For
example, when decoding out subscripts in Fig. 8, PAL-v2 has
attended to bottom-right directions of the base. For internal
relationships such as root number, PAL-v2 has attended to
the upper right border of the inner symbol “n”.

In fact, there are many “{” and “}” in LaTeX format labels
which do not have corresponding entities in the ME images.
FromFig. 8,we can see thatwhenpredicting symbolswithout
entities, PAL-v2 pays attention to some background areas of
the image and generates them with the embedded language
model in the decoder. Our experimental results show that
PAL-v2 can indeed learn the LaTeX grammar through data
and parse the 2D structure of the MEs like humans do.

Throughvisualization,we can see that our proposedmodel
can accurately focus on the symbols in the ME image. Even
for a ME with as many as 39 target symbols, it still shows
good performance.

4.4 Ablation Experiments

Table 7 shows the results of ablation experiments. Specifi-
cally,we append eachpart to the previous systemsequentially
for verifying the effectiveness of each part of our proposed
model. “DenseNet” denotes the benchmark recognizermodel

Fig. 8 Visualization of attention. Attention weights at each step are visualized in red and predicted symbols of the corresponding step the predicted
symbol of the corresponding step is shown under the handwritten ME image (Color figure online)

123

Author's personal copy



2398 International Journal of Computer Vision (2020) 128:2386–2401

Table 7 Ablation experiments on CROHME 2014 on 2016

ExpRate (%) CROHME 2014 CROHME 2016

DenseNet 43.10 44.64

+ DenseMD 44.83 45.51

+ Position Embedding 44.22 45.86

+ PCA 46.75 47.60

+ Discriminator 48.28 49.00

+ Language Model 48.78 49.35

We conduct experiments by appending each portion of PAL-v2 to pre-
vious systems sequentially

with a DenseNet and a subsequent single layer MDLSTM as
encoder. The decoder is the classic attention based convolu-
tional decoder with 3 decoder blocks. Sign “+” in Table 7
indicates adding the part to previous systems. All systems
are trained on paired ME images.

First, “+ DenseMD” applies a densely connected MDL-
STM block before the single layer MDLSTM of the encoder.
The recognition accuracy is increased by 1% on both
CROHME2014 and2016 test sets.However, unlike the origi-
nal work (Gehring et al. 2017), there is no significant change
in performance after “+ Position Embedding”. This might
be caused by the factor that MDLSTM already enables the
model to learn where the feature vectors are in the image
through the recurrent hidden state computation. Then “+
PCA” appends the pre-aware coverage attention to the con-
volutional decoder, and brings an accuracy improvement by
more than 2% on both two test sets. Next, “+ Discriminator”
indicates adding the discriminator to guide the recognizer
for learning semantic-invariant features. By adding this, the
performance of the model has been further improved with by
1.5% ExpRate. Finally, the added extra statistical language
model uses only LaTeX format targets of the training set as
corpus and γ in Eq. (23) is set as 0.1. It is observed that the
statistical language model is still helpful for the recognition,
although there is already a neural network language model
embedded in the decoder.

4.5 Comparison with the State-of-the-Art

Table 8 shows the results of our proposed model with com-
parison with the submitted systems from CROHME 2014
and attention-based models presented recently. Systems I to
VII are participating systems in the competition and the next
few systems are attention-based models proposed for HMER
recently. To make fair comparison, system III is excluded
from Table 8 because it used unofficial extra training data.
A recently proposed encoder-decoder model named “TAP”
(Zhang et al. 2019) is not included in Tables 8 and 9 since it
used an extra math corpus to train the RNN based language
model and utilized symbol-level annotations as strong super-

Table 8 ExpRate (%) of different systems on CROHME 2014 test set

System ExpRate (%) ≤ 1(%) ≤ 2(%) ≤ 3(%)

I 37.22 44.22 47.26 50.20

II 15.01 22.31 26.57 27.69

IV 18.97 28.19 32.35 33.37

V 18.97 26.37 30.83 32.96

VI 25.66 33.16 35.90 37.32

VII 26.06 33.87 38.54 39.96

WYGIWYS∗ (Deng
et al. 2016)

28.70 – – –

End-to-end (Le and
Nakagawa 2017)

35.19 – – –

WAP∗ (Zhang et al.
2017b)

44.40 58.40 62.20 63.10

PAL (Wu et al. 2018b) 39.66 – – –

PAL∗ (Wu et al. 2018b) 47.06 – – –

DenseMSA∗ (Zhang
et al. 2018)

52.80 68.10 72.00 72.70

PAL-v2 48.88 64.50 69.78 73.83

PAL-v2∗ 54.87 70.69 75.76 79.01

vision. The attentional recognizer models listed in Table 8
are all trained on offline ME images with only LaTeX level
labels. It is worth noting that the ExpRate reported by the
participating systems in the CROHME competitions is cal-
culated with a hierarchical graph, named label graph, which
also considers the alignment accuracy. Therefore, in Tables 8
and9,we convert the outputLaTeXstrings to label graphs and
evaluate the performance with official tools provided by the
CROHME 2019 (Mahdavi et al. 2019) organizers. ExpRate
≤ 1(%),≤ 2(%) and ≤ 3(%) denote the expression recog-
nition rates when one, two or three symbol-level errors are
tolerable. They show the room for the models to be further
improved.

The sign “∗” in Table 8 denotes utilizing an ensemble of
5 differently initialized recognizer models to improve the
generation performance (Zhang et al. 2017b). The state-
of-the-art model “DenseMSA” (Zhang et al. 2018) uses
DenseNet as the encoder and adds an extra DenseNet branch
to deal with different sizes of symbols. Then the output
feature maps of the encoder are decoded with a recurrent
decoder. Our proposed PAL-v2 model have not used an extra
branch for the encoder and outperforms DenseMSA (Zhang
et al. 2018) by about 2% ExpRate.

Table 9 compares our proposed model with the participat-
ing systems in CROHME 2016 and other models proposed
for HMER recently. System “Wiris” won the first place in
CROHME 2016 using only the official handwritten MEs
training data. However, it used a extra Wikipedia formula
corpus to train the language model for assisting recognition.
The state-of-the-art model “DenseMSA” is the same as that
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Table 9 ExpRate (%) of different systems on CROHME 2016 test set

System ExpRate (%) ≤ 1 (%) ≤ 2 (%) ≤ 3 (%)

Wiris 49.61 60.42 64.69 –

Tokyo 43.94 50.91 53.70 –

Sao Paolo 33.39 43.50 49.17 –

Nantes 13.34 21.02 28.33 –

WAP∗ (Zhang et al.
2017b)

44.55 57.10 61.55 62.34

DenseMSA∗ (Zhang
et al. 2018)

50.10 63.80 67.40 68.50

PAL-v2 49.61 64.08 70.27 73.50

PAL-v2∗ 57.89 70.44 76.29 79.16

in Table 8. It does not use extra language model and shows
a slight advantage over “Wiris”. To make fair comparison,
in both Tables 8 and 9, we get the statistical language model
by using only the training set ground truths. Despite this,
our proposed model still yields excellent recognition perfor-
mance and outperforms “Wiris” and “DenseMSR” with a
large margin.

Overall, our proposed PAL-v2 model achieves state-of-
the-art performance on both CROHME 2014 and 2016 test
sets, and still shows a huge room for further improvement.

4.6 Recognition Examples

Though PAL-v2 achieved state-of-the-art performance on
CROHME 2014 and 2016 test sets, the results on the hand-
written MEs are still far behind the performance on the
printed MEs in Table 2. We show some correctly and incor-
rectly recognized handwritten MEs by the PAL-v2 in Fig. 9
to further analyze the reasons.

In the figure, red symbols of the “reco” are wrongly pre-
dicted symbols and blue symbols indicate the corresponding
right one in the LaTeX format ground truth. The results show
our proposed model is effective in dealing with the complex
2D structures and symbols with various writing styles. For
some symbols overlapping or touching with others, wrong
symbols may be predicted by the recognizer. For example,
the “gamma” connected to the division line in the third ME
image is incorrectly identified as a root number. Adhesion
of the x to its subscript 1 in the fourth image results in the
missing of the subscript.

In addition to the overlapping problem, symbols of the
same glyph are often misidentified. These symbols include
letters with similar uppercase and lowercase, such as S and
C , and some similarly shaped characters such as 9, q and g.
This problem is clearly reflected in the fifth image. Besides,
excessively skewed symbolsmay also lead to incorrect recog-
nitions. Symbol 9 in the root number of the last ME image

Fig. 9 Examples of handwrittenMEs correctly recognized andwrongly
recognized. Errors in the generated LaTeX codes are marked in red
(Color figure online)

is written with large counterclockwise rotation and is incor-
rectly identified as an a.

As mentioned in Sect. 4.2.3, compared with the printed
MEs, handwritten MEs suffer from serious distortion of
symbol shapes and layout. This makes it difficult to train
the recognizer with weakly labeled images. Since the mis-
recognition of any symbol or structural relation results in
misrecognition of the whole expression, the recognition
accuracy of the handwritten MEs is much lower than that
of printed ones. Nevertheless, considering the symbol error
tolerable rate, the ExpRate ≤ 3(%) can still be close to 80%
in Tables 8 and 9.

5 Conclusion

This paper addresses the problem of handwritten mathemat-
ical expression recognition with a novel paired adversar-
ial learning method. The proposed model, called PAL-v2,
shows superior performance in dealing with the writing-style
variation by learning both semantic-invariant features and
discriminative features. Besides, owing to the pre-aware cov-
erage attention mechanism, PAL-2 can effectively parse the
2D spatial structures, although the training ME images have
only weak labels in LaTeX format.

Through extensive experiments and ablation study, we
demonstrate that the proposed PAL-v2 outperforms the state-
of-the-artmethods on the public datasetsCROHME2014 and
2016, and justify that the proposed paired adversarial learn-
ing method and pre-aware coverage attention are effective
to improve the performance. In our future work, we plan to
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achieve accurate positioning of symbols of handwritten MEs
under weak supervision conditions, and further improve the
accuracy and interpretability of the model.
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