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ABSTRACT
Constructing large-scale knowledge bases has attracted much
attention in recent years, for which Knowledge Base Com-
pletion (KBC) is a key technique. In general, inferring new
facts in a large-scale knowledge base is not a trivial task.
The large number of inferred candidate facts has resulted in
the failure of the majority of previous approaches. Inference
approaches can achieve high precision for formulas that are
accurate, but they are required to infer candidate instances
one by one, and extremely large candidate sets bog them
down in expensive calculations. In contrast, the existing
embedding-based methods can easily calculate similarity-
based scores for each candidate instance as opposed to using
inference, so they can handle large-scale data. However, this
type of method does not consider explicit logical semantics
and usually has unsatisfactory precision. To resolve the limi-
tations of the above two types of methods, we propose an ap-
proach through Inferring via Grounding Network Sampling
over Selected Instances. We first employ an embedding-
based model to make the instance selection and generate
much smaller candidate sets for subsequent fact inference,
which not only narrows the candidate sets but also filters
out part of the noise instances. Then, we only make infer-
ences within these candidate sets by running a data-driven
inference algorithm on the Markov Logic Network (MLN),
which is called Inferring via Grounding Network Sampling
(INS). In this process, we especially incorporate the similar-
ity priori generated by embedding-based models into INS to
promote the inference precision. The experimental results
show that our approach improved Hits@1 from 32.911% to
71.692% on the FB15K dataset and achieved much better
AP@n evaluations than state-of-the-art methods.
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1. INTRODUCTION
Automatically extracting facts from texts and construct-

ing large-scale knowledge bases (KB) have grown vigorously
in recent years. As a result, several typical knowledge bases
have been built, such as Freebase [2], Nell [6], YAGO [10],
and Knowledge Vault [7]. However, these extracted reposi-
tories are far from completion. To complete the constructed
KBs, according to the conclusion in [7], using an existing
knowledge base to complete itself is an important supple-
ment for automatic knowledge extraction to increase the
number of facts in KBs and cannot be substituted by other
techniques. Therefore, this paper focuses on the large-scale
knowledge base completion (KBC) and is committed to pre-
dicting the missing links in the existing knowledge base.

In general, according to the process of KBC, there are
two types of approaches: inference-based approaches and
embedding-based approaches.

First, inference-based approaches [22, 16, 24] usually em-
ploy logic formulas to infer the missing links among exist-
ing entities in a KB. They manually or automatically con-
struct various logic formulas and learn the weight of each
formula by sampling or counting groundings from existing
KBs. These weighted formulas are viewed as the long-range
interactions across several relations. The biggest limitation
of such approaches is the computation complexity. These
methods need to infer knowledge one by one, which implies
the computation complexity is linearly growing with the size
of candidate sets. However, usually, there are extremely
large candidate sets for some specific relations in large-scale
KBC, and in each candidate set, only one or a few are actu-
ally correct. For example, Barack Obama’s mother is miss-
ing in a KB, and we need to find out who Barack Obama’s
mother is. All persons or females in the KB are candidates,
but only one is the correct selection. The huge candidate set
brings inference-based approaches to an unacceptable run-
ning time. Although some methods have avoided this issue
through simple operations, such as only adding a small part
of false facts to testing sets [13, 23], this strategy is too coarse
to obtain precise inference results. On the other hand, there
are some noise candidates, which may violate formulas and
mislead inference algorithms. Therefore, existing inference
methods that rely on formulas cannot remove the noises by
themselves, and the noises may result in the decrease of the
performance.

In contrast, embedding-based methods [21, 5, 12, 4, 3, 26,
18] are not affected by huge candidate sets because they can
easily calculate similarity-based scores for each candidate
instance after learning representations of entities and rela-



Table 1: Several embedding approach results on FB15K

Embedding Model Hits@1(%) Hits@10(%)
Uns[4] 0.384 15.573
SE[5] 28.633 61.026
SME-lin[3] 29.807 68.386
SME-bil[3] 32.911 68.506
TransE[4] 29.401 73.71

tions. Unfortunately, embedding-based approaches do not
consider explicit logical semantics and cannot capture the
interaction between different relations well enough. Most of
them simply model the direct interaction between relations
by entity embeddings, apart from the long-range interac-
tion across several relations. Thus, their results are uni-
versally unsatisfactory. Table 1 shows several typical em-
bedding models’ Hits@1 and Hits@10 evaluations1 on the
FB15K dataset [4]. Although many embedding-based meth-
ods could obtain high ratings in Top N results (N>1), they
usually have low performance in Top 1 results (the more
useful metric than Top N in KBC).
To resolve the limitations of the above two types of meth-

ods, we propose a novel approach by inferring via grounding
network sampling over selected instances. We first employ
an embedding-based model to perform instances selection.
In specific, we employ TransE [4] to learn the representations
of entities and relations in the KB. We calculate similarity
scores between candidates and the input query, and we se-
lect Top-N instances to constitute a new smaller candidate
set for subsequent fact inference. In this way, we not only
filter out a part of the noise but also improve the efficiency
of the inference algorithm. Meanwhile, the corresponding
similarity scores are recorded and viewed as the prior to
supervise the subsequent inference. We perform logical in-
ference over selected instances by exploiting a data-driven
inference algorithm on a Markov Logic Network (MLN),
which is called Inferring via Grounding Network Sampling
(INS). INS could consider the long-range interaction across
several relations that were ignored in existing embedding-
based methods. Moreover, we improve INS and propose a
INS-ES algorithm (Inferring via ground Network Sampling
Merging Embedding Similarity Priori), which could consider
the probability of the transition between states when per-
forming network sampling for inference. In this way, the
recorded similarity scores can be incorporated naturally into
our model and the inference process can be supervised in
some way, which is beneficial for improving the inference
precision. In general, our method is an comprehensive com-
bination of two types of methods for knowledge inference,
and it could not only avoid the disadvantage of inference-
based methods (cannot handle large-scale knowledge bases)
but also could improve the weakness of embedding-based
methods (cannot obtain explicit logical semantics and can-
not sufficiently capture the interaction between different re-
lations). Experiments show that our approach has signifi-
cant improvement compared with state-of-the-art methods,
increasing Hits@1 from 32.911% to 71.692% on the FB15K.
The main contributions of this work are summarized as

follows.

• We propose employing embedding-based methods to
select instances and generate much smaller candidate

1Hits@n means the proportion of correct entities ranked in
the top N

sets for knowledge inference, which drastically reduces
the running time of inferring on large-scale KBs.

• We employ MLN to model the large-scale KB and pro-
pose an inferring algorithm INS to infer overselected
instances. In this way, the explicit semantics and long-
range interaction across different relations could be
captured.

• We specially incorporate the similarity scores gener-
ated by the embedding-based model into INS-ES to
promote the inference precision.

2. PRELIMINARIES
Knowledge Base is a structural information storage sys-

tem, e.g., Freebase, that usually contains entities, relations,
and facts. A KB can be viewed as a directed graphG(V,E,R).
The vertex set V contains all entities in KB, and the edge
set E contains all facts. R is the set of relations that can be
viewed as edge labels. We only consider binary relation in
this paper. r(h, t) is an example of a fact, and there is an
edge from h to t with label r.

Knowledge Base Completion is the prediction of addi-
tional true facts using only an existing database[23]. Given
a KB, noted as G(V,E,R), our goal is to predict a new

fact set E
′
with high precision and recall, and V and R re-

main unchanged. For example, 93.8% of persons included in
Freebase have no place of birth, and 78.5% of them have no
nationality[20]; KBC is committed to predicting them.

Embedding means representing each entity in KB as a
low-dimension numeric vector, and different dimensions of
the vector may implicitly represent different aspects of an en-
tity. Relations in KB usually have relevant representations,
such as vectors, matrixes and tensors. Entities interact un-
der a specific relation by performing arithmetical operations
between entity embeddings and relation’s representation.

3. FRAMEWORK
The sketch of our approach’s framework is shown in Fig-

ure 1. In general, it contains two main parts: (a) selecting
instances and (b) inferring instances.

Selecting instances ((a) in Figure 1). First, we choose
an embedding-based model to learn distributed representa-
tions for both entities and relations in the existing knowledge
base. For most of the existing embedding-based models, the
objective is always to make r(h, t) in the KB more simi-

lar than other r(h, t
′
) or r(h

′
, t) generated randomly. For

example, if BornIn(Barack Obama, Honolulu) exists in KB
but BornIn(Barack Obama, Washington) does not, (Barack
Obama, Honolulu) should be more similar than (Barack
Obama, Washington) under the relation BornIn. Second,
we employ learned representations of entities and relations
to calculate similarity scores for each instance and sort them
in descending order to pick the Top N to form a new smaller
candidate set. To the query Mother(Barack Obama, ?),
there is an entity set X , and each x ∈ X can replace ?
in Mother(Barack Obama, ?), where x can be any person
or female. Mother(Barack Obama, X ) denotes the entire
candidate set S, and we calculate all similarity scores for
each Mother(Barack Obama, x) to pick N instances with
the highest similarity scores for subsequent fact inference.

Inferring instances ((b) in Figure 1). In this com-
ponent, we employ MLN to model KB and infer selected
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Figure 1: The sketch of the framework: (a) selecting instances; (b) inferring instances; (c) incorporating similarity priori
generated by embedding-based methods.

instances on it. Before performing inference, we need to
learn the structure and weights for MLN. Specifically, we
employ the method in [24] to learn structure and weights
simultaneously by performing random walks. Then, we pro-
pose an inferring algorithm, called Inferring via Ground Net-
work Sampling or INS for short. INS performs random
walks on the Partial Order Graph (POG) to generate paths
and changes them to grounding formulas. For example,
for Mother(Barack Obama, Ann Dunham), we can obtain
paths such as[Barack Obama] → [Honolulu] →[Ann Dun-
ham] from random walks and turn it into a formula such as
BornIn(Barack Obama,Honolulu) ∧ LiveIn(Ann Dunham,
Honolulu) ⇒ Mother(Barack Obama, Ann Dunham). For
each selected instance, we count formulas in which the in-
stance occurs and treat counts of formulas as the instance
features. Then, instance features are used to calculate prob-
abilities for each instance. These probabilities can be viewed
as final predictions for outputting.
Furthermore, we replace the uniform transition probabil-

ity in random walks with the function of similarities calcu-
lated by the embedding model for the purpose of improv-
ing precision ((c) in Figure 1). Originally, each state ad-
jacent to the current state has an equal transition proba-
bility, so the inference is completely independent from the
previous instance selection. However, the similarity scores
obtained from the embedding-based method should not only
contribute in building candidate sets but should also be used
in the following inferring process as a priori. The improved
method employs a function from the similarity score to the
transition probability, noted as ptrans = f(ssim), where
ptrans means the probability of transition from one state to
an adjacent state in random walks and ssim means the sim-
ilarity score. For example, for Mother(Barack Obama, x), if
an state contains a selected instance, e.g., Ann Dunham,
we assign f(ssim(Mother(BarackObama,AnnDunham)))
to this state; otherwise, a small default probability is as-
signed to the adjacent state.

4. SELECTING INSTANCES BY USING EM-
BEDDINGS

To narrow candidate sets for subsequent fact inference, we
make instance selection for each entire candidate set S, for
example, Mother(Barack Obama, X). We propose employ-
ing embedding-based methods to do selection and describe
the process as follows.

We first choose an existing embedding-based model to
learn distributed representations for both entities and rela-
tions in the KB. Almost all embedding-based models embed
entities into a relatively low (e.g., 50) dimensional embed-
ding vector space Rk while representing relations in differ-
ent ways. Therefore, for a specific fact r(h, t), we repre-
sent h and t as vectors Eh and Et, respectively, and ab-
stract the representation of r as Er. Meanwhile, different
embedding-based models design different similarity-score-
functions fs(Eh, Et, Er) to measure the similarity of entities
under a specific representation of relations. For example, SE
[5] represents a relation as two matrixes Rlhs

r ∈ Rk×k and
Rrhs

r ∈ Rk×k and employs a kernel density estimation fol-
lowing the Gaussian kernel as the similarity-score-function;
SME [3] represents a relation as a matrix, and its similarity-
score-function is merged into a neural network; TransE [4]
represents a relation as a vector with the same dimension as
the entities and simply employs the negative 1-norm of the
vector (Eh + Er − Et).

Most of the embedding-based models design their objec-
tives to make fs(Eh, Et, Er) larger than other fs(Eh, Et

′ , Er)

or fs(Eh
′ , Et, Er), where r(h, t) exists in the KB but r(h, t

′
)

or r(h
′
, t) does not. Formally, we can define a uniform pair-

wise loss function as follows:

L =
∑

r(h,t)∈KB

∑
r(h

′
,t

′
)∈KB

′
r(h,t)

[γ + fs(r(h, t))− fs(r(h
′
, t

′
)]+

(1)

where [x]+ denotes the positive part of x. KB
′
r(h,t) is sam-

pled randomly from {r(h, t
′
)} ∪ {r(h

′
, t)}, and γ > 0 is a

margin hyperparameter.
Specifically, we employ TransE as the embedding-based

model, which has been proved to be effective for knowledge
base embedding [4]. We mainly apply TransE to generate
candidate sets for inference in our experiments. TransE [4]
is a simple and practical model, and it embeds all entities
and relations into the same k-dimensional vector space by
viewing r in r(h, t) as a translation. TransE thinks Et should
be the nearest neighbor of Eh+Er in the same vector space
and designs the similarity-score-function as fs(Eh, Et, Er) =
−|Eh + Er − Et|. In essence, TransE replaces the complex
matrix multiplications with a vector addition operation.

After the learning process, we obtain embeddings for en-
tities and relations in KB that contain semantic similarities.
For example, the embedding of Barack Obama is close to



the embedding of Ann Dunham under Mother relation. We
calculate similarity scores for each candidate r(h, t) by em-
ploying the similarity-score-function fs(Eh, Et, Er), which
is simple enough to be completed in a short running time.
Then, we sort the candidate instances in descending order
by their similarity scores and pick the Top N to form a new
smaller candidate set. For example, for the query Who is
Barack Obama’s mother, we calculate all fs(Mother(Barack
Obama, x)) and pick the Top 10 persons as a new candidate
set. We only require that Ann Dunham (the true answer)
be in the Top 10 regardless of its place, which can be han-
dled sufficiently by the existing embedding-based methods.
In this way, the subsequent logical inference would be con-
strained by a smaller selected instance space, and the com-
putational difficulty of inference-based methods is avoided.

5. INFERRING INSTANCES WITHIN CAN-
DIDATE SET

The network structure and logical interaction in KBs make
it natural to apply MLN to model KBs. Performing infer-
ence on MLN to predict missing links in KB is in accordance
with KBC. In this section, we describe details of the infer-
ence approaches based on MLN, which includes two parts:
1) using MLN to model the exiting knowledge base for the
task of KBC; 2) inferring overselected instances obtained
from embedding-based methods. In terms of inference-based
methods based on MLN, the huge candidate set is not the
only reason that may cause the expensive calculation. The
vast facts and the large grounding space also cause the un-
acceptable running time for both the learning and inferring
process. In particular, learning structures for MLN suffer
from a severe scale issue [15, 14, 13, 19, 11], which leads to
the result that MLN-based approaches are scarcely applied
to the task of large-scale KBC. We propose an inferring al-
gorithm via grounding network sampling, noted as INS. INS
employs the learning method in [24] to learn structure and
weights for MLN simultaneously and performs random walks
on the Partial Order Graph (POG) [1] instead of the orig-
inal KB, which treats paths as POG nodes. INS is able to
take all Horn clauses with the query at the place of both
head and body, which can capture more logical factors and
cover more useful formulas. As the INS extension, INS-ES,
short for Inferring via ground Network Sampling Merging
Embedding Similarity Priori, takes advantage of similarity
priori obtained from previous embedding-based models to
achieve a further promotion.

5.1 Modelling KBC by MLN
To obtain new knowledge from the existing KB, we re-

gard all facts in the existing KB as evidences and regard
candidate facts as queries. First of all, we need to model the
existing KB and candidate facts in a MLN, and then rank
candidates by their likelihood.
Markov logic can be viewed as a probabilistic extension

of first-order logic by attaching weights to formulas. Each
weight reflects the relative strength or importance of the
corresponding formula. Higher weight indicates greater re-
ward to a world that satisfies the formula. More formally,
let X be the set of all true facts in KBs, F be the set of
all first-order formulas in the MLN, wi be the weight associ-
ated with formula fi ∈ F , and Gfi be the set of all possible
groundings of formula fi; then the probability of a possible

world x is defined as:

Pw(X = x) =
1

Z
exp(

∑
fi∈F

wi

∑
g∈Gfi

g(x))

=
1

Z
exp(

∑
fi∈F

wini(x))

(2)

where Z =
∑

x
′∈X

exp(
∑

fi∈F wini(x
′
)) is the normalizing

constant, w represents a set of formula weights, g(x) equals
1 if g is satisfied and 0 otherwise, and ni(x) denotes the
number of true groundings of fi in x.

To model a knowledge base by MLN, we first view the
KB from the perspective of Markov Networks: Facts can be
true or false, so we treat all facts in the existing KB as bi-
nary random variables. We add them to a Markov Network
as nodes and set their truth values as true. All facts not
in the KB are not added to the Markov Network explicitly,
and only a small part of them are generated when necessary.
To represent interdependence between random variables, we
add undirected edges for each two facts that share one com-
mon entity. There are no hyperedges in Markov Networks.
When more than two nodes share one common entity, we
add edges for each two of them to represent the dependence
between two variables and use cliques 2 to represent depen-
dence between all of them. MLN simplifies the dependence
between more than two facts by splitting cliques into logical
formulas. MLN generalizes formulas by replacing entities
with variables and replacing facts with relation types. Fi-
nally, MLN learns weights for each conceptualized formula
by counting groundings and treats weight formulas as fea-
tures to predict missing links.

To obtain useful formulas and precise weights for one
specific query Q, we discriminatively learn structures and
weights of the MLN for Q, which means only facts under Q
are treated as queries. Therefore, we care about the proba-
bility of the possible world only containing the specific query
facts and treat other facts as evidence. We note the query
as Y and compute its conditional probability given evidence
X as follows:

Pw(Y = y|X = x) =
1

Zy
exp(

∑
fi∈FY

wini(x, y)) (3)

Different from Equation (2), each fi in FY must involve
the query Y , and groundings of fi are counted when the
Y is set as true and false, respectively. The normalizing
constant Zy aggregates the probabilities for all possible y,

and Zy =
∑

y
′∈Y

exp(
∑

fi∈FY
wini(x, y

′
)).

For brevity, only non-recursive formulas are considered,
and all queries become independent after evidence is given.
The normalizing constant Zy can be simplified as the sum of
two parts when Y = 1 and Y = 0. Therefore, for one specific
grounding query Yj , its conditional probability is simplified
as follows:

Pw(Yj = yj |X = x) =

exp(
∑

fi∈FYj
wini(x, y[Yj=yj ]))

exp(
∑

fi∈FYj
wini(x, y[Yj=0])) + exp(

∑
fi∈FYj

wini(x, y[Yj=1]))

(4)

2en.wikipedia.org/wiki/Clique (graph theory)



where ni(x, y[Yj=yj ]) is the number of true groundings of the
ith formula when all the evidence facts in X and the query
Yj are set to their truth values. Analogously, ni(x, y[Yj=0])
and ni(x, y[Yj=1]) are the numbers when Yj is set as 0 and
1, respectively.
For each MLN model under a specific query relation Q,

we employ the algorithm described in [24] to learn structure
and weights discriminatively. Algorithm [24] performs ran-
dom walks starting from a number of initial nodes sampled
randomly and collects paths constituted by linking entities
during random walks. In this process, we generate ground-
ing formulas by replacing each two adjacent nodes in a path
with facts containing them in the existing KB. Therefore,
one path obtained from random walks can be changed to var-
ious grounding formulas because there are possibly several
facts under different relations between two adjacent entities.
After heuristic pruning, we only keep grounding formu-

las containing a true fact under Q, and conceptualize them
by replacing entities by variables. For example, the ground-
ing formula BornIn(Barack Obama,Honolulu) ∧ LiveIn(Ann
Dunham,Honolulu) ⇒ Mother(Barack Obama, Ann Dun-
ham) is conceptualized to BornIn(x1, x2) ∧ LiveIn(x3, x2)
⇒ Mother (x1, x3). For one specific fact under Q, all for-
mulas attached to it are counted as its features, and the fact
with counts of formulas are used to learn formula weights
by Equation (4).

5.2 Inferring Over Selected Instances
For a specific query relation Q, we have obtained candi-

date sets and an MLN learned under Q. We exploit an in-
ferring algorithm to independently calculate the probability
of each selected instance being true, called INS ( Inferring
via ground Network Sampling). Additionally, we will de-
scribe its extension, INS-ES (Inferring via ground Network
Sampling Merging Embedding Similarity Priori).

5.2.1 INS algorithm
INS is a data-driven algorithm and follows 4 steps: Per-

forming random walks on POG; generating grounding for-
mulas; counting formulas for instances; calculating probabil-
ities for each instance. Algorithm 1 shows the detail of INS,
where KB is the training set, C is the candidate fact set,
Q is the query relation, F is the formula set with weights
learned previously, S is the seed set, Fp is the grounding
formula set, q is one query in C, and QDI is a map from
query to data instance.
First, INS performs random walks on the POG to gener-

ate entity paths. We collect all entities occurring in selected
instances under Q to form a set of initial nodes by employing
each entity to build a single node path. Then, we perform
random walks from each initial node to obtain paths of en-
tities. There are formulas learned with a query at the place
of body. For example, for BornIn(x1,x2) ∧ LiveIn(x3,x2)
⇒ Mother(x1,x3), when BornIn or LiveIn is treated as the
query relation Q, we regard it as a formula with the query
in body. To obtain this type of formula, we assume all can-
didates are true and put them in the existing KB before
performing random walks because the truth values of all
candidates are unknown, and INS randomly walks to them
only when they exist in the KB. The above process is pre-
sented in Line 1 to 7 of Algorithm 1; Line 5 to 7 is the core
strategy of random walks which is detailed in Section 5.2.2.

Second, INS generates grounding formula bodies from each
sampled path: We first transform adjacent nodes into ground-
ing facts, which only occur in the existing KB. Then, to add
heads to these formulas, we link the head and tail of the
path with several possible relations, which can be true or
false. After obtaining grounding formulas, all of them are
conceptualized to generate a great deal of conceptualized
formulas, which never have to be learned or pruned, and
INS simply ignores them. Line 8 to 15 shows the generating
and conceptualizing process.

Third, all formulas that remain are counted as features
for a specific selected instance r(h, t) that occurs in these
formulas. INS travels all instances in the map of QDI and
finally employs Equation (4) to calculate the probability for
each candidate instance, which corresponds to Line 16 to
17. In particular, for some selected instance without any
formulas, their scores are set to 0 directly.

Algorithm 1: INS (KB, C, Q, F).
Input: KB, C, Q, F
Output: Probabilities for each instance in C.
1: Set q ∈ C to true, add them to KB.
2: QDI ← building pairs <q, empty instance>
3: S ← entities in q, q ∈ C.
4: Foreach s ∈ S:
5: Initialize Path State p from s.
6: Repeat Until MaxIterator:
7: p ← RandomToNextPathState(p).
8: Fp ← GenerateFormulas(p).
9: Foreach fp ∈ Fp.
10: If q in fp
11: Conceptualize fp.
12: If fp ∈ F
13: Add fp truth counting to QDI(q)
14: Else Ignore fp.
15: Else Ignore fp.
16: Foreach q ∈ C:
17: Calculate P(q|KB,F) by q and weights of

F using Equation (4)

5.2.2 Grounding Network Sampling
We apply grounding network sampling to obtain entity

paths uniformly and count formulas for each selected in-
stance. To sample grounding network, we perform random
walks on a POG.

POG is a directed graph and its nodes are subgraphs in the
KB which is viewed as a graph. For KBC, we simplify it by
only considering simple paths but not subgraphs. Edges in
POG can be divided into three categories: super-edge, sub-
edge and restart-edge. We take an example to explain them:
There are two nodes, n1 =[Barack Obama]→[Honolulu] and
n2 = [Ann Dunham]→ [Barack Obama]→ [Honolulu]. The
edge from n1 to n2 is a super-edge, while the edge from n2

to n1 is a sub-edge, and edges from n1 or n2 to the initial
node are restart-edges, where the initial node can be [Barack
Obama] or [Honolulu]. We make an further explanation for
three types of edges, and they can be viewed as three opera-
tions: (1) Add one node to the existing path, e.g., add [Ann
Dunham] to n1 at the far left; (2) Remove one node from
the existing path, e.g., remove [Ann Dunham] from n2; (3)
Restart from the initial node which is determined before the
random walk starting, e.g., both n1 and n2 can restart from
[Barack Obama] which is in queryMother(Barack Obama,x).



To achieve a uniform distribution for all the simple paths,
we exploit ideas from Metropolis-Hastings (MH) algorithm
to perform random walks on the graph [1, 17]. Note the sta-
tionary distribution of node u as π(u). At the current state
Xt = u, the next state Xt+1 is proposed with a proposal
probability Q(u, v)(u ̸= v). The proposed transition to v is
accepted with an acceptance probability A(u, v), that is,

A(u, v) = min{1, π(v)Q(v, u)

π(u)Q(u, v)
} (5)

and rejected with probability 1 − A(u, v) in which case the
state Xt+1 remained unchanged.
The purpose of random walk on POG is to perform an

unbiased graph sampling for MLN’s structure and weight
learning, so INS proposes that the target stationary dis-
tribution should be set to the uniform distribution π =
(1/n, 1/n, ..., 1/n), where n = |Nnext| represents the num-
ber of possible next states. Corresponding to super-edge and
sub-edge, we also divide Nnext into N+ and N−, and denote
d+(u) = |N+(u)| and d−(u) = |N−(u)|. Additionally, INS
sets a fixed probability of restarting noted as γ. Exploring
effect of adjusting γ to result is beyond focus of this paper,
so we directly set γ = 0.35 in our experiment. The proposal
probability is defined as follows:

Q(u, v) =


γ , if restart

1− γ

2d+(u)
, if v ∈ N+(u)

1− γ

2d−(u)
, if v ∈ N−(u)

(6)

This process corresponds to the RandomToNextPathState(p)
in Algorithm 1 (Line 7).

5.2.3 INS-ES algorithm
To incorporate the similarity a priori of candidates ob-

tained from the previous embedding method, we exploit
another inferring algorithm, noted as INS-ES. INS-ES re-
places the uniform transition probability with the function of
similarity scores obtained from the embedding-based method.
It benefits from the framework of the MH algorithm, which
employs a type of proposal probability Q(u, v) to obtain a
desired stationary distribution π for random walks. Q(u, v)
can be viewed as a state transition probability of an arbi-
trary irreducible Markov chain on the whole state space N ,
with constraints: Q(u, v) > 0 if and only if Q(v, u) > 0,
and Q(u, v) = 0 for all (u, v) /∈ E(u ̸= v), where E is
the set of edges [17]. In INS, it assigns equal value to
Q(u, v), v ∈ Nnext(u), which can achieve an unbiased graph
sampling. However, now, we expect to utilize similarity a
priori obtained from embedding-based methods in random
walk process. We assign distinguishing Q(u, v) to different
adjacent nodes to break the unbiased graph sampling. This
strategy can guide random walks to nodes containing se-
lected instances with larger probabilities than others. More
specifically, the instance, being at the more frontal position
in the candidate set, is more likely to be visited.
In the previous step of making the instance selection, each

selected instance has been assigned a similarity score for
ranking. The embedding-based methods treat the similarity
scores as the final results for KBC. Although Table 1 shows
that these results are insufficient for the task of KBC, we
believe there are still some priori knowledge that imply that
one instance with a higher score is more likely to be true.

To replace the uniform probabilities by similarity priori,
we just need to reassign transition probabilities only for
super-edges and keep probabilities unchanged for sub-edges
and restart-edges. During random walks, we use entities
added to paths to represent candidate states for simplic-
ity. When the current state is u and we expect to travel to
the next state, |N+(u)| includes all entities adjacent to two
marginal entities in the current path. For example, when
the current state contains a path, n1 = [BarackObama] →
[Honolulu], N+(n1) is composed of all entities adjacent to
[Barack Obama] or [Honolulu], and we assign diverse tran-
sition probabilities to states in N+(n1). We split N+(n1)
into two parts: N+cand(n1) and N+usal(n1). N+cand(n1)
represents the subset, in which nodes all come from selected
instances, and other nodes form N+usal(n1). We assign dis-
tinguishing Q(u, v) to entities in N+cand(u) and assign de-
fault Q(u, v) for N+usal(u) as follows:

Q(u, v) =


(1− γ)f(scorev)

2Z
, v ∈ N+cand(u)

1− γ

2Z
, v ∈ N+usal(u)

(7)

where Z is a normalizing constant and Z = |N+usal(u)| +∑
j∈N+cand

(u) f(scorev), scorev is the similarity score of

Q(u, v) and f(scorev) is a function to map similarity to
probability. We design a heuristic equation for f(scorev):

f(scorev) = λ · scorev
|score|max

+ 1 (8)

To normalize scorev, we first divide it by |score|max, which
is the maximum absolute value of the similarity score under
Q. Then, multiply by a coefficient λ, which can adjust the
strength of the influence from the embedding priori. With
the increase in λ, an adjacent node that occurs in a selected
instance has larger and larger transition probability from
the current state, which means the strength of the embed-
ding similarity priori is stronger and stronger. However,
an overlarge λ means that other nodes that never occur in
any selected instance are ignored easily and are never vis-
ited when λ is infinite. We add 1 to the function as a base
value, so that the candidate entity with scorev = 0 has the
same transition probability as ordinary ones. When λ = 1,
f(scorev) is always 1, and INS-ES degrades into INS.

6. EXPERIMENTS AND EVALUATIONS
We perform all experiments on an FB15K dataset, which

is sampled from Freebase [4]. It contains 592,213 true facts
with 14,951 entities and 1345 relation types. It has been
split randomly into training, validation, and testing sets.
These sets only contain true facts. For the learning process,
both embedding-based methods and inference-based meth-
ods have their own strategies to generate false facts. How-
ever, for testing, false facts are uniformly generated for all
methods as described in [4]. For each true fact r(h, t) in
the testing set, the tail t is replaced by every entity in the
existing KB, and these are mixed with the true one, forming
the Left Testing Subset. Then, the head h is replaced in the
same way, noted as the Right Testing Subset.

Two parts of experiments are performed:

• Explore the effectiveness of embedding-based methods
on KBC and discuss which embedding-based method
performs best on instance selection, which is important



for subsequent logical inference based on our INS and
INS-ES algorithms.

• Explore the effectiveness of INS-ES algorithm for KBC.
We perform a comparison between our approaches and
several state-of-the-art methods, including embedding-
based methods and inference-based methods.

All following experiments are performed by a single thread
on the servers with 24 Intel Xeon E5-2620 clocked at 2.00GHZ,
with 64GB RAM, running Linux 2.6.32.

6.1 Instance Selection
We compare several embedding-based methods with a tra-

ditional approach to selecting different sizes of candidate
sets. Hits@n can be viewed as the true facts coverage in
n-size candidate sets because we believe that the more the
true facts are covered, the better the selection is.

6.1.1 Compared Methods
BFS is a traditional approach based on an adjacent hy-

pothesis, which means an entity t being adjacent or reach-
able via one skip from h implies r(h, t) is more likely to be
true. BFS is treated as a baseline.
Embedding-based methods described previously, SE [5],

SME[3](linear and bilinear), TransE [4], are as compared.
As a baseline for TransE, Unstructured (Uns, for short),
which is a naive version of TransE that ignores the effect of
various relations, is treated as a baseline as well.

6.1.2 Set up
We implement BFS in java by ourselves, but for Uns,

SE, SME-lin, SME-bil and TransE, we use the codes on
TransE’s homepage3 and keep the default setting for pa-
rameters. Similar to evaluation methods in [4, 26, 18], we
evaluate Left Testing Subsets and Right Testing Subsets for
each true fact r(h, t) in testing KB. There may be other
true facts in Left and Right Testing Subsets in addition to
r(h, t), but previous evaluation methods ignore them. For
example, in the Left Testing Subset of r(h, t), there is a

true fact r(h, t
′
) also occurring in testing the KB, and we

should treat it the same as r(h, t) when calculating Hits@n

and AP@n. Our evaluation considers such r(h, t
′
) in testing

the KB, so that the Hits@10 value is different from those
reported in [4, 26, 18].

6.1.3 Results
Figure 2 shows that, except for Uns, all embedding-based

methods are better than BFS, the traditional approach. It
indicates that most embedding-based methods have advan-
tages on instance selection.
In Figure 2, the best Hits@1 is 32.911%, achieved by SME-

bil, but after n increases to 10, TransE begins to outper-
form the other methods. In addition, TransE is the simplest
method, and its running time is the shortest. Therefore,
TransE is the most suitable method for generating smaller
candidate sets for the subsequent logical inference.
TransE’s Hits@50 has exceeded 90%, and Hits@100 is

94.568%, which is sufficient for subsequent fact inference.
On the other hand, when n>100, all methods’ Hits@n grad-
ually approach 100%, and the performance of BFS starts to

3https://everest.hds.utc.fr/doku.php?id=en:transe

reach values that are close to the performance of embedding-
based methods. The advantages of embedding-based meth-
ods disappear with the increase in n, and too large candidate
sets would slow down the subsequent inferring algorithm.
Therefore, we set the size of candidate set to 100 for subse-
quent experiments.

6.2 Knowledge Base Completion
In this subsection, we compare our approaches with state-

of-the-art methods including embedding-based methods and
inference-based methods. Additionally, we explore the ef-
fect of similarity obtained a priori by the embedding-based
method by comparing INS-ES with INS.

We employ Hits@n and AP@n as evaluations for the fol-
lowing experiments. Unlike instance selection, we employ
Hits@1 as the most important metric because a good Hits@n
with a large n cannot indicate that an approach has a good
performance. AP@n is used as the other metric for the sup-
plementary of Hits@n. AP@n can give a reasonable evalua-
tion for Q(h, ?), which has more than one true answer.

6.2.1 Compared Methods
Embedding-based methodsWe employ Uns, SE, SME-

lin, SME-bil and TransE to represent embedding-based ap-
proaches in the same way as the methods in the experimen-
tal subsection of instance selection. However, we treat the
output from embedding-based models as the final results.

Inference-based methods There are many methods that
belong to this category. Most of them infer instances through
logical formulas, but few of them can be used in KBC for
their computation complexity. Here, we employ the INS al-
gorithm to infer potential facts in the testing set and treat
it as representative of inference-based methods.

Our approaches We apply the INS algorithm to infer
overselected instances obtained from different embedding-
based models. As Embedding-based methods, we choose
Uns, SE, SME-lin, SME-bil and TransE to select instances
and refer to the methods inferring over them as Uns-INS, SE-
INS, SME-lin-INS, SME-bil-INS, TransE-INS, respectively.

Our approach with a priori We continue to expand
TransE-INS by incorporating the similarity generated a pri-
ori by the embedding-based model into INS, noted as TransE-
INS-ES. As an important super-parameter of TransE-INS-
ES, λ in (in Equation 8) controls the strength of the effect
of the similarity priori. We use TransE-INS-ES-λ to denote
our method with different λ, where n denotes different λ.

6.2.2 Set up
We keep the default parameter setting for all embedding-

based methods as in the instance selection. The number
of selected instances is set to 100. For the INS algorithm,
we set the maximum formula length as lf = 5. The size of
the initial node random walk starting from Mrandom is 500.
The random walk times from one starting point T is 50 for
learning and 1000 for inference. The restarting probability
in random walk Prestart is 0.35. The maximum number of
iterations of the weight learner Mlearner is 100, and the L2-
norm parameter C is 1. We employ the TransE-INS with
1000-size candidate sets to approximate INS because it can-
not run completely to infer each instance directly, which is
also the main reason that we make instance selection before
inference. The implement is available online.4

4https://github.com/ZhuoyuWei/fpMLN
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Figure 2: Hit curves of various methods for instance selection that generates candidate sets with different sizes. The range of
n in the right graph is [0,1000], and the left graph is an enlarged view of the part at [0, 100].

Table 2: AP@n of various methods on FB15K

Methods Hits@1(AP@1) Hits@10 AP@2 AP@3 AP@5 AP@7 AP@10
Uns 0.00384 0.15573 0.01305 0.01747 0.02128 0.02336 0.02571
SME-bil 0.32911 0.68506 0.32119 0.3208 0.32655 0.32951 0.33348

2.a SME-lin 0.29807 0.68386 0.29136 0.29011 0.29426 0.29805 0.30102
SE 0.28633 0.61026 0.28015 0.27996 0.28194 0.28480 0.28737
TransE 0.29401 0.73710 0.30263 0.30835 0.31691 0.32099 0.32529

2.b INS∗ 0.32540 0.51917 0.30472 0.29668 0.28869 0.28519 0.28232
Uns-INS 0.32899 0.39388 0.30518 0.29349 0.28302 0.28102 0.28288
SME-bil-INS 0.69212 0.83464 0.67224 0.66194 0.65233 0.65051 0.65483

2.c SME-lin-INS 0.68143 0.82478 0.65615 0.64645 0.63599 0.63568 0.64042
SE-INS 0.67333 0.79938 0.65196 0.64158 0.63029 0.62823 0.63236
TransE-INS 0.69303 0.84894 0.67540 0.66566 0.65781 0.65550 0.66114

2.d TransE-INS-ES4.5 0.71692 0.86633 0.70146 0.69320 0.68386 0.68100 0.68557

6.2.3 Ours method vs. State-of-the-art methods
Table 2 shows the results of the comparison between our

methods and state-of-the-art methods for KBC. From the
results, we can obtain the following observations.
1) Our methods (except Uns-INS) in Table 2.c and 2.d

achieve performance improvement over other methods in Ta-
ble 2.a and 2.b. This indicates that our method based on
Inferring via Grounding Network Sampling over Selected In-
stances is effective for the task of KBC.
2) Our methods, which perform inference after select in-

stances by embedding-based methods in Table 2.c, all out-
perform only the corresponding embedding-based models in
Table 2.a. For example, TransE’s Hits@1 is 29.401%, which
was the state-of-the-art method for KBC, while TransE-INS
promotes Hits@1 to 69.303%, and TransE-INS also achieves
much higher Hits@10 and AP@n. This proves the effective-
ness of inferring instances following instance selection by
embedding-based models, and the significant improvement
is derived from the fact that our approaches consider explicit
logical semantics and interaction between different relations,
which is ignored in embedding-based models.
3) Our methods, which first make instances selection and

generate small-scale candidate sets for INS in Table 2.c, out-
perform only INS in Table 2.b. The reason is that there are
some noise instances, which may mislead the INS algorithm,
but they are filtered by instance selection via embedding-
based methods. It further indicates that embedding-based
models can capture implicit factors that are ignored in in-
ference methods, and both of these two methods cannot be
substituted by each other.
4) Our extensional method, which incorporates the simi-

larity generated a priori by the embedding-based model into
INS in Table 2.d, outperforms our methods without the sim-
ilarity priori in Table 2.c. This proves that the similarities

obtained from embedding-based methods are helpful for pro-
moting the inference precision as a priori.

6.2.4 Detailed Discussion
In this part, we engage in a detailed discussion on our

proposed approaches.
Effect of the candidate set size We explore the effect

of the number of instances for subsequent fact inference,
and we employ TransE-INS as the experimental method.
Figure 3 shows the results. The horizontal axis represents
the number of selected instances, noted as N . The verti-
cal axes of (a), (b) represent Hits@n, AP@n, respectively.
Hits@1,Hits@10 and Hits@100 are presented in Figure 3.a.
The best Hits@1 occurs at N=50, while the best Hits@10
and Hits@100 occur at N=200. When N>200, the perfor-
mance keeps decreasing with an increasingN , and the AP@n
in Figure 3.b has the similar appearance. This indicates that
making instance selection before inferring to generate small-
scale candidate sets is an effective mechanism, which not
only narrows the inferring space but also filters out part of
the noise.

Effect to running time Figure 3.c shows the running
time of performing inference, which indicates the compu-
tation complexity of inference is linearly growing with the
increase in the candidate set size. This proves that inference
on large-scale KBs without first reducing candidates would
take an extremely long period of time. Therefore, selecting
instances to narrow the inferring space in our approach is
necessary and ensures that the inferring algorithm is com-
pleted in a short time.

Effect of the similarity priori We are going to prove
the effectiveness of incorporating the similarity priori gener-
ated by the embedding-based model into INS by comparing
TransE-INS with several TransE-INS-ES with different λ.
Figure 4 shows the results of INS and INS-ES over 100 se-
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Figure 3: Hits@n, AP@n and Time curves of TransE-INS with different size candidate sets.

Figure 4: Comparing TransE-INS and TransE-INS-ES with different λ

lected instances generated by TransE. The horizontal axes
represent λ, and the vertical axes in six sub-figures represent
AP@1 (equal to Hits@1/100), AP@2, AP@3, AP@5, AP@7,
AP@10. To reduce the randomness and highlight the effect
of similarity priori, this experiment is repeated 5 times, and
we report the mean and variance of AP@n. Regardless of
the λ, INS-ES outperforms INS on Hits@1 and AP@n, and
the best performance of INS-ES is achieved when λ = 4.5.
This indicates that incorporating the similarity priori into a
random walk process can achieve better performance. The
curves also show that the performance is becoming better
with the effect of similarity priori increase until λ = 4.5,
and then the performance starts to become worse. The per-
formance decrease may be caused by an excessively strong
effect of similarity priori easily ignoring the nodes, which
never occurs in selected facts, but these nodes may be ac-
companied by useful information.

7. RELATED WORK
Our work is related to two main categories of KBC meth-

ods: embedding-based approaches [21, 5, 12, 23, 4, 3, 26,
18] and inference-based approaches [22, 16, 24].
Nearly all embedding-based approaches represent entities

as low dimensional vectors, but the representation for rela-
tions is multifarious. SE [5] represents each relation as two
matrixes to capture the left and right interaction with one

entity. RESCAL [21] represents relations as only one matrix
and employs the product of three elements in a fact as sim-
ilarity. SME[3] also represents relations as one matrix but
employs an energy function to transform the interaction be-
tween the relation and entity. In the simplest way, TransE
[4] represents relations in the same vector space as entities.
The extensions of TransE, TransH [26] and TransR [18] also
represent relations as low dimensional vectors, but there are
differences between them: The former interprets a relation
as a translating operation on a hyperplane to address one-
to-many, many-to-one, and many-to-many relations, but the
latter represents entities and relations in distinct spaces and
projects entities from entity space to relation space. Tranc
[9] and [12] take 2-way interactions between one entity and
one relation into account. As a more complicated model,
NTN [23] represents relations as tensors and matrixes si-
multaneously. However, these embedding-based methods do
not consider explicit logical semantics and cannot sufficiently
capture the interaction between different relations. Our ap-
proach applies a subsequent fact inference to overcome these
shortages.

Inference-based methods usually view a KB as a graph,
and seek, count or sample sub-structures (e.g., paths, sub-
graphs) to judge or calculate probability for a new fact.
There are some typical inferring methods for KBC: ARM
(association rule mining) [8], ILP (inductive logic program-
ming) [25], and MLN [22]. They are all limited by the large



size of the candidate sets, but our approach speeds up MLN
and employs it as a subsequent inference model for its high
precision. MLN is an appropriate model for KBC because
it applies weighted formulas to capture long-range interac-
tion across several relations. The main issue of MLN is the
computation complexity of the learning structure and infer-
ring; thus, the methods based on MLN cannot be extended
to large-scale knowledge bases. [15, 14, 13, 19, 11] are all
proposed methods to speed up the learning and inferring
process, but most of them still need grounding facts or for-
mulas, so that the issue of computation complexity has still
not been adequately addressed. PRA [16] employs random
walks, but unlike our approach, it simplifies MLN by only
keeping the horn clause with the query at the place of head.
A promising algorithm is proposed by Sun [24], which is also
a data-driven algorithm based on random walks that learns
structure and weights simultaneously. Our approach takes
advantage of this and employs a similar mechanism for in-
ference and replaces the uniform transition probability for
promotion.

8. CONCLUSIONS
We proposed employing embedding-based models to make

instance selection for subsequent fact inference and exploited
INS and INS-ES (incorporating embedding a priori) algo-
rithms to infer facts on MLN, which improved Hits@1 from
32.911% to 71.692% for the FB15K dataset.

9. ACKNOWLEDGMENTS
The authors are supported by the National High Tech-

nology Research and Development Program of China (No.
2015AA015402) and the National Natural Science Founda-
tion of China (No. 61272332, 61202329, 61303179 and 613031
72).

10. REFERENCES
[1] M. Al Hasan and M. J. Zaki. Output space sampling

for graph patterns. In VLDB, 2009.

[2] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. In
SIGMOD, 2008.

[3] A. Bordes, X. Glorot, J. Weston, and Y. Bengio. A
semantic matching energy function for learning with
multi-relational data. Machine Learning, 2013.

[4] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston,
and O. Yakhnenko. Translating embeddings for
modeling multi-relational data. In NIPS, 2013.

[5] A. Bordes, J. Weston, R. Collobert, Y. Bengio, et al.
Learning structured embeddings of knowledge bases.
In AAAI, 2011.

[6] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.
Hruschka Jr, and T. M. Mitchell. Toward an
architecture for never-ending language learning. In
AAAI, 2010.

[7] X. L. Dong, K. Murphy, E. Gabrilovich, G. Heitz,
W. Horn, N. Lao, T. Strohmann, S. Sun, and
W. Zhang. Knowledge vault: A web-scale approach to
probabilistic knowledge fusion. In KDD, 2014.
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