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Abstract—Knowledge graph completion, one of the most
important research questions in knowledge graphs, aims at
predicting missing links in a given graph. Current mainstream
approaches adopt high-quality embeddings of entities and rela-
tions of the graph to improve their performances. However, it
is not easy to devise a universal embedding learner that can fit
various scenarios. In this paper, we propose a general-purpose
framework which can be employed to improve the performance
of knowledge graph completion. Specifically, given an arbitrary
knowledge graph completion model, we first run the original
model to get a ranked entity list. Then, we combine the query
and the top ranked entities with attention mechanism, re-rank
all these entities by feeding the combined vector into a neural
network. The proposed re-ranking phase can be conveniently
added to a variety of models to improve their performance
without substantial modification. We conduct experiments on four
datasets: WN18, FB15k, WN18RR, and FB15k-237. We choose
TransE, TransH, TransD, DistMult, and ANALOGY as base
models. Experiments on these datasets and models validate the
effectiveness of the proposed re-ranking framework. We further
explore the influence of the number of top ranked entities used in
the re-ranking phase. We also test other attention mechanism to
determine the most effective one, and found that vanilla attention
mechanism can balance accuracy and complexity.

Index Terms—knowledge graph, link prediction, attention
mechanism

I. INTRODUCTION

A knowledge graph is a large-scale knowledge base storing
relational knowledge between entities in a graph structure.
It provides knowledge foundation for a variety of artificial
intelligence applications, such as language modeling[1], ques-
tion answering[2] and machine reading comprehension[3].
However, even the most massive knowledge graph suffers from
the problem of incompleteness that many links are missing
in the graph, which harms the downstream applications[4].
Knowledge graph completion is an important task that aims
to address this problem by predicting missing links in a given
knowledge graph.

Most models in the literature try to improve completion
performance by proposing new representation learning models
to learn more expressive embedding for entities and relations
[5], [6], [7], [8], [9], [10]. On the one hand, this leads to
models with increasing complexity, such as ConvE [10] and
CapsE [11]. On the other hand, different models may have
different performance on different datasets, thus it is hard to

propose new models to improve performance on a specific
dataset in practice.

However, proposing new models may not be the only way to
achieve better performance. According to experimental results
on existing models, we have noticed that the value of hits@10
metric is quite high. In the knowledge graph completion task,
given an entity and the relation in a specific triple (head
entity, relation, tail entity), we rank all the entities with
their probabilities to be the missing entity. Hits@10 metric
indicates the percentage of correct entities among the top
10 ranked entities. Taking TransE [5] and DistMult [8] as
examples, Table I illustrates the experimental results, it shows
that hits@10 can achieve up to 0.9 on dataset WN18, 0.6
on dataset FB15k, and 0.4 on datasets WN18RR and FB15k-
237. Thus, taking advantage of the top ranked entities may
enable the model to be aware of more information and bring
improvements to existing models.

TABLE I: Hits@10 results of model TransE and DistMult on
datasets WN18, FB15k, WN18RR and FB15k-237.

Dataset Model Hits@10

WN18 TransE [5] 0.89
DistMult [8] 0.94

FB15k TransE [5] 0.47
DistMult [8] 0.57

WN18RR TransE [5] 0.41
DistMult [8] 0.32

FB15k-237 TransE [5] 0.44
DistMult [8] 0.42

In this paper, we explore the effectiveness of a re-ranking
framework, which can be treated as a post-process on the
ranking results of existing models. Post-processing is a widely
adopted technique in machine learning and data mining, which
is simple but can bring improvements to the original models.
The proposed framework does not aim to devise any novel
embedding learner, otherwise, for a specific model, we first
get an initial ranking result based on it, then re-rank all the
entities based on the combination of query and top ranked
entities with attention mechanism.



Model Ent. & Rel. Embedding Score Function

Translation Models

TransE [5] vh, vt ∈ Rd, vr ∈ Rd −‖vh + vr − vt‖1/2
TransH [6] vh, vt ∈ Rd, vr, wr ∈ Rd −

∥∥(vh − wT
r vhwr) + vr − (vt − wT

r vtwr)
∥∥2
2

TransR [12] vh, vt ∈ Rd, vr ∈ Rk,Mr ∈ Rk×d −‖Mrvh + vr −Mrvt‖22
TransD [7] vh, vt, wh, wt ∈ Rd, r, wr ∈ Rk −

∥∥(wrwT
h + I)vh + vr − (wrwT

t + I)vt
∥∥2
2

Bilinear Models

RESCAL [13] vh, vt ∈ Rd, Mr ∈ Rd×d vTh Mrvt
DistMult [8] vh, vt ∈ Rd, vr ∈ Rd vTh diag(vr)vt

ComplEx [14] vh, vt ∈ Cd, vr ∈ Cd Re(vTh diag(r)vt)
ANALOGY [9] vh, vt ∈ Rd, Mr ∈ Rd×d vTh Mrvt

Neural Network Models

NTN [15] vh, vt ∈ Rd, Wr ∈ Rd×d×k, Vr ∈ Rk×2d, vr, br ∈ Rk vTr f(vTh Wrvt + Vr[vh; vt] + br)
ConvE [10] vh, vt ∈ Rd, vr ∈ Rd f(vec(f([vh; vr] ? ω))W )vt

ConvKB [16] vh, vt ∈ Rd, vr ∈ Rd concat(f([vh, vr, vt] ? Ω))w

CapsE [11] vh, vt ∈ Rd, vr ∈ Rd ‖capsnet(f([vh; vr; vt] ? Ω))‖22

TABLE II: Score functions of various models. vh, vr, vt in table are embeddings of head entity h, relation r, and tail entity t
respectively, while ωr,Mr, Vr, br are relation-specific parameters.

The proposed re-ranking framework can be easily applied
to existing models to further improve their performances,
according to our experiments on five existing models through
four datasets. We also analyze the influence brought by the
different number of top ranked entities we used for re-ranking.
We further explore the performance of multi-head attention
mechanism but find that it cannot bring much improvements.
In pratice, vanilla attention mechanism can balance the accu-
racy and complexity better.

II. BACKGROUND

In knowledge graph completion task, an entity is missing in
each triple (head entity, relation, tail entity). Given the other
entity and the relation, knowledge graph completion aims to
predict the missing entity.

Most approaches for knowledge graph completion con-
sist of two phases: embedding learning and ranking. In the
embedding learning phase, embeddings in continuous low-
dimensional space are learned for entities and relations to
embody their latent semantic features. In the ranking phase,
each entity provides a candidate triple by replacing the missing
entity, scores are calculated for these triples based on the score
function, finally, these scores are ranked to generate the most
possible missing entity.

The key to both phases in knowledge graph completion is a
score function f : (Rd,Rd,Rd) → R, it assigns each triple a
score based on entity and relation embeddings, where d is the
dimension of embeddings. After training, scores are learned
for triples. In the embedding learning phase, embeddings for
entities and relations are learned by maximizing the scores
of triples in the knowledge graph, while minimizing scores of
triples out of the knowledge graph. In the ranking phase, triples
are ranked by scores in descending order. Most approaches
improve the performance of completion by proposing new
score functions, such as TransE[5], TransH[6], TransR[12],
DistMult[8], ANALOGY[9], ConvE[10], and CapsE[11].

These methods can be divided into several categories based
on their score functions. Translation models measure plausibil-
ity of triples as the distance between two entities with respect

to specific relations[17]. Among them TransE[5] is a classical
model. It represents all triples (h, r, t) into the same low
dimensional space, and measure the distance as h+r−t. Since
TransE has trouble dealing with complex relations like 1-to-N,
N-to-1, and N-to-N, new methods are proposed to overcome
this flaw. TransH[6] introduces a relation-specific hyperplane,
the distance is calculated based on the projected representation
on the hyperplane. TransR[12] introduces specific spaces and
calculates distance in the projected space. TransD[7] and
TranSparse[18] further simplifies TransR. Other traditional
distance models include KG2E[19], UM[20], and SE[21].

Bilinear models measure plausibility of triples based on
matching latent semantics of entities and relations by defining
score functions as bilinear functions. The first bilinear-based
model RESCAL[13] is a semantic matching model, which
defines the score of triple (h, r, t) as a bilinear function
fr(h, t) = hTMrt, where Mr is a relation specific matrix.
DistMult[8] proves that a simple bilinear function can achieve
outstanding results by restricting the relation specific matrix
to be a diagonal matrix. Many bilinear models suffer from the
problem that they cannot handle anti-symmetric relations, to
solve this problem, ComplEx[14] introduces complex valued
embedding to the model. ANALOGY [9] is another model
concentrating at the analogical properties of the embedded
entities and relations. Other semantic matching models include
HolE[22] and so on.

Neural networks are also exploited to perform knowledge
graph completion task. NTN[15] uses a neural tensor network
to compute scores for triples, ConvE[10] and ConvKB [16] use
multi-layer convolutional networks to enhance the expressive-
ness of the model, CapsE[11] uses a capsule network to model
relationship triples to capture variations of the embedding
entries at the same dimension of triples. Score functions of
some representative models are listed in Table II.

III. METHODOLOGY

In this section, we first define the task of knowledge graph
completion formally, then describe the re-ranking framework.
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Fig. 1: Architecture of the proposed re-ranking framework.

A. Problem Statement

A knowledge graph is a set of triples, G = {(h, r, t)} ⊆
E ×R×E , where h, t ∈ E are entities and r ∈ R is a relation,
E and R are sets of entities and relations. A triple (h, r, t)
denotes head entity h and tail entity t have relation r. In this
paper, relation r is directional, i.e., the relation r is pointing
from h to t.

Knowledge graph completion aims to predict the missing
entity in a triple (h, r, t). There are two forms of knowledge
graph completion tasks for a given triple (h, r, t), one predicts
the tail entity when given head entity h and relation r, denoted
as query (h, r, ?), the other predicts the head entity when given
tail entity t relation r, denoted as query (?, r, t).

B. Model

The whole framework is shown in Fig. 1 which consists of
three steps: original ranking, combination, and re-ranking. To
be convenient, we only consider query (h, r, ?) in this section,
query (?, r, t) is addressed in the same way.

1) Original Ranking: For an arbitrary knowledge graph
completion model M, we first run it to obtain the original
ranking and the embeddings of entities and relations. Specif-
ically, for a triple (h, r, t), let (vh, vr, vt) be the learned em-
beddings respectively. Then a score f(vh, vr, vt) is computed
to evaluate the credibility of (h, r, t) based on the learned
embedding (vh, vr, vt) and the score function f . The higher
the score is, the more trustworthy the triple is.

For a query q = (hq, rq, ?), we construct a set S ′ of triples
by replacing the tail entity by all possible entities ti ∈ E ,

S ′ = {(hq, rq, ti) | ti ∈ E} . (1)

For each triple in set S ′, a score is then computed based on
the score function f and learned embeddings (vhq

, vrq , vti).
Thus, we can get |E| scores for the query q, where |E| is the
total number of entities.

In the proposed re-ranking framework, we only take the top
ranked entities into consideration. Therefore, we record the
top N entities in the ranked list generated by model M,

Tq = [t1, t2, . . . , tN ] , 1 ≤ N ≤ |E| , (2)

where list Tq is in descending order with t1 being the entity
with the highest score, and N is an integer hyperparameter
deciding how many top ranked entities are considered in the
re-ranking phase. Intuitively, we merge the information carried
by these N entities to further improve the performance of
model M.

2) Combination: The combination module, consisting of an
attention layer, aggregates information carried by the top N
entities with attentions assigned according to the given query
q. The overall aggregated vector for top entities is

vt =

N∑
i=1

αqivti , (3)

where vti is the embedding of entity ti ∈ E , αqi is the
attention assigned to entity ti which is calculated based on the
embedding of query vq and entity vti per se. Query embedding
vq is the result of concatenating the embedding of head entity
and relation,

vq = vhq ‖ vrq , (4)

where ‖ is the concatenation operator. Entity embedding vti
is learned according to model M.



In order to compute αqi, we adopt two settings of the at-
tention mechanism: vanilla attention and multi-head attention.
Vanilla Attention In this setting, attention for an entity, say
ti, is calculated as following,

αqi =
exp (g(vq, vti))∑N
j=1 exp (g(vq, vtj ))

, (5)

where vq is the query embedding formed by the embeddings
of the given entity hq and relation rq , g is a feed-forward
neural network.
Multi-head Attention

In this setting, we first update the embeddings of top N
entities based on multi-head attention, then combine these em-
beddings based on vanilla attention and updated embeddings.
The multi-head attention layer is used to capture the overall
information carried by these entities, it also enables the model
to learn different types of information.

The multi-head attention layer first updates embeddings of
entities by performing a weighted sum over all N entities.
Each vti is projected to a key k, value v, and query q with dis-
tinct affine transformations following ReLU activation. Denote
weight for head H of entity i as headiH . The corresponding
embedding of key, value, and query of head H of entity i is
denoted as kiH , viH , and qiH , respectively. Then headiH is
calculated using the scaled dot-product:

headiH =
∑

j∈[1,K]

vjHσ

(
qTiHkjH√

d

)
, (6)

where d is the dimension of entities, and K > 1 denotes the
number of heads, H ∈ (1,K].

The attention heads headiH are then concatenated and
multiplied with weight parameter WO to generate the updated
entity embedding v′ti ,

v′ti = Concat(headi1 ‖ · · · ‖ headiK)WO. (7)

where WO is a trainable parameter matrix. Then, the attention
for each entity can be computed as

αqi =
exp (g(vq, v

′
ti))∑N

j=1 exp (g(vq, v
′
tj ))

. (8)

With αqi at hand, the following re-ranking phase is the same
for the above two attention settings.

3) Re-ranking: With the help of vq and vt computed above,
we re-rank Tq to promote the performance of model M.
The proposed re-ranker consists of three operations. First,
we concatenate vq and vt to form a more informative query
(vq ‖ vt); then, we project (vq ‖ vt) into a d-dimensional
space by a linear transformation W ; finally, we compute new
scores and re-rank entities based on (vq ‖ vt)W . Following
are some implementation details.

To accelerate training and evaluation, we take one query
and score it against all entities simultaneously as done in [10].
We match new query embeddings with the entity embedding
matrix vE ∈ R|E|×d via inner product, and choose rectified

linear units as score function f . The score vector ψ(vq, vt) ∈
R1×|E| can be written as

ψ(vq, vt) = f ((vq ‖ vt)W ) vTE . (9)

During the training phase, we apply the logistic sigmoid
function σ(·) to all scores and minimize the binary cross-
entropy loss

L(p, s) = − 1

N

∑
i

(si · log pi + (1− si) · log (1− pi)) ,

(10)
where p = σ (ψr(vq, vt)) and s is the label vector, si = 1 if
the corresponding triple is true, otherwise si = 0.

In the evaluation phase, we re-rank all the entities accord-
ing to the new scores calculated by ψ(vq, vt) to form new
enhanced ranking result.

IV. EXPERIMENTS AND RESULTS

In this section, we describe the experiments we conducted
to evaluate the re-ranking framework and discuss the experi-
mental results.

A. Datasets

We employ four datasets, WN18, FB15k, WN18RR, and
FB15k-237, in the following evaluation. Table III lists basic
statistics of these datasets.

WN18 and WN18RR are subsets of WordNet [23]. WordNet
is a large lexical knowlege graph. It groups words into sets
of synsets, each expressing a distinct concept. The synsets
are interlinked by means of conceptual-semantic and lexical
relations. FB15k and FB15k-237 are subsets of Freebase [24].
Freebase is a large knowlege graph consisting of general facts.

Both WN18 and FB15k are proposed in [5], they are
currently the standard benchmarks for knowledge graph com-
pletion task. However, they both suffer from the test leakage
problem, WN18RR and FB15k-237 are proposed to fix this
issue [10]. All four datasets are widely used for evaluation.

TABLE III: Statistics of datasets.

Dataset |E| |R| #Train #Valid #Test

WN18 40,943 18 141,442 5,000 5,000
FB15k 14,951 1,345 483,142 50,000 59,071

WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,542 237 272,115 17,535 20,466

B. Evaluation Protocol

We follow the same protocol as described in[25]. For tail
entity prediction, we first construct all the possible triples by
removing the tail entity of each triple and replace it with
every entity in the entity set. Triples not in the original
knowledge graph is considered as “corrupted” ones, while the
original triples are treated as “golden” ones. Then, we rank
all the possible triples in descending order according to their
scores and record the rank for each golden triple. Head entity
prediction is dealt with in the same way.



TABLE IV: Knowledge graph completion results on WN18 and FB15k.

dataset model MRR MR Hits@10 Hits@3 Hits@1

Ori. Re. Ori. Re. Ori. Re. Ori. Re. Ori. Re.

WN18

TransE [5] .692 .760 251 160 .891 .926 .814 .902 .475 .583
TransH [6] .617 .673 388 310 .828 .918 .765 .833 .430 .442
TransD [7] .701 .762 212 181 .919 .934 .843 .898 .517 .620

DistMult [8] .816 .894 890 735 .921 .910 .915 .912 .727 .819
ANALOGY [9] .938 .941 351 280 .949 .958 .942 .951 .935 .940

FB15k

TransE [5] .417 .561 125 64 .476 .701 .314 .523 .150 .413
TransH [6] .495 .525 87 90 .641 .745 .535 .640 .284 .347
TransD [7] .523 .579 91 84 .777 .829 .624 .670 .389 .423

DistMult [8] .649 .660 97 101 .831 .840 .729 .798 .550 .641
ANALOGY [9] .729 .780 81 71 .847 .859 .766 .772 .623 .650

TABLE V: Knowledge graph completion results on WN18RR and FB15k-237.

dataset model MRR MR Hits@10 Hits@3 Hits@1

Ori. Re. Ori. Re. Ori. Re. Ori. Re. Ori. Re.

WN18RR

TransE [5] .181 .185 5107 5670 .410 .390 .326 .239 .024 .093
TransH [6] .144 .145 5871 5230 .356 .383 .274 .281 .003 .058
TransD [7] .139 .141 5699 6283 .362 .374 .259 .281 .004 .052

DistMult [8] .178 .184 7801 7389 .324 .268 .201 .195 .102 .111
ANALOGY [9] .120 .134 7998 8423 .218 .236 .129 .178 .072 .128

FB15k-237

TransE [5] .272 .283 348 302 .443 .449 .300 .313 .186 .197
TransH [6] .136 .254 374 387 .331 .426 .160 .288 .041 .179
TransD [7] .174 .251 387 397 .358 .414 .202 .270 .083 .169

DistMult [8] .268 .280 285 276 .421 .431 .293 .305 .191 .211
ANALOGY [9] .229 .274 423 332 .377 .427 .220 .310 .136 .199

With the ranks of golden triples, three metrics are adopted to
evaluate the performance: mean rank (MR), mean reciprocal
rank (MRR), and Hits@N. MR is the average of predicted
ranks for golden triples; MRR is the average of inverse
ranks for golden triples [10]; Hits@N is the proportion of
golden entities ranked in top N . We use Hits@1, Hits@3, and
Hits@10 [10]. For these metrics, lower MR, higher MRR, and
higher Hits@N are preferred.

C. Experimental Setup
We evaluate the proposed framework on five models: TransE

[5], TransH [6], TransD [7], DistMult [8], and ANALOGY [9].
TransE, TransH and TransD are translation models, DistMult
and ANALOGY are bilinear models. We aim to enhance
performance of these simple models, so we do not perform
experiments on neural network models.

We train these models to get the original rank using
OpenKE1 [26] with parameters reported in the original papers.
Though the final results are not exactly the same as those
reported in the papers, it is still fair since we do not make com-
parisons among these models, we compare the performance
before and after re-ranking instead.

1https://github.com/thunlp/OpenKE

In the experiments, we use the same neural network ar-
chitecture for both tail-prediction query (h, r, ?) and head-
prediction query (?, r, t), but train them separately. The di-
mension of entities and relations is set as 100, the optimizer
is Adam, the learning rate is set to be 0.01, and the times of
training is bounded by 40. In the re-ranking phase, the top 10
entities from the original ranking are adopted. We use vanilla
attention mechanism to balance the accuracy and complexity,
this will be further discussed in the next Section.

D. Experimental Results

Table IV reports both the original results (Ori.) and the
re-ranked results (Re.) on datasets WN18 and FB15k. Table
V reports the results on datasets WN18RR and FB15k-237.
These two tables show that, in most cases, the proposed re-
ranking framework can be employed to further improve the
original results. We notice that, the improvement on the hits@1
metric is especially stable. This is an advantage if only one
answer entity is desired in some applications. However, the
improvements on both Hits@N and MRR may worsen the
MR metric, and we leave this question for future work.



TABLE VI: Knowledge graph completion results with different number of heads in multi-head attention.

# heads Original 0 2 4 6 8 10

model TransH on dataset WN18RR

Metrices

MRR .144 .145 .142 .146 .147 .149 .148
MR 5871 5230 5223 5210 5204 5202 5209

Hits@10 .356 .383 .383 .385 .388 .392 .386
Hits@3 .274 .281 .280 .282 .285 .289 .284
Hits@1 .003 .058 .057 .059 .061 .065 .060

model TransH on dataset FB15k-237

Metrices

MRR .136 .254 .256 .260 .262 .270 .268
MR 374 387 379 382 378 372 375

Hits@10 .331 .426 .428 .429 .432 .435 .432
Hits@3 .160 .288 .290 .289 .291 .293 .293
Hits@1 .041 .179 .182 .183 .185 .186 .182

Fig. 2: Knowledge graph completion results of TransD, DistMult and ANALOGY(in 3 rows) when N equals 1, 5, 10, 15, 20
(in 5 rows) respectively.

V. ANALYSIS

In this section, we further analyze the influence of different
attention mechanisms and the number of top entities we used
in the re-ranking phase.

A. Influence of Attention Mechanism

We further explore whether more complicated attention
mechanism can bring larger improvements in the proposed
framework. To do so, we apply multi-head attention and
test different number of attention heads. We evaluate the
performance of TransH on datasets WN18RR and FB15k-
237 when number of heads equals 0, 2, 4, 6, 10 respectively.

Results under different attention mechanisms are shown in
Table VI. It shows that number of heads has little influence
on performance. Considering the high complexity of multi-
head attention, we use vanilla attention to balance accuracy
and complexity in our model.

B. Influence of the Number of Top Entities
A key hyperparameter in the re-ranking framework is N , the

number of top ranked entities used in the re-ranking phase. It
may affect both the performance and complexity of the model.
To explore its influence on the model performance, we conduct
comparative experiments on three baselines: TransD, DistMult,
and ANALOGY. For each of these models, we train tail entity



prediction models on dataset FB25k-237, the parameter N is
controlled as 1, 5, 10, 15, and 20. All other parameters are
kept the same. Fig. 2 illustrates the results. Results of one
model are illustrated in a line, values for the same metric are
illustrated in a column.

Increasing N from 1 to 20, the performance first improves
and then deteriorates. This is consistent with the intuition that
too few top entities may not carry sufficient knowledge, while
too many may bring irrelevant noise to the model.

Last but not least, the optimal value of N for different
models may be different. In our experiments, the optimum
is 10 for TransD and 15 for both DistMult and ANALOGY.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a re-ranking framework to
improve the performance of knowledge graph completion of
base methods based on re-ranking with attention mechanism.
In this framework, we first ranked entities using the original
models, then combined the top ranked entities with query
entity and relation through attention mechanism, and re-
ranked entities based on the combined vector. The proposed
framework is flexible that can be applied to various models
without substantive modification. We validated the proposed
framework on four datasets and five existing base models.
In the experiments, the proposed framework achieved better
results than the original counterparts. We further analyzed the
influence of different attention mechanisms and the number of
top entities used in the re-ranking phase.

Our framework, though can be easily applied to most
models, still has limitations. When applying this framework on
some models, such as ComplEx [14], which learns embeddings
in a complex space, i.e., vh, vr, and vt are vectors in space
Cd, the structure of the neural network needs to be modified.
We will focus on this question in our future work and improve
its generalization performance.
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