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Abstract—While doing summarization, human needs to under-
stand the whole document, rather than separately understanding
each sentence in the document. However, inter-sentence features
within one document are not adequately modeled by previous
neural network-based models that almost use only one layer
recurrent neural network as document encoder. To learn high
quality context-aware representation, we propose a shortcut-
stacked document encoder for extractive summarization. We use
multiple stacked bidirectional long short-term memory (LSTM)
layers and add shortcut connections between LSTM layers to
increase representation capacity. The shortcut-stacked document
encoder is built on a temporal convolutional neural network-
based sentence encoder to capture the hierarchical structure
of the document. Then sentence representations encoded by
document encoder are fed to a sentence selection classifier for
summary extraction. Experiments on the well-known CNN/Daily
Mail dataset show that the proposed model outperforms several
recently proposed strong baselines, including both extractive
and abstractive neural network-based models. Furthermore, the
ablation analysis and position analysis also demonstrate the
effectiveness of the proposed shortcut-stacked document encoder.

I. INTRODUCTION

Text summarization aims to condense a document as a
shorter version through automatically distilling the most im-
portant information from it, which is still a highly challenging
task for machines and one of the most important technolo-
gies in natural language processing. Text summarization has
been applied to almost all domains of the Internet, as the
problem of information overload has been becoming more
and more serious in the Internet era. Search engines provide
summary snippets for better browse experience. Social media
use automatic summarization as an intermediate technology
for content recommendation, while e-commerce websites use
auto-generated summaries for product highlights [1].

The summarization approaches can be mainly divided into
two categories: extractive and abstractive. Extractive approach-
es summarize a document by selecting and assembling the
most important parts of it, while abstractive methods generate
novel words or phrases that may be not included in the source
text. Fig. 1 shows an example of extractive summarization in
the CNN/Daily Mail dataset. Early summarization approaches
are heavily based on human-engineered features, such as word
frequency [2], sentence position and length [3]. Recently, with
the development of sequence-to-sequence learning in many

Article: (1)The women of the University of southern California tennis team 

capped off an undefeated conference season on Thursday by winning the 

pac-12 championship. (2)The second-ranked girls defeated the women of 

the university of California - Los Angeles by a score of 4 - 3 for the win. 

(3)Then, in celebrating their big victory, they broke the trophy. (4)The USC 

women's tennis team won the pac-12 championship on Thursday. (5)  No 

doubt contributing to the excitement was the fact that USC was trailing 

UCLA early on, and were initially down 3 - 0 before winning the final four 

matches. (6)USC now finishes the season 21 - 2 while UCLA is 18 - 4. (7)Both 

teams will now compete in the pac-12 championships next Thursday, where 

the players compete individually. (8)While celebrating their win over UCLA, 

they smashed and broke the trophy.

Human writing summary: The USC women's tennis team won the pac-12 

championship on Thursday. The girls defeated the women of UCLA 4 - 3. 

While celebrating, they smashed and broke the trophy.    

Extractive summary:  (4) (2) (8)

(4)The USC women's tennis team won the pac-12 championship on 

Thursday. (2)The second-ranked girls defeated the women of the university 

of California  -  Los Angeles by a score of 4 - 3 for the win. (8)While 

celebrating their win over UCLA, they smashed and broke the trophy.

Fig. 1: An example of extractive summarization in the C-
NN/Daily Mail dataset. In the example, extractive summary
is generated by selecting three sentences from the source
article and contains most of the content in the human writing
summary (underlined part).

text generation tasks, such as machine translation [4] and
question answering [5], sequence-to-sequence models are also
applied to summarization tasks, both for abstractive methods
[6], [7] and extractive methods [8], [9]. Neural network-based
summarization models can learn in an end-to-end manner, thus
avoiding sophisticated feature engineering in early methods.
Most of neural extractive approaches follow the encoder-
extractor framework. The encoder reads the meaning of a doc-
ument and outputs a list of continuous-space representations
corresponding to each sentence within the document. Then the
extractor selects the salient sentences based on these sentence
representations.

However, one important issue is that summarization needs
the comprehensive understanding of the whole document,
while the neural network-based model is good at processing in-
formation at single-sentence level. And in previous works [6],
[8], the most common architecture of the document encoder
for neural text summarization is only one layer of variants



of recurrent neural networks (RNN), such as long short-term
memory (LSTM) [10] and gated recurrent unit (GRU) [11].
This document encoder with simple structure is relatively hard
to capture abundant inter-sentence information and fails to
produce comprehensive document-level representations.

In this paper, we propose a shortcut-stacked document
encoder to obtain better document understanding and rep-
resentation. Our proposed document encoder has multiple
bidirectional LSTM layers with shortcut connections (feeding
all previous layers outputs to each layer), thus providing extra
source of information to guide the summary extraction. We
build our shortcut-stacked document encoder on a temporal
convolutional neural network (CNN) based sentence encoder,
and feed document encoder’s outputs to summary extractor,
which is a sentence selection classifier. The contributions of
this paper are two folds:

• First, we go beyond the conventional encoder-extractor
framework for neural extractive summarization to present
a novel model based on shortcut-stacked document en-
coder, which is, to the best of our knowledge, first used
for the extractive summarization task.

• Second, our experiments on the CNN/Daily Mail dataset
reveal that our model outperforms both extractive and
abstractive baseline models. Also, we investigate the
effectiveness of the shortcut-stacked document encoder
by the ablation analysis and position analysis.

II. RELATED WORK

A. Text Summarization Task

Early text summarization researches mostly focus on ex-
tractive approaches, including greedy approaches [12], hidden
Markov models [13], graph based approaches [14] and integer
linear programming [15]. Early methods mostly use human-
engineered features, because most summarization datasets
available such as DUC corpora are not large enough to train
deep neural networks. This situation has not been changed
until [16] proposes a new corpus based on news stories from
CNN and Daily Mail and human generated summaries. This
large-sized corpus attracts neural network-based approaches
for abstractive summarization at first. These neural abstractive
models frame text summarization as a sequence-to-sequence
problem [7], [16]. To produce fluent abstractive summaries,
some improvement mechanisms are added to the original
sequence-to-sequence models, including hierarchical attention
[16], graph-based attention [17], the copy mechanism [7], [18],
coverage [7], [19], and reinforcement learning-based metric
optimization [20].

With the development of neural abstractive models, neural
network methods have also been used for extractive sum-
marization [9]. Neural extractive approaches conceptualize
extractive summarization as a sequence labeling task, which
needs sentence-level extraction labels, but most summarization
datasets only include document and summary pairs. In order
to overcome the labels absence obstacle to extractive summa-
rization, [9] creates a rule-based method by maximizing the

ROUGE score [21] to obtain sentence extraction labels. Then
the research of neural extractive summarization has become
more and more active. And there are many latest works
on neural summarization, for example, [22] improves the
memorization capability of summarization model by adding
a closed-book decoder. And a neural summarization model
is proposed by [23] that enables users to specify a desired
length, style or entities that they have a preference in order
to control the shape of the final summaries. And in [24],
researchers propose a novel summarization model trained by
reinforcement learning with multi-reward functions to improve
the saliency and directed logical entailment aspects of a good
summary.

The most similar work to our model is the one proposed by
[8]. They use a hierarchical recurrent neural network-based
encoder and a binary classifier for extractive summarization
on the CNN/Daily Mail corpus. To capture the hierarchical
structure of the documents, they use two recurrent neural
network networks to encode text content at sentence level and
document level respectively. Different from their method, our
model uses a temporal convolutional neural network as the
sentence encoder for ease of optimization. And it is worth
mentioning that they do not use stacked RNN structure, while
we use our novel multiple stacked bidirectional LSTM layers
with shortcut connections as the document encoder. And our
extraction classifier is a simplification version of theirs without
using any human-engineered features, such as absolute and
relative position features.

B. Shortcut Structure

The shortcut structure that we use in this work is widely
applied to many neural network models for different tasks,
such as residual CNN for computer vision [25], highway
networks for RNN in speech processing [26], and shortcut con-
nections in hierarchical multitasking learning [27]. A similar
shortcut-stacked RNN model is also used for natural language
inference tasks [28]. In their work, shortcut-stacked RNN is
used as sentence-level encoder that encodes each word within
one sentence. Different from their model, our shortcut-stacked
bidirectional LSTM layers serve as a document-level encoder
that encodes each sentence within one document.

III. MODEL

A. Problem Statement

A document d can be considered as a sequence of n sen-
tences (s1, s2, · · · , sn) , extractive summarization generates
a summary by selecting m sentences (m < n) from d. In
this paper, we treat extractive summarization as a sequence of
binary classification problems. For a sentence sj in document
d, we predict a summary label yj ∈ {0, 1}, yj = 1 if sj
belongs to the final summary, otherwise yj = 0. Let D be the
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Fig. 2: The overall architecture of the proposed model. The convolutional encoder computes representation rj for each sentence
(Bottom). The shortcut-stacked document encoder computes context-aware sentence representation vj (Middle). The summary
extractor determines the sentence-summary membership, and the final summary is consisted of sentences with label of 1 in
their original order in the document (Top).

set of all training documents, the objective is to minimize the
cross-entropy loss of all observed labels in the training phase

L(Θ) =
N∑
i=1

ni∑
j=1

(
yij log

(
Prob

(
yij = 1|D; Θ

))
+

(
1− yij

)
log

(
1− Prob

(
yij = 1|D; Θ

))),
(1)

where Θ is the parameter vector, N is the number of docu-
ments in the training set, ni is the number of sentences in the
ith document, and yij is the binary summary label for the jth

sentence in the ith document. Prob () represents probability
and is implemented as sigmoid function’s output. The specific
calculation of Prob

(
yij = 1|D; Θ

)
is described in details in

section III.E.

B. Overall Architecture

Our model follows the encoder-extractor framework as
shown in Fig. 2. The role of the encoder is to capture the mean-
ing representation of a document. The whole encoder works in
a hierarchical fashion, which reflects the hierarchical structure

of documents, i.e., a document consists of a sequence of
sentences, while each sentence is composed of a sequence of
words. We first get representation vectors at the sentence-level
using sentence encoder modeled by a temporal convolutional
neural network. Next, we obtain representation vectors of
sentences at the document-level using a novel shortcut-stacked
document encoder that recursively composes sentences.

Finally, the encoder outputs each sentence’s context-aware
representation and feeds them into the summary extractor,
which is a logistic binary classifier. The summary extractor
first learns a document representation, then determines whether
a sentence belongs to the final summary or not based on the
content of the sentence and the salience with respect to the
document. Each module will be explained in detail in the
following sections.

C. Sentence Encoder

We use a temporal convolutional neural network to encode
and represent each sentence of a document. A similar archi-
tecture is proved to be effective in sentence-level classification



tasks such as sentiment analysis [29]. Given a sentence s
consisting of a sequence of p words (w1, w2, · · · , wp), each
word is converted to an e-dimensional vector by a pre-
trained word embedding matrix Wemb learned by word2vec
[30]. Thus, a sentence can be represented by a dense matrix
Wsen ∈ Rp×e. Then the matrix Wsen will be fed through
multiple one-dimension convolution filters (K ∈ Re×c) with
different window size c and then ReLU activation units

fh
i,K = relu(Wh:h+c+1 ⊗K + b), (2)

where ⊗ is the Hadamard Product followed by a sum over all
elements, fh

i,K denotes the hth element of the ith feature from
filter K and b is the bias. We perform max-over-time pooling
to capture the temporal dependencies on nearby words and
obtain the ith feature of sentence representation Fi,K from
filter K

Fi,K = max
h

fh
i,K . (3)

Finally, the outputs Fi,K from all filters with different
window sizes are concatenated together to form the represen-
tation rj for the jth sentence in the document. An example
of sentence encoder is illustrated in Fig. 2 (bottom). In the
example, a sentence of ten words with 5-dimension word
embedding is fed to three filters with different window sizes [3,
4, 5]. The sentence representation has nine dimensions in total,
obtained by concatenating features from three filters, each of
which has three dimensions. In actual implementation, we use
a list of filter window sizes [3, 4, 5] with 100 hidden units for
each window size.

D. Document Encoder

After getting each sentence representation rj , we need a
document encoder to encode inter-sentence features at the doc-
ument level, which are important for text summarization. To
increase the representation capacity, we use multiple stacked
bidirectional long short-term memory (biLSTM) layers with
shortcut connections as the document encoder. Let biLSTMi

represents the ith biLSTM layer among multiple biLSTM
layers, which is defined as

hi
t = biLSTMi(xi

t, t), ∀t ∈ [1, 2, . . . , n], (4)

where hi
t is the output of the ith biLSTM at time t over input

(xi
1, x

i
2, · · · , xi

n). As for typical multiple stacked biLSTM
layers, the output sequence of the previous biLSTM layer is
the input of the next biLSTM layer. However, different from
the typical structure, our shortcut-stacked biLSTM layers are
added shortcut connections that feed each layer’s output to all
next layers, as shown in the Fig. 2 (middle). The shortcut con-
nections can alleviate the gradient vanishing problem during
training and enable more document information to flow across
different layers to get better context-aware representations.
Thus the input of each biLSTM layer in our shortcut-stacked
document encoder is the concatenation of all the previous
layers’ outputs and the original sentence vector sequence. Let
(r1, r2, · · · , rn) represent sentence representations obtained by

the sentence encoder, the input of the ith biLSTM layer at time
t is

x1
t = rt, (5)

xi
t = [rt, h

i−1
t , xi−2

t , · · · , h1
t ](i > 1), (6)

where [] represents vector concatenation. From the output of
the last layer, we can get the final document-level context-
aware sentence vectors (v1, v2, · · · , vn) for the given doc-
ument: d = (s1, s2, · · · , sn). In actual implementation, we
experiment with 3 biLSTM layers with 512, 1024, 2048
dimensions each.

E. Summary Extractor

We formulate summary extraction as a sequence of binary
classification problems on the context-aware sentence vectors
(v1, v2, · · · , vn). Our summary extractor is a logistic binary
classifier that determines whether a sentence belongs to the
summary or not. We first learn a document representation d̂
by

d̂ = tanh(Wd
1

n

n∑
j=1

vj + bd), (7)

where n denotes the number of sentences in the given docu-
ment d. Wd and bd are trainable parameters. Then we compute
the probability of the jth sentence belonging to the summary
by

Prob(yj = 1|vj , d̂) = σ(Wsvj + v⊤j d̂+ bs)), (8)

where Ws and bs are trainable parameters. Wsvj reflects the
information content of the jth sentence in the document,
while v⊤j d̂ captures the salience of the sentence with respect
to the document. In the test phase, the model computes
the probability of summary membership for each sentence
sequentially, then picks the top-3 sentences and concatenates
them as the original order in the document.

IV. EXPERIMENTAL SETUP

A. Datasets

The proposed model is evaluated on the well-known CN-
N/Daily Mail dataset, which is originally built for question
answering task [5] and modified for text summarization by
[16]. Compared to previous Gigaword dataset [6], CNN/Daily
Mail dataset has more long documents and summaries. Note
that we use a non-anonymized, original-text version of this
dataset [7] and the standard split of the dataset for training
and test. Table I shows the statistics of the CNN/Daily Mail
dataset.

TABLE I: The statistics of the CNN/Daily Mail dataset

Training Dev Test
#(documents) 287,227 13,368 11,490

#(sentences) per document 31.58 26.72 27.05
#(words) per document 791.36 769.26 778.24

#(sentences) per summary 3.79 4.11 3.88
#(words) per summary 55.17 61.43 58.31



However, the CNN/Daily Mail dataset only contains
document-summary pairs without extraction labels for each
sentence. Hence, we design a rule-based method to generate a
proxy label for sentences in a given document. Similar to the
method in [8], our rule-based method maximizes the Rouge-L
F1 score [21] via a greedy strategy. To be specific, we find
the most similar sentence sjt for each ground-truth summary
sentence gt and filter it through a threshold δ to generate the
label of jth sentence yj

jt = argmax
j

(Rouge-LF1(sj , gt)), (9)

yjt =

{
1 if(Rouge-LF1(sjt , gt) > δ)

0 otherwise
. (10)

In our experiment, δ is set to 0.2. Given these proxy training
labels, the CNN/Daily Mail dataset can be used for extractive
summarization.

B. Baselines

We compare our approach with the following baselines:
• LEAD3: The widely used baseline by extracting the first

three sentences as the summary.
• TextRank: An unsupervised method based on weighted

graph proposed by [31]. We use the implementation in
Gensim [32].

• Pointer: A state-of-the-art abstractive summarization
method proposed by [7], which applies copying and
coverage mechanisms.

• Controllable: A neural summarization model that en-
ables users to specify a desired length, style or entities
that they have a preference in order to control the shape
of the final summaries [23].

• SummaRuNNer: An extractive summarization method
proposed by [8], which considers both text features and
sentence absolute and relative position features.

• REFRESH: A state-of-the-art reinforced extractive sum-
marization model proposed by [33].

• ROUGESal+Ent RL: A novel reinforcement learning
model trained with multi-reward functions to improve the
saliency and directed logical entailment aspects of a good
summary [24].

C. Hyper-parameter Settings

We train a word2vec [30] of 64 dimensions on the CN-
N/Daily Mail dataset as the word embedding initialization.
The word embedding is still updated during training. The
vocabulary size is set to 30000. For the convolutional sentence
encoder, we use a list of filter window sizes [3, 4, 5] with
100 hidden units for each window size. For the document
encoder, we experiment with 3 biLSTM layers with 512, 1024,
2048 dimensions each. All biLSTM parameters are randomly
initialized over a uniform distribution within [-0.05, 0.05].
In the training phase, the batch size is 32. Adam optimizer
[34] is used with learning rate 0.0001. We apply gradient
clipping [35] using 2-norm of 2.0. We use early-stopping

regularization technique (with patience equals 8 and number of
steps for checkpoint and validation equals 1000) and halve the
learning rate whenever validation loss increases. To save the
memory space during training, we set the maximum sentence
length to 100 words and the maximum number of sentences
per document to 60. All hyper-parameters are tuned on the
validation set of CNN/Daily Mail dataset.

D. Evaluation

For the automatic evaluation, we use the ROUGE metrics
[21], which is based on the comparison of n-grams between
the generated summary and the human written reference. We
evaluate generated summaries by standard Rouge-1, Rouge-2,
and Rouge-L on full length F1.

V. RESULTS AND ANALYSIS

A. Overall Performance

As shown in Table II , our model achieves 37.15 Rouge-
L F1 score on the CNN/Daily Mail dataset and outperforms
two unsupervised baselines (LEAD3 and TextRank [31]) by
a wide margin. And our model achieves statistically signif-
icant improvements over all the abstractive baseline mod-
els (Pointer [7], Controllable [23]), as given by the 95%
confidence interval in the official ROUGE script. Also, our
proposed model outperforms previously published neural ex-
tractive models (SummaRuNNer [8], REFRESH [33], and
ROUGESal+Ent RL [24]) in terms of Rouge-1 and Rouge-
L F1 scores. However, SummaRuNNer is trained and tested
on the anonymized version of CNN/Daily Mail dataset, so
the result of SummaRuNNer is not strictly comparable to
our proposed model’s result on the non-anonymized version
dataset. We thus include result of LEAD3* on the anonymized
version dataset as a reference in Table II . Our model exceeds
LEAD3 by +0.67 Rouge-L F1 points, while SummaRuNNer
is worse than LEAD3* by -0.20 points in terms of Rouge-
L. Therefore, we can conclude that our model without any
manually selected features, is better than SummaRuNNer

TABLE II: Results of different models on the CNN/Daily Mail
Test set using Full length ROUGE F1 evaluation (%). Results
with * mark are trained and evaluated on the anonymized
dataset, others are on the non-anonymized version dataset. All
our ROUGE scores have a 95% confidence interval of at most
0.20 as reported by the official ROUGE script.

Models Rouge-1 F1 Rouge-2 F1 Rouge-L F1
Unsupervised models

LEAD3 40.27 17.72 36.48
LEAD3* 39.2 15.7 35.5
TextRank 40.20 17.56 36.44

Abstractive models
Controllable 38.68 15.40 35.47

Pointer 39.53 17.28 36.38
Extractive models

SummaRuNNer* 39.6 16.2 35.3
REFRESH 40.0 18.2 36.6

ROUGESal+Ent RL 40.43 18.00 37.10
Our Model 40.64 18.12 37.15
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Fig. 3: Selected sentences’ position distribution of four methods (including lead3 baseline, the baseline with simply-stacked
encoder, our model with shortcut-stacked encoder and proxy labels) on the CNN/Daily Mail Test set. The Y-axis means the
proportion of selected sentences in the generated summaries at position i (X-axis) in source text.

baseline that uses human-engineered features, such as absolute
and relative position features. And compared to the state-of-
the-art extractive model ROUGESal+Ent RL [24], our model
performs significantly better without using any reinforcement
learning optimization method.

As for computation time, the whole training phase terminat-
ed by the early-stopping regularization technique is approxi-
mately 2.5 hours on one TITAN X GPU. In testing phase,
generating all the 11490 summaries for the CNN/Daily Mail
Test set requires only 570.5 seconds. Around 20 summaries
per second can be generated by our extractive model, which
can fully meet real-time requirement in practical application.

B. Ablation Analysis

We now investigate the effectiveness of the shortcut-stacked
document encoder in our overall model. In the ablation anal-
ysis, we show the performance changes for different number
of biLSTM layers and with/without shortcut connections. We
first show the ablation results based on the CNN/Daily Mail
Development set in Table III. Note that the dimension size of
a biLSTM layer is referring to the dimension of the hidden
state for both the forward and backward LSTM. As shown
in Table III, the model based on the shortcut-stacked three-
layer document encoder achieves the best performance on
CNN/Daily Mail Development set.

Then we show results of different document encoders on
CNN/Daily Mail Test set in Table IV. As shown, compared to
the model with single-layer biLSTM document encoder, the
model with the simply stacked three-layer document encoder
improves ROUGE scores very little(+0.06 for Rouge-1 F1,
+0.03 for Rouge-2 F1, +0.06 for Rouge-L F1). However,

TABLE III: Results of the ablation analysis on the CNN/Daily
Mail Development set. The first two models are two baselines,
and the last model is our proposed model.

Models Performance
#layers LSTM dims shortcut R-1 R-2 R-L

1 1024 No 41.25 18.43 37.76
3 256 512 1024 No 41.41 18.52 37.87
3 256 512 1024 Yes 41.62 18.77 38.15

compared to the single-layer biLSTM document encoder, our
model with shortcut-stacked three-layer document encoder
achieves a substantial improvement on ROUGE scores (+0.27
for Rouge-1 F1, +0.25 for Rouge-2 F1, +0.31 for Rouge-L
F1), which is around 5-10 times than simply stacked three-
layer encoder’s improvement.

C. Position Analysis

Fig. 3 shows the selected sentences’ position distributions
of four methods (including lead3 baseline, the baseline with
simply stacked encoder, our model with shortcut-stacked en-

TABLE IV: Results of the ablation analysis on the CNN/Daily
Mail Test set. The first two models are two baselines, and the
last one is our proposed model.

Models Performance
#layers LSTM dims shortcut R-1 R-2 R-L

1 1024 No 40.37 17.87 36.84
3 256 512 1024 No 40.43 17.90 36.90
3 256 512 1024 Yes 40.64 18.12 37.15



TABLE V: Network configuration of simply stacked encoder
and shortcut-stacked encoder in the position analysis.

model #layers LSTM dims shortcut
simply stacked encoder 3 256 512 1024 No
shortcut-stacked encoder 3 256 512 1024 Yes

coder and proxy labels) on the CNN/Daily Mail Test set. The
proxy labels is generated by rule-based method as described
in section IV.A and network configuration of simply stacked
encoder and shortcut-stacked encoder is described in Table V.

As shown in Fig. 3, selected sentences’ position distribution
of our model with shortcut-stacked encoder is much closer
to proxy labels than simply stacked encoder baseline and the
lead3 baseline. The simple lead3 baseline selects 100% leading
three sentences (sentence 1 to 3) due to its definition, and
according to the statistics, about 58.7% sentences selected by
simply stacked encoder baseline are in leading three sentences.
Compared to the simply stacked encoder and lead3 baseline,
our model with shortcut-stacked encoder selects less leading
sentences (about 53.3% leading three sentences), which is
closer to the proxy labels with no more than 30% leading
three sentences. Also, our model selects more tailing sentences
than simply stacked encoder baseline and lead3 baseline. For
example, in the range of sentence 11 to 20, lead3 baseline does
not select any sentence and simply stacked encoder baseline
barely extracts any sentences (about 2.09% in total), but our
model extracts nearly twice as many sentences (about 3.89%
in total) in this range. Therefore, as for the selected sentences’
position distribution, our model with shortcut-stacked encoder
is much closer to proxy labels than simply stacked encoder
baseline, demonstrating the effectiveness of our shortcut-
stacked document encoder.

VI. CONCLUSION

In this paper, we go beyond the encoder-extractor frame-
work to propose a novel shortcut-stacked document encoder
in a neural network architecture for extractive summariza-
tion. The shortcut connections between biLSTM layers can
help document encoder capture better inter-sentence features
and produce context-aware representations, thus providing
extra source of information to guide the summary extraction.
ROUGE evaluation results show that our proposed model
surpasses previous state-of-the-art models on the CNN/Daily
Mail dataset. In future work, we will continue to evaluate
the effectiveness of our shortcut-stacked document encoder on
other document-level NLP tasks.
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[32] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45–50.

[33] S. Narayan, S. B. Cohen, and M. Lapata, “Ranking sentences for ex-
tractive summarization with reinforcement learning,” in Proceedings of
the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers). Association for Computational Linguistics, 2018, pp.
1747–1759.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization.”
CoRR, vol. abs/1412.6980, 2014.

[35] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proceedings of the 30th International
Conference on International Conference on Machine Learning - Volume
28, ser. ICML’13. JMLR.org, 2013, pp. 1310–1318.


