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Abstract
Convolutive non-negative matrix factorization (CNMF) and
deep neural networks (DNN) are two efficient methods for
monaural speech separation. Conventional DNN focuses on
building the non-linear relationship between mixture and target
speech. However, it ignores the prominent structure of the target
speech. Conventional CNMF model concentrates on capturing
prominent harmonic structures and temporal continuities of
speech but it ignores the non-linear relationship between the
mixture and target. Taking these two aspects into consideration
at the same time may result in better performance. In this
paper, we propose a joint optimization of DNN models with an
extra CNMF layer for speech separation task. We also utilize
an extra masking layer on the proposed model to constrain
the speech reconstruction. Moreover, a discriminative training
criterion is proposed to further enhance the performance of
the separation. Experimental results show that the proposed
model has significant improvement in PESQ, SAR, SIR and
SDR compared with conventional methods.
Index Terms: speech separation, Convolutive non-negative
matrix factorization (CNMF), Deep neural networks (DNN)

1. Introduction
Speech separation aims to segregate the target speech
from the mixture, which is important for many realistic
applications, such as speech communication and automatic
speech recognition (ASR) [1, 3, 15]. Although it has been
studied for years, current separation systems are still far behind
human capability. Finding a good speech separation system
remains an unsolved problem, especially in low signal-to-noise
(SNR) and non-stationary noise conditions.

Non-negative matrix factorization (NMF) is a popular
algorithm used for monaural speech separation, which can
capture the prominent structure pattern of the speech. The basic
principle of NMF-based method is to represent the features of
the clean speech and noise via sets of basis spectra matrices and
their activation coefficients. Mixture signal is then analyzed
using the concatenated sets of basis spectra matrix. The
clean speech and the noise can be reconstructed using its
corresponding basis matrix and activation coefficients. NMF
captures the frequency structure of signals. However, previous
studies, such as in [6], show that the speech has prominent
structure on both frequency and temporal axes. Therefore,
the speech separation would be benefit from considering the
temporal pattern. In [12], a more efficient approach, convolutive
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Figure 1: The basis spectra of speech for a single female
speaker (SA1) taken from the TIMIT speech database

non-negative matrix factorization (CNMF), is proposed which
involves the sharing of decompositions among a set of bases
with time shift and has been shown to perform well in speech
separation task. CNMF can capture the complex temporal
and frequency patterns of speech, which is an extension of
NMF. The basis spectra obtained by CNMF using only one
speech utterance are shown in Figure 1. We can see that the
basis spectra reflect the time-frequency structure of the speech
very well. However, the CNMF is a linear model that limits
its capability. Another problem is that CNMF-based model
relies on an iterative method in separating stage which makes
it inefficient.

Recently, the deep neural network (DNN) has attracted
many researchers’ attention. The speech separation methods
based on DNN can achieve good performance due to the
powerful capabilities of DNN on building the non-linear
relationships between the mixture and the target. In
general, DNN-based model predicts a mask or the magnitude
spectrogram of interest [8, 16, 17] directly, which has no
constraint on temporal and frequency structures of the target
speech. Therefore, the DNN-based speech separation system
would benefit from integrating the target speech patterns to
DNN.

In this paper, we propose a novel DNN integrating
CNMF to predict magnitude spectrograms of speech and noise
simultaneously. First, we use CNMF to obtain the basis spectra
from clean speech and noise. Second, we combine activation
coefficients computed by DNN with basis spectra to reconstruct
the magnitude spectrograms of the target speech and the noise.
Finally, the errors between the target speech and estimation are
used to update the weights of DNN. In addition, to enforce a
reconstruction constraint, we add an extra masking layer on the
model. A discriminative training objective is also explored.

The rest of this paper is organized as follows. In Section 2,
we introduce the problem formulation of the separation task by
CNMF algorithm. In Section 3, we present the proposed model.
The method of optimizing the proposed model is also put
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forward. Experiments and evaluation are provided in Section
4. Finally, we summarize our work in Section 5.

2. Problem formulation
Given a noisy signal, we assume that the magnitude
spectrograms of speech and noise are additive. The magnitude
spectrogram of mixture can be approximated as:

X(t, f) ≈ Ys(t, f) +Yn(t, f) (1)

where X, Ys and Yn are the magnitude spectrum of the
mixture, clean speech and noise, respectively. t presents the
frame index. f presents the frequency index. Previous study
has shown that this approximate yields suitable results [10].

Applying CNMF to Ys and Yn, respectively, we can
obtain the approximate factorization of Ys and Yn via sets
of basis spectra and corresponding activation coefficients as
follows:

Ys ≈
T−1∑
t=0

Ws (t) ·
t→
Hs

Yn ≈
T−1∑
t=0

Wn (t) ·
t→
Hn

(2)

where Ws(t) ∈ R
F×Ls
+ and Wn(t) ∈ R

F×Ln
+ are the basis

spectra matrices of speech and noise, respectively. Ls and
Ln are the numbers of basis vectors to represent speech and
noise. Hs ∈ R

Ls×N
+ and Hn ∈ R

Ln×N
+ are the activation

coefficients. T denotes the temporal extent in frames of the

CNMF bases. The
i→
(·) denotes a column-shift operator that

moves the columns of its argument by i spots to the right. As
each column is shifted off to the right, the leftmost column are

filled by zero. Conversely, the
i←
(·) operators shifts columns off

to the left, with zero filling on the right. Here is an example.

A =

[
1 2 3 4
5 6 7 8

]
0→
A =

[
1 2 3 4
5 6 7 8

]
1→
A =

[
0 1 2 3
0 5 6 7

]
2←
A =

[
3 4 0 0
7 8 0 0

] (3)

In general, the basis spectra matrices Ws and Wn are learned
using clean speech and noise in advance. Given the Ws

and Wn, the magnitude spectrogram of the noisy X can be
rewritten as (4), where Ĥs and Ĥn are computed iteratively
by CNMF using minimum square error (MSE) criterion. More
details could be found in [12].

X ≈ Ŷs + Ŷn ≈
T−1∑
t=0

⎛
⎜⎝[

Ws(t) Wn(t)
] ⎡⎢⎣

t→
Ĥs
t→
Ĥn

⎤
⎥⎦
⎞
⎟⎠ (4)

Moreover, we also define the soft time-frequency mask M to
restrict the sum of Ys and Yn to X, which is shown as (5).

Ms =
Ŷs

Ŷs + Ŷn

Mn =
Ŷn

Ŷs + Ŷn

(5)

where, Ms and Mn are the soft masks of the target speech and
the noise, respectively. Then, the estimated separation spectra

Ỹs and Ỹn can be computed as follows:

Ỹs = Ms ⊗X

=

∑T−1
t=0 Ws (t) ·

t→
Ĥs

∑T−1
t=0

⎛
⎜⎝[

Ws(t) Wn(t)
] ⎡⎢⎣

t→
Ĥs
t→
Ĥn

⎤
⎥⎦
⎞
⎟⎠
⊗X

Ỹn = Mn ⊗X

=

∑T−1
t=0 Wn (t) ·

t→
Ĥn

∑T−1
t=0

⎛
⎜⎝[

Ws(t) Wn(t)
] ⎡⎢⎣

t→
Ĥs
t→
Ĥn

⎤
⎥⎦
⎞
⎟⎠
⊗X

(6)

where the division is performed element-wise, and⊗ denotes an
element-wise multiplication. Finally, with the separated spectra
of the speech and the noise, we can convert the estimation from
frequency domain to time domain using the noisy phase and
inverse short time Fourier transform (STFT).

3. Proposed method
From the above, we can see that the key to solve the speech
separation problem are to obtain the basis spectra Ws and Wn

and estimate the activation coefficients Ĥs and Ĥn. We use
CNMF algorithm to generate Ws and Wn on a set of clean
speeches and different kinds of noises. With fixed Ws and Wn,

we use a DNN model to learn the Ĥs and Ĥn from the mixture.
Then, we can obtain the estimation use (6). Finally, we use the
error between the estimation and the target to update the DNN.

3.1. Model Architecture

To estimate the Ỹs and Ỹn from mixture X, we integrate
CNMF into DNN model. The architecture of the model is
shown in Figure 2. The DNN model consists of one input layer,
several hidden layers, one output layer, and two extra layers:
CNMF layer and masking layer. Extra layers are deterministic
layers without any update during the DNN training.

3.2. Discriminative Training

When Ỹs and Ỹn, the estimates of Ys and Yn, are obtained
from the proposed hybrid model, we can optimize the DNN
parameters using the discriminative objective function as in (7).

J =
1

2

(∥∥∥Ys − Ỹs

∥∥∥2

2
+

∥∥∥Ys − Ỹs

∥∥∥2

2

)

− λ

2

(∥∥∥Ys − Ỹn

∥∥∥2

2
+

∥∥∥Yn − Ỹs

∥∥∥2

2

) (7)

where ‖·‖2 is the �2 norm between the two matrices. λ is a
constant, chosen by the performance of the experiment. In [5],
the author has shown that the discriminative objective function
can obtain a better performance compared with conventional
MSE based objective function.

3.3. Optimization

The optimization of the proposed model includes two stages:
forward propagation stage and back propagation stage. From
the architecture of the proposed model, we can see that the
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Figure 2: Proposed model architecture

weight share strategy should be employed when updating the
weights of the DNN.

3.3.1. Forward propagation

Suppose that X = [x1,x2 . . .xm] is the input sequences,
where xm is the m-th frame of input. The activations of hidden
and output layers can be computed recursively using (8) as
follows:

Zl+1 = Wl ×Al + bl; Al+1 = f (Zl+1) (8)

where, Wl and bl are the weights and bias. Al is the activations
of the layer l. A0 is the input X. f(·) is the activation function.

After getting the Ĥs and Ĥn from the output layer of DNN,

we can use Ws and Wn to compute the Ŷs and Ŷn by (2),
which are the outputs of CNMF layer in Figure 2. The final

outputs of the proposed model, Ỹs and Ỹn, are computed
according to (6).

3.3.2. Back propagation

The weights of DNN are updated by computing the gradients of
the objective function (7) using chain rules:

∇Wl =
∂J

∂Zl+1

∂Zl+1

∂Wl
=

∂J
∂Zl+1

(Al)
T

(9)

To simplify the notations, we introduce a variable δ defined
as δl =

∂J
∂zl

. First, for the output layer (l = nl), we have:

δnl =
∂J

∂Ĥnl

⊗ Ĥnl

∂Znl

=

[
∂J

∂Ĥs
,

∂J

∂Ĥn

]
⊗ f ’ (Znl) (10)

where,

∂J

∂Ĥs
=

T−1∑
t=1

(Ws (t))T
t←
Bs

∂J

∂Ĥn
=

T−1∑
t=1

(Wn (t))T
t←
Bn

(11)

and,

Bs = [−(Ys − Ỹs) + λ(Yn − Ỹs)

+ (Yn − Ỹn)− λ(Ys − Ỹn)]⊗ Ỹn

Ỹs + Ỹn

Bn = [(Ys − Ỹs)− λ(Yn − Ỹs)

− (Yn − Ỹn) + λ(Ys − Ỹn)]⊗ Ỹs

Ỹs + Ỹn

(12)

Second, for the l-th layer (l = nl − 1, nl − 2, . . . , 1) , we have:

δl =
(
(Wl)

T δl+1

)
⊗ f ’(Zl) (13)

Then, we can compute the partial derivatives of the
discriminative objective function with respects to the DNN
weights by (14)

∇W = δl (Al−1)
T (14)

Finally, with partial derivatives, we can update the weights
of the DNN by Limited-memory Broyden-Fletcher-Goldfarb-
Shanno Algorithm (LBFGS) [7].

4. Experiments
4.1. Experiment setup

In order to evaluate the performance of the proposed separation
model, the TIMIT [2] corpus and the NOISEX-92 [13] corpus
are used in experiments. The TIMIT corpus are used as
the clean database and the NOISEX-92 corpus are used as
interference, respectively. The TIMIT contains broadband
recordings of 630 speakers of eight major dialects of American
English. The NOISEX-92 contains 15 common types of noise
in real-world environment. Each type noise is about 4 minutes
long. The sampling rate is 16kHz for all utterances.

A fixed 32-ms frame size was used with 50% overlap
between frames. The discrete Fourier transform (DFT) is
applied on each frame. And the length of the DFT is 512.

Table 1: The average value of SDR in different λ
λ 0.005 0.007 0.01 0.03 0.05 0.1

SDR 9.6482 9.6609 9.6702 9.7364 9.6516 9.5924

In order to train the proposed model, we chose 50 speakers
from the TIMIT randomly and select 2 utterances randomly
for each speaker. 100 selected utterances are randomly mixed
with 10 types of noise to generate 3000 mixtures as training
set. The SNR of the mixture are distributed from -7dB to 7dB
continuously. At test stage, we chose 200 clean utterances,
unseen in training set, from the TIMIT corpus randomly.
Then, we use clean speech mixed with all 15 types of noises
randomly to generate 400 test utterances. Among the 15
type noises, 5 types are unseen in training set, which are
considered as the unmatched noises to evaluate the robustness
of the proposed model. The SNR of the test set are distributed
in {-10,-7,-5,-2,0,2,5,7,10}dB randomly. Meanwhile, we also
generate 500 validation utterances. In validation set, we use all
15 types noises. And the clean speech used differ from those
used in training set.

For CNMF, we use all utterances of the TIMIT to train the
basis spectra of clean speech. We train the basis spectra of the
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noise using 9 types of noises which is same as the noises added
in DNN training set.

We evaluate the performance using Source to Interference
Ratio(SIR), Source to Distortion Ratio (SDR), Source to
Artifacts Ratio (SAR) [14] and Perceptual Evaluation of
Speech Quality (PESQ) [11]. SAR, SIR, and SDR reflect the
artifacts introduced by separation process, the suppression of
interference and the overall performance, respectively. PESQ
reflects the quality of the objective speech. Higher value means
better performance for all evaluation criteria.

Table 2: Speech separation performance with various source
algorithms in matched noise

SNR DNN CNMF DNN-CNMF
(dB) SDR SIR SAR SDR SIR SAR SDR SIR SAR

-10 4.03 7.57 3.1 -1.32 0.17 6.02 4.6 8.46 3.04
-7 7.15 12.16 6.71 2.37 4.34 6.06 8.23 14.62 7.68
-5 8.04 13.15 7.81 3.82 5.81 6.8 9.44 16.45 9.11
-2 8.37 12.71 8.64 4.66 6.37 8.01 9.37 15.18 9.46
0 8.78 13.06 9.19 5.55 7.19 8.76 9.83 15.3 10.14
2 10.39 15.57 10.81 7.06 8.9 9.72 11.92 18.32 12.4
5 11.05 16.23 11.46 7.94 9.94 10.06 12.91 18.84 13.68
7 12.49 18.56 12.91 8.51 10.61 10.49 15.01 21.63 15.84
10 13.67 20.64 13.97 9.52 12.01 11.03 17.56 24.03 18.59

Table 3: Speech separation performance with various source
algorithms in unmatched noise

SNR DNN CNMF DNN-CNMF
(dB) SDR SIR SAR SDR SIR SAR SDR SIR SAR

-10 2.01 6.13 1.95 -1.49 0.85 3.35 1.59 7.01 1.65
-7 2.52 5.57 4.09 -0.18 1.41 5.65 2.76 6.63 3.8
-5 3.73 6.76 5.11 1.04 2.46 6.41 4.05 7.92 5.2
-2 5.93 9.23 7.28 3.58 5.19 7.7 6.12 9.98 7.58
0 8.4 12.6 9.17 5.26 6.97 8.42 8.85 13.7 9.91
2 8.09 11.22 9.42 5.69 7.19 9.13 8.69 12.4 10.21
5 10.15 14.48 11.11 7.44 9.28 9.97 11.12 15.66 12.56
7 11.23 15.64 12.23 7.8 9.61 10.2 12.77 16.84 14.64
10 12.74 18.53 13.34 8.84 11.08 10.57 14.98 19.18 16.9

4.2. Baseline Model and Parameter Selection

We compare the performance of the proposed model (denoted
as ‘DNN-CNMF’) with conventional DNN [17] and CNMF
[9] models. In all DNN models, we use a window (5
frames) of combined magnitude spectrograms as input features.
All DNN models have two hidden layers of 1000 units.
The conventional DNN model predicts the current frame of
magnitude spectrograms of clean speech and noise directly. The
weights of all DNN models are initialized randomly. All models
iterate 500 times by standard back propagation algorithm. In
CNMF training stage, we learn basis spectra matrices of speech
and noise from training set using a convolutional of 8 frames.
Besides, to capture the basis spectra sufficiently, we set 256 as
the numbers of bases vectors, and iterate 200 times. Finally,
we should note that, the output of the DNN-CNMF is used
as activation coefficient of the CNMF which is nonnegative.
Therefore, ReLu activation function [4] (f (x) = max (0, x))
is used for the output layer of all DNN models.

4.3. Experimental results

Before analysing the results of the experiments, we should
explore the value of λ. We use the average result of SDR on
test set to select λ. As showed in Table 1, we fixed λ = 0.03 in
following experiments.
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Figure 3: PESQ with various source algorithms in matched
noise and unmatched noise
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Figure 4: Top left: The spectrogram of the mixture speech;
Centre left: Clean speech spectrogram; Bottom left: Clean
noise spectrogram; Top right: Speech separation using our
method; Centre right: Speech separation using CNMF; Bottom
right: Speech separation using DNN

Table 2, Table 3 and Figure 3 show the results of
different speech separation methods (DNN-CNMF, DNN and
CNMF) with matched noise and unmatched noise conditions,
respectively. We can observe that the DNN-CNMF model
achieves better results on most evaluation criterions. We think
it caused by two possible reasons: First, the CNMF ignores
the non-linear relationship between the mixture and the target.
Second, although both the DNN-CNMF and conventional DNN
model can predict magnitude spectrograms, the DNN-CNMF
model can reconstruct the target speech well. Due to the
information of the temporal and frequency patterns of the target
is employed in the model.

Finally, an example of reconstructed the clean spectrogram
is shown in Figure 4. We can find that the proposed model
is much better than the CNMF model and DNN model.
The proposed model can suppress more interferences than
conventional CNMF in all frequency bands. Meanwhile, the
proposed model causes less speech distortion than DNN model
in middle and high frequency bands.

5. Conclusion
In this paper, we propose a novel DNN-CNMF model for
monaural speech separation. Through a series of experiments,
we have proved that the performance of the proposed model
outperforms the conventional CNMF-based model and DNN
model. For future work, we will explore the feasibility of DNN-
CNMF model in reverberation environment.
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