Joint Extraction of Multiple Relations and
Entities by using a Hybrid Neural Network

Peng Zhou!':?, Suncong Zheng!?, Jiaming Xu!,
Zhenyu Qi'*, Hongyun Bao', Bo Xu!:2

"nstitute of Automation, Chinese Academy of Sciences
2University of Chinese Academy of Sciences
{zhoupeng2013, suncong.zheng, jiaming.xu,
zhenyu.qi, hongyun.bao, xubo}@ia.ac.cn

Abstract. This paper proposes a novel end-to-end neural model to
jointly extract entities and relations in a sentence. Unlike most exist-
ing approaches, the proposed model uses a hybrid neural network to
automatically learn sentence features and does not rely on any Natural
Language Processing (NLP) tools, such as dependency parser. Our model
is further capable of modeling multiple relations and their correspond-
ing entity pairs simultaneously. Experiments on the CoNLL04 dataset
demonstrate that our model using only word embeddings as input fea-
tures achieves state-of-the-art performance.

Keywords: Information Extraction, Neural Networks

1 Introduction

Entity and relation extraction is to detect entities and recognize their semantic
relations from the given sentence. It plays a significant role in various NLP tasks,
such as question answering [7] and knowledge base construction [16].

Traditional systems treat this task as a pipeline of two separated tasks, i.e.,
Named Entity Recognition (NER) [4] and Relation Classification (RC) [24]. Al-
though adopting such a pipeline based method would make a system compar-
atively easy to assemble, it may encounter some limitations: First, the combi-
nation of these two components through a separate training way may hurt the
performance. Consequently, errors in the upstream components (e.g., NER) are
propagated to the downstream components (e.g., RC) without any feedback. Sec-
ond, it over-simplifies the problem as multiple local classification steps without
taking cross-task dependencies into consideration.

Recent studies show that joint modeling of entities and relations [9,12] is
critical for achieving a high performance, since relations interact closely with
entities. For instance, to recognize the triplet {Chapman,,, Kill,, Lennon.;}
in the following sentence:

Lennon was murdered by Chapman outside the Dakota on Dec. 8§ , 1980 .

* Correspondence author: zhenyu.qi@ia.ac.cn

It may be useful to identify the relation Kill in this sentence, which constrains
its arguments to be Person (or at least, not to be Location) and helps to enforce
that Lennon and Chapman are likely to be Person, while Dakota is not.

However, most existing joint models are feature-based systems. They need
complicated feature engineering and heavily rely on the supervised NLP toolkits,
such as dependency parser, which might also lead to error propagation.

Recently, deep learning methods provide an effective way of reducing the
number of handcrafted features. Miwa and Bansal [11]proposed an effective Re-
current Neural Networks (RNN) model that requires little feature engineering
to detect entities first and then combines these two entities to detect relations.
However, the sentence may contain lots of entities, and these entities will form
too many entity pairs, as each two entities can form an entity pair. Normally,
the number of relations is less than the number of entities in the sentence.! If
the relations are detected first and used to recognize entity pairs, this will not
only reduce the computational complexity but also extract triplets more exactly.

RNN also has disadvantages. Despite its ability to account for word order and
long distance dependencies of an input sentence, RNN suffers from the problem
that the later words make more influence on the final sentence representation
than the former ones, ignoring the fact that important words can appear any-
where in the sentence. Though Convolutional Neural Networks (CNN) can relieve
this problem by giving largely uniform importance to each word in the sentence,
the long range dependency information in the sentence would be lost.

Most state-of-the-art systems [24] treat relation classification as a multi-class
classification problem and predict one most likely relation for an input sentence.
However, one sentence may contain multiple relations, and it is helpful to identify
entity pairs by providing every possible relation.

Based on the analysis above, this paper presents a novel end-to-end model,
dubbed BLSTM-RE, to jointly extract entities and relations. Firstly, Bidirec-
tional Long Short-Term Memory Networks (BLSTM) is utilized to capture long-
term dependencies and obtain the whole representation of an input sentence.
Secondly, CNN is used to obtain a high level feature vector, which will be given
to a sigmoid classifier. In this way, one or more relations can be generated. Fi-
nally, the whole sentence representation generated by BLSTM and the relation
vectors generated by the sigmoid classifier are concatenated and fed to another
Long Short-Term Memory Networks (LSTM) to predict entities. Our contribu-
tions are described as follows:

— This paper presents a novel end-to-end model BLSTM-RE to combine the
extraction of entity and relation. It employs BLSTM and CNN to automat-
ically learn features of the input sentence without using any NLP tools such
as dependency parser. Therefore, it is simpler and more flexible.

— BLSTM-RE can generate one or more relations for an input sentence. There-
fore it is capable of modeling multiple relations and their corresponding en-
tity pairs simultaneously.

! The above example contains one relation and three entities, and these entities will
form three entity pairs (or six entity pairs if the direction of relation is considered).

— Experimental results on the CoNLL04 dataset show that BLSTM-RE achieves
better performance compared to the state-of-the-art systems.

2 Related Works

The task we address in this work is to extract triplets that are composed of
two entities and the relation between these two entities. Over the years, a lot of
models have been proposed, and these models can be roughly divided into two
categories: the pipeline based method and the end-to-end based method. The
former treats this task as a pipeline of two separated tasks, i.e., NER and RC,
while the latter jointly models entities and relations.

2.1 Named Entity Recognition

NER, as a classical NLP task, has drawn research attention for a few decades.
Most existing NER models are linear statistical models which include Condi-
tional Random Fields (CRF) [21], and their performances rely on hand-crafted
features extracted by NLP tools and external knowledge resources.

Recently, several neural network based models have been successfully applied
to NER. Huang et al. [4] first proposed LSTM stacked with a CRF for sequential
tagging tasks, including tagging Part Of Speech (POS), chunking and NER tasks,
and produced state-of-the-art (or close to) accuracies. Lample et al. [8] applied
character and word embeddings in LSTM-CRF and generated good results on
NER for four languages.

2.2 Relation Classification

As to relation classification, besides traditional feature-based [18] and kernel-
based approaches [23], several neural models have been proposed, including CNN
and RNN. Zeng et al. [24] utilized CNN to extract lexical and sentence level
features for relation classification; Zhang et al. [25] employed RNN to learn
temporal features, long range dependency between nominal pairs. Vu et al. [19]
combined CNN and RNN using a voting process to improve the results of RC.
This paper also implements a pipeline based model. It utilizes BLSTM to
obtain the representation of a sentence, and then concatenates relation vectors,
which are generated by the pre-trained relation classification model, just like CR-
CNN proposed by Santos et al. [14], to extract entity pairs from the sentence.

2.3 Joint Extraction of Entities and Relations

As to end-to-end extraction of relations and entities, most existing models are
feature-based systems, which include integer linear programming [20], card-
pyramid parsing [6], global probabilistic graphical systems [17] and structured
prediction [9,12]. Such models rely on handcrafted features extracted from NLP
tools, such as POS. However, designing features manually is time-consuming,

Outputs . . .

I

| NER

I

! [Fe] [0] L] Backward _ (A

! Layer
Softmax Forward

I

| @ Layer Layer

I

I

I

I

A

Inputs

w (i Bl i o @

Sigmoid Layer
Layer |

CNN !
i

=
N

Layer

K) e ———

-\ I~/ / Convolution

b S - ’ Layer
BLSTM & -/

Embedding

Layer Hidden

Layer
N S S S R e N Woh b b
@BLSTMRE : : T I UL

Fig. 1. An illustration of our model. (a): the overall architecture of BLSTM-RE, (b):
BLSTM is utilized to capture sentence features, (c): CNN is utilized to capture a high
level sentence representation. The dashed lines represent dropout.

and using NLP tools may result in the increase of computational and additional
propagation errors. Recently, deep learning methods provide an effective way of
reducing the number of handcrafted features.

To reduce the manual work in feature extraction, three neural network based
models have been proposed. Gupta et al. [1] utilized a unified multi-task RNN
to jointly model entity recognition and relation classification tasks with a table
representation. It needs to label n(n + 1)/2 cells for a sentence of length n,
while BLSTM-RE only needs to predict m,(n + 1) tags, which are m, different
relations, n entity tags and one relation type, and m, is less than the number of
relations in the sentence. Miwa et al. [11] utilized both bidirectional sequential
and bidirectional tree-structured RNN to jointly extract entities and relations
in a single model, which depended on a well-performing dependency parser.
BLSTM-RE does not rely on the dependency parser, so it is more straightforward
and flexible. Zheng et al. [26] proposed a hybrid neural network model to extract
entities and relations. However they only joined the loss of NER and RC without
considering the interactions between them, which may still hurt the performance.

To verify the effect of the sigmoid classifier, this paper proposes another joint
model BLSTM-R. Different from BLSTM-RE, BLSTM-R treats relation classi-
fication as a multi-class classification problem and employs a softmax classifier
to conduct relation classification instead of using a sigmoid classifier.

3 Model

As shown in Figure 1, BLSTM-RE consists of five components: Input Layer,
Embedding Layer, BLSTM Layer, RC Module and NER Module. The details of
different components will be described in the following sections.

3.1 Word Embeddings

If the input sentence consists of | words s = [wy,ws,...,w], every word w; is
converted into a real-valued vector e;. For each word in s, we first look up the
embedding matrix W¥? € RVl where V is a fixed-sized vocabulary and d
is the dimension of word embeddings. The matrix W*"? is a parameter to be
learned, and d is a hyper-parameter to be chosen by user. We transform a word
x; into its word embeddings e; by using the matrix-vector product:

€ = WwTdvia (1)
where v is a one-hot vector of size |V|. Then the sentence is fed to the next
layer as a real-valued matrix emb, = {ey, ea,...,e;} € RI*4,

3.2 BLSTM Layer

LSTM [3] was proposed to overcome the gradient vanishing problem of RNN.
The underlying idea is to introduce an adaptive gating mechanism, which decides
the degree to which that LSTM units keep the previous state and memorize the
extracted features of the current data input. From Embedding Layer, we obtain
a real-valued matrix embs = {ey,ea,..., e}, which will be processed by LSTM
step by step. At time-step ¢, the memory ¢; and the hidden state h; are updated
based on the following equations:

’l:t g
Tt _ o
0 - o w [htflv et]v (2)
ét tanh
ct = fi Ocio1 +1it O 6, (3)
hi = o¢ ® tanh(e;), (4)

where e; is the input at the current time-step, i;, f; and o; are the input gate,
forget gate and output gate respectively, ¢ is the current cell state, -, o and
® denote dot product, the sigmoid function and element-wise multiplication
respectively.

For the sequence modeling tasks, it is beneficial to have access to the past
context as well as the future context. Schuster et al. [15] proposed BLSTM
to extend the unidirectional LSTM by introducing a second hidden layer, where
the hidden to hidden connections flow in the opposite temporal order. Therefore,
BLSTM can exploit information from both the past and the future.

This paper also utilizes BLSTM to capture the past and the future informa-
tion. As shown in Figure 1(b), the network contains two sub-networks for the
forward and backward sequence context respectively. The output of the t** word
is shown in the following equation:

hy = [FQ &) E]. (5)

Here, the element-wise sum is used to combine the forward and backward
pass outputs. In this paper, we set the hidden units of LSTM to the same size
with word embeddings.

3.3 Relation Classification Module

As shown in Figure 1, RC Module consists of three parts: Convolution Layer,
Max Pooling Layer and Sigmoid Layer. The following sections will discuss each
of the three layers in detail.

Convolution Layer The hidden matrix H = {hy,ha,...,h} € R>? is ob-
tained from the BLSTM Layer, which contains the past and the future informa-
tion of the input sentence s, and then is fed to the Convolution Layer. In this
paper, one-dimensional narrow convolution [5] is utilized to extract higher level
features of the sentence s. A convolution operation involves a filter m € RF*?,
which is applied to a window of k£ words to produce a new feature. For example,
a feature ¢; is generated from a window of words Hj.;+x—1 by

¢i = f(m- Hiiyro—1 +b), (6)

here, b € R is a bias term, and f is a non-linear function such as hyperbolic
tangent. This filter is applied to each possible window of words in the sentence
s to produce a feature map:

c=[ec1,¢2, 00y Clokt1]- (7)

Max Pooling Layer From Convolution Layer, we get a feature map ¢ €
R!=#+1 Then, we employ the max-over-time pooling to select the maximum
value of the feature map by

é = mazx(c), (8)
as the feature corresponding to the filter m. In RC Module, n filters with different

window sizes k are utilized to learn complementary features. And the final vector
z is formed as:

Z:[él,ég,...,én]. (9)

Sigmoid Layer To find out whether a sentence contains multiple relations, we
utilize a sigmoid classifier instead of a softmax classifier to classify the relations
based on the feature z, which is defined as:

P (yls) = sigmoid (Wg - z + bRr) , (10)
g=pyls) >4 (11)

where Wr € R"™*" n, is the number of relations, bp € R is a bias term, and 0
is a hyper-parameter to be chosen by user.

3.4 Named Entity Recognition Module

As shown in Figure 1(a), NER module consists of two parts: LSTM Decoder
Layer and Softmax Layer. Both of these two layers will be described in the
following sections.

LSTM Decoder Layer We treat entity detection as a sequential token tagging
task and apply the BIEOU tagging scheme, where each tag means a token is
the Begin, Inside, End, Outside and Unit of an entity mention respectively.

Note that relations are directed, and the same relation with opposite direc-
tions is considered to be two different classes. For example, compared to Kill
(Chapman, Lennon), Kill (Lennon, Chapman) expresses the opposite meaning
that Chapman is murdered by Lennon in Section 1. This paper uses two differ-
ent letters F' and L to represent the former entity mention and the latter entity
mention in the relation respectively. For example in Figure 1(a), we assign F'B,
FI, FE and LU to two different entity mentions.

To extract entity pairs of different relations, we combine the relation vectors
obtained by the RC Module to generate entity tags. If the sentence only contains
one relation, at each time-step ¢, the output h; of the BLSTM Layer and the
relation vector r are concatenated and fed to the LSTM Decoder Layer.

yr = LSTM (concat(hs, 1)), (12)

here, y; € RY, concat(hy,r) € R4T™ represents z; in Figure 1(a).

Softmax Layer From the LSTM Decoder Layer, we get a real-valued matrix
O = {y1,92,...,y} € RX9 Then it is passed to the Softmax Layer to predict
the named entity tags as follows:

P (yls) = softmax (Wr - O +br), (13)
§ = argmaxp (y]s), (14)

where Wr € R™*? n, is the number of entity tags, and by € R is a bias term.
In this way, we can get one relation and its possible entity pairs. If the sentence
contains multiple relations, this process will be repeated several times, each time
using a different relation vector.

4 Experimental Setups

In this section, we introduce the dataset, the evaluation metrics and the hyper-
parameters used in this paper.

8

Table 1. Summary statistics of the dataset. Sent, Ment and Rel represent the number
of sentences, entity mentions and relation instances respectively, L: average sentence
length, M: maximum sentence length.

Data|Sent|Ment| Rel | L |M
Train 1,153 7,935 [1,626(29.07|114
Test | 288 | 2,025 | 422 [28.94(118

4.1 Dataset

The primary experiments are conducted on a public dataset CoNLL04 [13]2.
The corpus defines four named entity types (Location, Organization, Person
and Other) and five relation types (Kill, Live_In, Located_In, OrgBased_In and
Work_For). Besides, it contains 1,441 sentences that contain at least one rela-
tion. We randomly split these into training (1,153) and test (288), as same as
Gupta et al.[1]3. Summary statistics of the dataset are shown in Table 1.

4.2 Metric and Hyper-parameter Settings

We use the standard F'1 measure to evaluate the performance of entity extraction
and relation classification. An entity is considered correct if one of its tokens is
tagged correctly. A relation for a word pair is considered correct if its relation
type and its two entities are both correct.

We update the model parameters including weights, biases, and word embed-
dings using gradient based optimizer AdaDelta [22] to minimize binary cross-
entropy loss for relation classification and cross-entropy loss for entity detection.
As there is no standard development set, we randomly select 20% of the training
data as the development set to tune the hyper-parameters. The final hyper-
parameters are as follows.

The word embeddings are pre-trained by Miklov et al. [10], which are 300-
dimensional. The number of hidden units of LSTM is 300. We use 300 convolution
filters each for the window size of 3. We set the mini-batch size as 10 and the
learning rate of AdaDelta as the default value 1.0. We set the threshold ¢ of the
sigmoid classifier to 0.5, which is selected from {0.1,0.2,---,0.9} based on the
performance of the development set. To alleviate overfitting, we use Dropout [2]
on Embedding Layer, BLSTM Layer and Convolution Layer with a dropout rate
of 0.3, 0.2 and 0.2 respectively. We also utilize I2 penalty with coefficient 1e~>
over the parameters.

5 Overall Performance

As other systems did not show the result of joint extraction of entities and
relations on the CoNLL04 dataset, we only compare our models with two state-
of-the-art systems TF [12] and TF-MT [1]. Both TF and TF-MT mapped the

2 conll04.corp at cogcomp.cs.illinois.edu/page/resource_view/43.

3 https://github.com/pgcool/TF-MTRNN/tree/master/data/CoNLL04

Table 2. Comparison with previous results. Table 3. Comparison of
our models on the task of
Model| Settings | P | R | F1 entity detection.

TF pipeline |.647]|.522|.577

end-to-end |.760].509 | .610 Model P | R |F1

TF-MT pipeline |.641|.545|.589 pipeline .597].410|.486

end-to-end |.646|.531.583 BLSTM-R |.779/.648|.708

pipeline |.643].390|.485 BLSTM-RE|.883|.652|.750
Ours BLSTM-R |.691 |.481|.567
BLSTM-RE|.747|.548|.632

Table 4. Comparision for relation classification on the CoNLL04 dataset.

[Kate&Mooney]||[Miwa&Sasaki]|[Gupta&Schutze]| LSTM-RE

P R F1 P R F1 P R F1 P R F1
OrgBase_In|.662 .641 .647 |.768 .572 .654 |.831 .562 .671 |.761 .783 .771
Live_In .664 .601 .629 |.819 .532 .644 |.727 .640 .681 |.797 .739 .767
Kill 775 815 790 |.933 797 .858 |.857 .894 .875 [.952 .870 .909
Located_In |.539 .557 .513 |.821 .549 .654 |.867 .553 .675 |.804 .732.766
Work_For |.720 .423 .531 |.886 .642 .743 |.945 .671 .785 |.845 .790 .817
average |.672 .607 .622 |.845 .618 .710 |.825 .664 .737 |.832 .783 .806

entity and relation extraction task to a simple table-filling problem. And the
table filling method needs to label n(n 4 1)/2 cells for a sentence of length n,
while our models only need to predict m,(n + 1) tags, where m, is much less
than n/2. BLSTM-RE boosts the F'1 score by 2.2%. Compared with these two
models, our model BLSTM-RE is simpler and more effective.

Table 2 also indicates that both BLSTM-RE and BLSTM-R perform better
than the pipeline model, mainly because that the pipeline model trains entities
and relations separately without considering the interaction between them, while
BLSTM-R and BLSTM-RE learn entities and relations simultaneously.

BLSTM-RE achieves better results than BLSTM-R, the reason is that the
input sentence may contain many relations as shown in Table 1. The softmax
classifier only generates one most likely relation, while the sigmoid classifier can
generate several relations at a time. In this situation, BLSTM-R only models
one triplet, while BLSTM-RE can model multiple triplets simultaneously.

5.1 Analysis of NER and RC

This section summarizes the performance of NER and RC individually, which
means that an entity is considered correct if one of its tokens is tagged correctly
and a relation is considered correct if its relation type is correct. Because these
three systems [1,6,12] assumed that the entity boundaries were given and only
recognized entity types, while we only recognize entity boundaries. Therefore,
we only compare the effect of RC with them as shown in Table 4.

10

+—+ pipeline Il pipeline

v—v BLSTM-R 07k B BLSTM-R |]
08 e—e BLSTM-RE[] BB BLSTM-RE
0.7 0.6
L os S 05
g g
S o5 S
o 0 0.4l
— —
w04 w
0.3F
0.3
0.2 02
01 ; ; ; ; ; 01
10 20 30 40 50 60 OrgBased_In Live_In Kill Located_In Work_For
Sentence length Relations
Fig. 2. Results v.s. sentence length. Fig. 3. Results v.s. relations.

Table 3 shows the results of our three models on the task of NER. BLSTM-R
and BLSTM-RE both have better performance than the pipeline model, which
means that relation vectors are useful for the extraction of entities. Futhermore,
BLSTM-RE is better than BLSTM-R, which shows that multi-label classification
can effectively recognize relations than multi-class classification in this work.

The first two works [6, 12] performed 5-fold cross-validation on the complete
corpus. However, the folds were not available. We follow Gupta et al. [1] and
report results on the same dataset. Since the standard divisions of the corpus are
not the same, we cannot directly compare the results with the first two works [6,
12]. But compared with TF-MT [1], BLSTM-RE shows an improvement of 6.9%
in average F'1 score.

5.2 Effect of the Sentence Length

Figure 2 depicts the performance of our models on sentences of different length.
The z-axis and the y-axis represent sentence length and F'1 score respectively.
The sentences collected in the test set are no longer than 60 words. The F'1 score
is the average value of the sentences with length in the window [n,n 4 9], where
n={1,11,...,51}. Each data point is a mean score over five runs.

BLSTM-RE outperforms the other two models, and this suggests that learn-
ing multiple relations and entity pairs corresponding to the relations simultane-
ously can effectively extract triplets from sentences. At the same time, it shows
that the F'1 score declines with the length of sentence increasing. In the future
work, we would like to investigate neural mechanisms to preserve long distance
dependencies of sentences.

11

5.3 Effect of the Relations

Figure 3 depicts the performance of our models on different relations. The z-
axis and y-axis represents relations and F'1 score respectively. As the same as in
Figure 2, each data point is a mean score over five runs.

Different from Table 4, the F'1 score involves entity and relation, which means
that a relation is marked correct if the named entity boundaries and relation type
are both correct. The figure shows that our models have different performance on
different relations, and BLSTM-RE performs better than the other two models.
All models perform better on relation Kill than the other four relations. There
may be two main reasons. One is that all test sentences containing relation
Kill do not contain other relations, and most of them contain keywords such as
7kill”, ”death”, and ”assassinate”, and therefore most of these sentences can be
classified correctly when extracting relations. The other is that more than 80%
of test sentences containing relation Kill only contain two entities. Thus, it is
easy to recognize these entities.

6 Conclusions

This paper presents a novel end-to-end model BLSTM-RE to extract entities and
relations. This model exploits BLSTM and CNN to automatically learn features
from word embeddings without using any NLP tools. Thus, it is more straight-
forward and flexible. It treats relation classification as a multi-label classifica-
tion problem and utilizes a sigmoid classifier to generate one or more relations.
Therefore, it can model multiple relations and entity pairs at the same time.
The effectiveness of BLSTM-RE is demonstrated by evaluating the model on
the CoNLLO04 dataset, and our model performs better than the pipeline based
models and other end-to-end models. The experiment results also show that
relation vectors obtained by RC Module are useful for the extraction of entities.

Acknowledgments

This research was supported by the National High Technology Research and
Development Program of China (No.2015AA015402) and the National Natural
Science Foundation of China (No0.61602479). We thank the anonymous reviewers
for their insightful comments.

References

1. Gupta, P., Schutze, H., Andrassy, B.: Table filling multi-task recurrent neural net-
work for joint entity and relation extraction. In: COLING (2016)

2. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. Com-
puter Science 3(4), 212-223 (2012)

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9(8), 1735-1780 (1997)

Huang, Z., Xu, W., Yu, K.: Bidirectional lstm-crf models for sequence tagging.
Computer Science (2015)

Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. ACL (2014)

Kate, R.J., Mooney, R.J.: Joint entity and relation extraction using card-pyramid
parsing. ACL (2010)

Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I., Zhong,
V., Paulus, R., Socher, R.: Ask me anything: Dynamic memory networks for natural
language processing. Computer Science (2016)

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. In: NAACL-HLT. pp. 260-270 (2016)
Li, Q., Ji, H.: Incremental joint extraction of entity mentions and relations. In:
ACL. pp. 402-412 (2014)

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. NIPS (2013)

Miwa, M., Bansal, M.: End-to-end relation extraction using Istms on sequences
and tree structures. In: ACL. pp. 1105-1116 (2016)

Miwa, M., Sasaki, Y.: Modeling joint entity and relation extraction with table
representation. In: EMNLP. pp. 944-948 (2014)

Roth, D., Yih, W.t.: A linear programming formulation for global inference in
natural language tasks. Tech. rep., DTIC Document (2004)

Santos, C.N.D., Xiang, B., Zhou, B.: Classifying relations by ranking with convo-
lutional neural networks. Computer Science (2015)

Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans-
actions on Signal Processing 45(11), 2673-2681 (1997)

Shin, J., Wu, S., Wang, F., De Sa, C., Zhang, C., Ré, C.: Incremental knowledge
base construction using deepdive. VLDB Endowment 8(11), 1310-1321 (2015)
Singh, S., Riedel, S., Martin, B., Zheng, J., Mccallum, A.: Joint inference of enti-
ties, relations, and coreference. In: The Workshop on Automated Knowledge Base
Construction. pp. 1-6 (2013)

Suchanek, F.M., Ifrim, G., Weikum, G.: Combining linguistic and statistical anal-
ysis to extract relations from web documents. In: SIGKDD. pp. 712-717 (2006)
Vu, N.T., Adel, H., Gupta, P., et al.: Combining recurrent and convolutional neural
networks for relation classification. In: NAACL-HLT. pp. 534-539 (2016)

Yang, B., Cardie, C.: Joint inference for fine-grained opinion extraction. In: ACL.
pp. 1640-1649 (2013)

Yao, L., Sun, C., Li, S., Wang, X., Wang, X.: Crf-based active learning for chinese
named entity recognition. In: IEEE International Conference on Systems, Man and
Cybernetics. pp. 15571561 (2009)

Zeiler, M.D.: Adadelta: An adaptive learning rate method. Computer Science
2012

(Zelenl)m, D., Aone, C., Richardella, A.: Kernel methods for relation extraction.
Journal of Machine Learning Research 3(3), 1083-1106 (2010)

Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J., et al.: Relation classification via
convolutional deep neural network. In: COLING. pp. 2335-2344 (2014)

Zhang, D., Wang, D.: Relation classification via recurrent neural network. Com-
puter Science (2015)

Zheng, S., Hao, Y., Lu, D., Bao, H., Xu, J., Hao, H., Xu, B.: Joint entity and
relation extraction based on a hybrid neural network. Neurocomputing (2017)

