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Implicit Reconstruction of Vasculatures Using
Bivariate Piecewise Algebraic Splines

Qingqi Hong*, Qingde Li, and Jie Tian, Fellow, IEEE

Abstract—Vasculature geometry reconstruction from volu-
metric medical data is a crucial task in the development of
computer guided minimally invasive vascular surgery systems.
In this paper, a technique for reconstructing the geometry of
vasculatures using bivariate implicit splines is developed. With the
proposed technique, an implicit geometry representation of the
vascular tree can be accurately constructed based on the voxels
extracted directly from the surface of a certain vascular structure
in a given volumetric medical dataset. Experimental results show
that the geometric representation built using our method can
faithfully represent the morphology and topology of vascular
structures. In addition, both the qualitative and the quantitative
validations have been performed to show that the reconstructed
vessel geometry is of high accuracy and smoothness. An virtual
angioscopy system has been implemented to indicate one of the
strengths of our proposed method.

Index Terms—Implicit modeling, vasculature reconstruction,
virtual angioscopy.

1. INTRODUCTION

CCURATE reconstruction of vessel geometry is an im-

portant task in the field of medical data visualization [1].
It plays a crucial role in the area of computer-aided diagnosis
and computer guided minimally invasive vascular surgery, such
as the diagnosis of anomalous growths and stenosis [2], virtual
angioscopy [3]. Though the vessel structures contained in a
volume dataset can be visualized using certain direct volume
rendering techniques and the image generated in this way can
be quite useful and suitable for the task of computer-aided
vascular diagnosis, in developing a computer-aided vascular
surgery system, just to be able to visualize the hidden vascular
structures is far from sufficient. We are required not only to
see the objects but also to touch and feel them. Obviously,
it can be very difficult to accurately locate and position the
vascular objects directly from the image generated from direct
volume rendering. This is because without an actual geom-
etry representation for the vascular structures, it can be an
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extremely challenging task to register such an image with the
actual vascular objects, which is a fundamental task required in
the process of computer-aided vascular surgery. In this paper,
we choose to reconstruct the vascular geometry as an implicit
surface, since the isosurfaces extracted directly from the seg-
mented vasculature using surface rendering techniques (i.e.,
Marching Cubes [4]) are usually poor, frequently exhibiting ar-
tifacts and discontinuities. In this research, we aim to construct
the vessel geometry accurately and smoothly as an implicit
function from a cloud of voxels extracted from the segmented
vessel surface. The most basic requirement of a vasculature re-
construction technique is that the reconstructed geometry must
be accurate. The requirement of accuracy for reconstructing
3-D vascular tree is obviously imperative for any computer
systems involving diagnosis and computer-aided surgery [5].
In addition, the reconstructed surfaces are expected to be of
high-level smoothness and can be expressed in an analytical
form. An explicit analytical expression of vasculature not only
allows to display the reconstructed surface with any specified
resolution, but can also be very useful in the stage of vessel
analysis, such as the measurement of blood flux, vascular shape
analysis, and the orientation for the specific portions of the
vessel structure. All these tasks could be quite difficult to be
achieved based on the segmentation result since it is a discrete
point set [6].

Due to the complex nature of vascular structures, the best
way to represent the topology of vasculature is to use skeleton
curves. The skeleton of an object, which is identified as the
locus of the centers of maximal spheres inside the object [7],
has the ability to naturally capture important shape characteris-
tics in three-dimensional contexts [8]. Thus, the skeleton-based
reconstruction is regarded as the most natural option to con-
struct efficiently the complete vascular structures [9]. Various
skeleton-based methods have been proposed for reconstructing
vasculatures from segmented dataset. However, most of these
approaches are model-based, assuming that a vascular lumen is
having a certain regular shape, such as cylinders [10], truncated
cones [11]. Although these methods can achieve certain level
of smoothness in a relatively fast speed, they are far from accu-
rate as the model used in the reconstruction process is usually
too ideal to correctly represent the actual variation presented by
the cross sections of a vascular structure. As a result, the recon-
structed geometry cannot be used in a computer-aided surgery
system by surgeons for performing computer-aided minimally
invasive vascular surgery. In addition, the vascular surfaces gen-
erated from most of these methods are represented either in
parametric form or as polygonal mesh, which are prone to gen-
erate artifacts and discontinuities at branching where graphics
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primitives are fitted together [1]. Oeltze and Preim [6] have ap-
plied the convolution surfaces [12] for the reconstruction of vas-
culatures, which can achieve quite smooth vessel surfaces even
at branchings. However, this method is based on an ideal model
assumption that the cross sections of vascular structures are all
circular. Actually, the cross sections of vessels are not always
circular, especially for that of pathologic vessels.

In this paper, we present a novel approach for the accurate
reconstruction of vasculature along its skeleton without model
assumptions. This technique is based on an implicit surface
modeling method that we have developed to model generalized
cylinders [13]. In this implicit generalized cylinders modeling
method, the freeform cross sections are first reconstructed
implicitly using the 2-D piecewise algebraic splines [14], and
then, different cross-section profiles are weighted and summed
up along the skeleton using the partial shape preserving (PSP)
spline basis functions [15], the 1-D version of 2-D piecewise
algebraic splines. In addition, we employ the smooth piecewise
polynomial blending operations [16] to blend the branches
of implicitly constructed generalized cylinders together. Our
method can construct a smooth, C™ ~1(m > 2) continuous im-
plicit surface represented explicitly in analytic form, which can
be evaluated extremely efficient [14]. The proposed method has
been applied to actual 3-D medical data for the reconstruction
of vasculatures. The experiment results show that the recon-
structed vascular shapes are of high accuracy and smoothness.
Some qualitative and quantitative analysis has been carried
out to show the validation of proposed technique. A virtual
angioscopy system is implemented using the reconstructed
implicit vascular surface to demonstrate one of the strengths of
our method.

II. RELATED WORK

Surface reconstruction approaches for vasculatures can be
grouped into two categories: skeleton-based surface reconstruc-
tion and skeleton-free surface reconstruction. The methods in
the latter category directly reconstruct vascular surfaces from
segmented data without the usage of pre-extracted skeleton of
the vessel. Marching Cubes (MC) [4] is the most commonly
used surface construction technique of this kind. However, the
quality of the constructed images of vasculature based on MC
is relatively low due to the use of linear interpolation for filling
the gap between neighboring voxels [5]. Although simple
smoothing procedures can be employed to reduce the aliasing
artifacts of surface visualization, the appropriate smoothing of
vascular structures is a challenging task and does not lead to
the desired results in general [17]. Another issue associated
with MC is that it is error-prone and does not always guarantee
a correct reconstruction of the vasculature morphologically and
topologically. Constrained elastic surface nets (CESN) [18]
is the best general method to smooth visualizations of binary
segmentation results, but it still induces unsatisfactory result
for small vascular structures [5].

Schumann et al. [5], [19] have proposed a method based on
multi-level partition of unity (MPU) implicits [20], which pro-
vides a superior quality of visualizing results when compared
to CESN. The basic principle of this method is to convert the
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segmentation result into a point cloud that is transformed into a
surface representation by means of MPU Implicits, which fits a
smooth quadratic surface locally to each local subdataset. Gen-
erally, the implicit surfaces are able to represent a given geom-
etry smoothly without explicitly constructing the geometry [1].
However, due to the complex and fine nature of most vascular
tree, the quality of the resulting surfaces is usually poor and
has to be improved using an additional remeshing step [19], ei-
ther based on parameterization, or fitting of subdivision surfaces
[21], which subsequently increases the effort required from the
reconstruction process and inevitably introduces further errors.

As discussed in the first section, it would be more intuitive
and appropriate to reconstruct the surface along its skeleton
for tubular structure. Various skeleton-based methods have
been proposed for reconstructing vasculatures from segmented
dataset. When perform skeleton-based vascular surface recon-
struction, the first thing needed to be done is to determine the
vessel centerline and the local vessel cross sections [1]. The
generation of skeleton is usually achieved by the technique
of morphological thinning, or a step-by-step approach, which
moves a small sub-volume, such as parallelepiped or sphere, to
recursively slide along the vessel tree [22]. Once the skeleton
has been extracted out from the input segmented data, the
explicit geometry models of vasculatures can be constructed
by using the geometric information provided for the vessel
cross sections. When only diameter is available for the vessel
cross section, certain model-based approaches can be used to
construct the vascular surfaces by using certain type of geo-
metric primitives, such as cylinders [10], truncated cones [11].
However, the quality of the vascular surfaces generated using
this method depends on the number of vertices used to approx-
imate the cross-section profile and the number of geometric
primitives associated with the skeleton [1]. Although these
methods can achieve certain level of smoothness in a relatively
fast speed, when the model is incorrect, which is often the case,
they may lead to geometric surfaces that are quite unreal. In
addition, most of the geometric surfaces reconstructed in these
ways are represented as a kind of polygonal mesh, which are
prone to producing artifacts and discontinuities at branching
when geometric primitives are blended together.

Various shape modeling techniques have been suggested to
construct geometric shapes along skeletons such that the con-
structed shape can achieve smooth transition at the points of
branching. Hohne et al. have proposed to use B-spline surfaces
to approximate small vascular structures and nerves [23]. Felkel
et al. have proposed a method based on the subdivision of an ini-
tial coarse base mesh [24]. Bornik et al. have employed simplex
meshes for the high-quality visualization of vascular structures
[25]. However, all methods above are explicit model based.
They either express the underlying geometric shape as a polyg-
onal mesh or as a parametric surface. As have been pointed out
above, they are difficult to perform shape blending operations
in general. Recently, Wu et al. [9] have improved the Felkel et
al. meshing method to achieve relatively accurate and smooth
vascular structures. However, this approach is based on the fit-
ting of explicit circles or ellipses to the cross sections of vessel,
which in general cannot provide an accurate approximation to
the actual vascular objects. In addition, the underlying shape is
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expressed as polygonal mesh, which has a difficulty of imple-
menting ramification of branchings [26].

Another way to represent the underlying geometric shape is
to use an implicit function, such as the methods proposed in
Bloomenthal’s work [12], [27]. An implicit surface is a sur-
face that consists of those points P satisfying the implicit func-
tion, f(P) = 0 [28]. One way to construct an implicit surface
along a given skeleton is to use the convolution surfaces (CS)
[12], which has been employed in [6] to visualize vasculatures.
This method, taking input of vessel skeleton and the diameter
information per voxel, produces smooth transitions at branch-
ings and closed, rounded ends. The technique of CS visualiza-
tion can usually show much better visual quality, when com-
pared with the truncated cone visualization. However, the recon-
structed vascular geometry is only a morphological approxima-
tion, which is far from accurate and does not meet the basic re-
quirements of computer-aided vascular diagnosis and computer
guided vascular surgery, due to its simplifying model assump-
tion of circular cross sections.

III. IMPLICIT GENERALIZED CYLINDERS BASED ON
2-D PIECEWISE ALGEBRAIC SPLINES

The skeleton-based reconstruction of vasculatures is to con-
struct a geometric surface by sweeping one or more cross sec-
tions along the skeleton [29]. This kind of surfaces has been fre-
quently referred to as generalized cylinders. Generally, the gen-
eralized cylinders can be either represented explicitly as para-
metric surfaces or polygonal meshes, or implicitly as implicit
functions [26]. The explicit representation usually suffers from
the problem of cross-sections intersection when the skeleton is
too curved, and has a difficulty of implementing the ramifica-
tion of one cylinder into two or more [26]. Implicit generalized
cylinders represented by distance surface [30] or convolution
surfaces [12] are limited to the assumption of circular shape
for cross sections. The implicit swept surfaces introduced in
[29], [31] using profile curves are limited to “star shape” due
to the polar definition [32]. Though some more flexible tech-
niques were proposed to generate an implicit sweeping surface
[32]-[34] without the shape limitation of cross sections, the op-
timization for the swept shapes remains a difficult problem due
to the respecting various constrains [35]. In this paper, we pro-
pose a technique to model implicit generalized cylinders based
on 2-D piecewise algebraic splines [14], which allows one to
reconstruct generalized cylinders with arbitrary cross sections.
Our method is based on smooth blending of a set of locally con-
structed general cylinders corresponding to different cross sec-
tions along a given skeleton. The implicit generalized cylinders
constructed using our method can achieve any required accu-
racy and continuity. Moreover, the implicit surface generated in
this way can have an explicit analytic representation. The de-
tailed descriptions of our proposed method are as follows.

A. The Calculation of the Frenet Frame for the Skeleton

Frenet frame is a locally specified reference frame, defined
along a curve using the curve’s tangent 7', normal N, and bi-
normal B. Suppose S(s) is a parametric curve representing the
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Fig. 1. Frenet frames of the sampling points on a parametric curve (left), and
the transformation of coordination to the local Frenet frame (right).

skeleton of a geometric shape, when S (s)/ is not 0, the defini-
tions of T', N, and B are given by

T(s) = 5(s) /| 8(s) |
N(s) = 8(s)/ | (s | 1)
B(s) = N(s) x T(s)

For each point on the skeleton, its Frenet frame can be com-
puted conveniently. As shown in Fig. 1 (left), the black curve
represents the skeleton, and the red arrow, green arrow, as well
as blue arrow, respectively, represents the tangent vector, normal
vector, and binormal vector of the point on the skeleton. For a
curve, there might be some “bad” points at which the curvatures
of the curve are zeros. In this case, we utilize the T', N, and B
vectors of their adjacent points instead. If the curvature is al-
ways zero then the curve will be a straight line. And it is easy to
define the orthonormal basis of R® for a straight line.

B. The Transformation of Coordinates to the Frenet-Frame
Space

Suppose P(x, y, z) is a point in 3-D space R*, and then for a
skeletal point S(s;), the coordinates of P can be transformed to
the orthonormal basis of R® defined by the local Frenet frame
at S(s;). As shown in Fig. 1 (right), P(z,y, z) is transformed
to P (b, n,t) by the following equations:

b(P) = (P —S(s;)) - B(si)
n(P) = (P —5(si)) - N(si) 2)
HP) = (P = 8(si)) - T(si)

3

binormal, normal, and tangent of the Frenet frame at S(s;).

where B(s;), N(s;),and T'(s;) are unit vectors representing the

C. Implicit Specification of Freeform Cross Section Using the
2-D Piecewise Algebraic Splines

2-D piecewise algebraic spline was introduced by Li and Tian
in [14] for the purpose of freeform implicit shape modeling. It
is a generalization of the conventional parametric spline tech-
nique, whose basis functions have all the good properties of the
conventional B-spline basis functions, such as non-negativity,
partition of unity and convex-hull property [14].

For a given control polygon specified in the hn-coordinate
plane of the Frenet frame, an implicit curve can be constructed
by er_Lg(b,’fb) = h, where Bg"é)(:y, y) is the 2-D piecewise
algebraic spline. (b, n.) represent§ the brni-coordiantes of a point
in 3-D space with respect of the Frenet frame. A is the control
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Fi% 2. Freeform implicit curves designed by 2-D piecewise algebraic spline:
BUb,n) = h
a,elln) = n.
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Fig. 3. The construction of implicit function (b, n, ¢) by weighted summing
a set of implicit cross sections B; (b, n) along a skeleton with PSP-spline basis
function B3; (¥).

polygon. § is the polygon smooth parameter. m is the degree
of smoothness of the required bivariate function. / is the height
level. Fig. 2 demonstrates the implicit curves designed in this
way.

The 2-D implicit curve that defines the cross section of the
required shape at S(s;), can be considered as a 3-D implicit
surface by mapping 3-D Space R® to the local Frenet frame:
b= X(z,y,2), n = Y(x,y, z) according to (2). Suppose the
cross-section profile is defined as an implicit function C'(b, n) =
Bgrfg (b,n) — h = 0 in the bn-coordinate plane of the Frenet
frame, then the extruded implicit surface F'(, y, z) can be given
by

F(:U,y,z) C(X(.’L‘,y,z),Y(.’L‘,y,Z))
(

BA";)(X(% y,2),Y(x,y,2)) —h=0. (3)

3

D. Construction of Freeform Implicit Surface Along Skeleton
With Variable Cross Sections

As shown in [14], freeform implicit surfaces can be designed
as a weighted sum of a set of 2-D implicit control curves along
a coordinate axis (i.e., z-axis) by PSP-spline basis functions.
With the introduction of Frenet frame, different cross-section
profiles can be weighted and summed up together along an ar-
bitrary skeleton, not limited to coordinate axis, to form an im-
plicit generalized cylinder with variable cross sections. The re-
quired generalized cylinder can be described implicitly in the
Frenet-frame space by the following form (see Fig. 3):

L

Flbnt) =" Ci(b,m)Bi(t) =0 (4)

i=1

Fig. 4. The construction of implicit generalized cylinder (right) by weighted
summing eight cross sections (left) along a skeleton.

where b, n, and ¢ are defined, respectively, in the Frenet-frame
space accordingto (2);72 = 1,2,..., L, inwhich L is the amount
of cross sections. Suppose s; is a list of knots for the parametric
position s of skeleton S(s), then C;(b, n) is the implicitly de-
fined cross section corresponding to the skeletal point S(s;),
and B;(1) is the spline basis function defined at S(s;) along the
tangent vector. Suppose d; is the distance between S(s;) and
S(si+1), then B;() in (4) can be expressed in the following
form:

Bi(t) = B[(ji.),,/zdi/m,zs (t) (5)

where the general PSP-spline basis function B[((:”b)] s(x) is de-
fined in the following way [14]: '

m b—u a—x
B[(a,b>]7b(m) =H, (T) - H, (T) (6)

where [a, b] is an interval with ¢ < b; and H,,(x) is the smooth
unit step function introduced in [36].

From (2), it can be seen that b, 7, and ¢ in (4) relating to the
Frenet frame at each S(s;) are all functions of , y, z. That is,
b= X(z,y.2),n=Y(x,y,2),and t = Z(x,y, z). Therefore,
the generalized cylinder constructed according to (4) can be ex-
pressed as follows:

Flo,y,2) = [(X(2,y,2),Y(2,y,2), Z(2,y,2)) = 0. (7)

As presented in Fig. 4, the implicit generalized cylinder is
constructed as a weighted sum of eight adjacent cross sections
along a skeleton with PSP-spline basis functions.

E. Blending for the Branches of Implicit Shapes

The technique presented above is only appropriate when no
branches exist for the given skeleton. In the case of branching,
an implicit general cylinder is first constructed from each
individual branch, and then all these branching implicit general
cylinders can be blended together to represent the overall
implicit surfaces corresponding to the entire structure. There
are various ways to blend a set of implicit surfaces, but most
of them are achieved with nonpiecewise-polynomial shape
operators and without the flexibility in controlling the blending
range. Since the implicit surfaces from different branches of
the skeleton are piecewise polynomial, piecewise polynomial
shape blending operations are expected. In this paper, we use
the extended smooth maximum function introduced in [16]
to blend implicit shapes constructed from different skeletal
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Fig. 5. Smooth blending of two implicitly defined shapes with max,, s (2, y).
Two individual implicit objects (left and middle) are smoothly blended as one
implicit object (right) by using the smooth maximum function max.,, , (2, y).

Fig. 6. Smooth and bulge-free blending of implicit generalized cylinders using
piecewise polynomial blending operations.

branches (see Fig. 5). The extended smooth maximum function
is defined in the following form:
max(z, y) = %(m Tyt e —yls) (8)

where ||, s is the smooth absolute function with the smooth-
ness degree n and blending range-control parameter ¢ defined in
[16]. This kind of implicit shape blending operation is piecewise
polynomial and allows flexible blending range specification.

Many implicit blending operations have a problem of
over-blending, which may exhibit bulges around the point of
branching [6]. Our approach inherits the weighted summation
mechanism to generate smooth surface with different cross
sections for the same skeletal element. In the case of branching,
we can easily achieve bulge-free blending by utilizing smooth
blending operation max,, s() to blend the branches of implicit
surfaces for different skeletal elements. As is shown in Fig. 6,
our method can achieve smooth and bulge-free blending at
branchings.

IV. ACCURATE RECONSTRUCTION OF VASCULATURES

In this section, we apply the method proposed above for the
purpose of vascular structure reconstruction, which basically in-
volves the extraction of the contour points along each branch of
the constructed skeleton and the implicit reconstruction of vas-
cular structures using the extracted contours.

A. The Extraction of Control Points for the Specification of
Accurate Cross Sections

After the process of segmentation [37], the shape of vessel
can be identified as the voxels with intensive value > 0. Before
constructing the implicit generalized cylinder for the vascula-

Fig. 7. The extraction of contour points with zero intensive value (left), and
the smooth implicit curve specified by the extracted contour points (right).

tures, we need to extract along the skeleton a set of points for
specifying the accurate cross sections of the vascular vessel to
be constructed. Suppose S(s;) is a skeletal point, then the steps
for extracting the control points for specifying the cross section
corresponding to S(s;) are as follows.
1) Define a rectangle based on the local coordinate system.
2) Transform the coordinate of the rectangle to its world co-
ordinate system, and intersect with the vessel surface.
3) Map the intensive value of the segmented vessel into the
defined rectangle.
4) Extract the contour points with zero intensive value. As
shown in Fig. 7 (left), the red points represent the extracted
contour points with zero intensive value.

Generally, the side length of the rectangle is set as three times
of the cross-section radius. If the cross section of the vessel ex-
cesses the area of the defined rectangle, the rectangle is con-
sidered to be intersecting with more than one vessel branches.
In this case, we drop some of the target points outside the in-
scribed circle of the rectangle to insure that the target area is
closed. Most of the dropped target points are in the area of the
cross section of the unintended branch. Although the target area
may still includes a certain part of the unintended branch, this
does not affect the final reconstruction result, since the area will
be blended with the vessel structure constructed from other sur-
rounding branch(es).

B. The Accurate Reconstruction of Vascular Structures

Once the contour points for specifying the cross sections of
vessel have been extracted, we can employ our proposed im-
plicit generalized cylinder to model the vasculatures accurately.
The modeling steps are as follows.

1) Suppose S;(s) is a skeletal branch of the vessel tree. For
each skeletal point S;;(s;), the coordinates of the arbitrary
point in 3-D space R® are transformed into the space de-
fined by the local Frenet frame at S;(s;) (please refer to
Section I1I-B).

2) For each skeletal point S ($;), we employ the method pro-
posed in Section IV-A to extract the control points for spec-
ifying the cross section around S ;(s;).

3) Based on the extracted control points, a smooth curve cor-
responding to cross section C; can then be implicitly con-
structed using 2-D piecewise algebraic splines (please refer
to Section III-C) [see Fig. 7 (right)].
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Fig. 8. Some of the reconstruction results using our method: CTA carotid artery (left); MRA cerebral vasculatures (right).

4) Using the idea presented in Section III-D, different
cross-section profiles specified at each skeletal points are
then weighted and summed up together along the skeleton
S;(s), to form an implicit generalized cylinder repre-
senting the vessel branch. d; in (5), that is the distance
between the skeletal point S(s;) and S(s;+1), is defined
to be proportional to the radius and in inverse proportion
to the curvature of the current cross-section profile. In the
case of much curved skeleton, d; should be set quite small
to guarantee the smooth blending of different cross-section
profiles. As an alternative, we can extrude a 2-D specified
cross-section profile into 3-D implicit surfaces along the
implicitly fitted curve to the skeleton [14].

5) Finally, the implicitly defined vessel surfaces built
according to different skeletal branches S;(s)(j =
1,2,..., N) are blended together using the smooth max-
imum function max,, s(x,y) to construct the complete
vascular tree (please refer to Section III-E).

V. RESULTS AND DISCUSSIONS

A. Reconstruction Results Based on Our Method

The medical datasets used in our first three experiments are
provided by Intelligent Bioinformatics Systems Division, In-
stitute of Automation, the Chinese Academy of Sciences, in
the format of DICOM (Digital Imaging and Communications
in Medicine). The first example is the reconstruction of carotid
artery (CA) for the 3-D CT angiography (CTA) images with a
resolution of 512 x512 x 206 and spacing of 0.52 mm x 0.52
mm x 0.63 mm. The second example is the reconstruction of
cerebral vasculatures (CV) for the 3-D magnetic resonance an-
giography (MRA) images with a resolution of 352 x 448 x 114
and spacing of 0.49 mm x 0.49 mm x 0.80 mm. The third ex-
ample is the reconstruction of abdominal aorta (AA) for the 3-D
MRA images with a resolution of 512 x 512 x 300 and spacing
0f 0.70 mm x 0.70 mm x 0.63 mm. The last example is the re-
construction of the segmented liver portal vein (LPV) using a

medical dataset obtained from the public resourcel which has a
resolution of 512 x 512 X 310 and spacing of 0.78 mm x 0.78
mm X 1.60 mm. As can be seen from Fig. 8, a visual inspec-
tion shows that our proposed method can correctly represent
the morphology and topology of vascular structures. In addi-
tion, very thin branches and curved, complex structures can be
reconstructed faithfully using our method.

For comparisons, Fig. 9 shows a detailed look at the recon-
structed cerebral vessels. As is presented in the figure, the iso-
surface rendering of the binary data (top left) suffers from strong
aliasing artifacts like staircases, which has a strong divergence
with real vessels and might hamper the visual interpretation
of the vessel surface [19]. Although the segmentation result
based on level set method [37] (top right) can achieve certain
smooth surface when compared to the binary data, the visual-
ization result is still poor, and needs further smoothing steps.
The reconstruction method based on MPUI (bottom left) can
construct smooth surface with certain visual quality. However,
due to the complex and fine nature of most vascular tree, the
quality of the resulting surfaces is still not good enough and
has to be improved using an additional remeshing step [19],
which subsequently increases the effort required from the re-
construction process and inevitably introduces further errors. In
contrast, our approach can achieve superior visual quality and
produce smooth transitions at branchings (bottom right). In fact,
by using the proposed method, the vascular surfaces can be built
to have any required geometric continuity. Furthermore, much
more accurate vessel surfaces can be built since our method
does not involve model assumptions. Generally, our method can
achieve highly smooth and accurate vessel surfaces, which are
quite faithful to the actual vessels.

B. Validation

The validation of any reconstruction technique is very cru-
cial for its clinical applications [6]. In this section, we inves-
tigate the strengths of the proposed technique from both the

Thttp://www.ircad.fr/softwares/3Dircadb/3Dircadb1/index.php
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Fig. 9. A detail look at the reconstruction of the MRA cerebral vessels: the
isosurface rendering of binary data (top left), the segmentation result using level
set method (top right), the reconstruction result using MPU Implicits (bottom
left), and our method (bottom right).

qualitative and quantitative points of view using the segmented
vessel datasets. Our goal is to reconstruct the continuous vessel
surfaces from the segmented point sets. A good reconstruction
method is considered to approximate the “original” vessel as
accurately as possible. Furthermore, the smoothness of the re-
constructed surface is also a basic requirement since it is the
essential feature of the actual vessel surfaces.

1) Qualitative Validation: Generally, our proposed approach
has two key ingredients to guarantee the requirements of accu-
racy and smoothness. First and foremost, the cross sections of
the vessel are freely specified by 2-D implicit splines, without
any model assumption, such as circular or elliptical shapes.
The freeform specification of the vessel cross sections is an
essential requirement for computer-aided vessel diagnosis,
since the cross sections of vascular geometry are not always
circular, especially for those pathologic vessels. As can be seen
from Fig. 10, the technique based on our method can represent
the cross section of vessel more faithfully. In fact, the im-
plicit curve constructed using 2-D implicit splines can achieve
any preset precision, as long as the smoothing parameter is
sufficiently small. In addition, by choosing the parameter of
continuous degree :, the implicit curve can achieve any re-
quired continuity C™~*(m > 2). In Fig. 10 (right), the dashed

Fig. 10. The extraction of vessel cross section from realistic medical data (left);
the specification of cross-section contour by circular shape and our method
(right).

Fig. 11. Two different implicit curves specified using 2-D piecewise algebraic
spline B ,(x, y) with the same set of coutour points extracted from the vessel
cross section: § = 0.4 (left); &6 = 1.2 (right).

red circle represents the circular contour of cross section, and
the solid green curve represents the faithful and smooth contour
of cross section specified by our method.

However, this does not mean that the smoothing parameter &
should be set as small as possible. Because for a certain resolu-
tion, if & is set too small, the constructed curve as well as the
surface would not be as smooth as the realistic vessel surface
in visual inspection, especially in the case of reconstructing
from noisy dataset. Fig. 11 demonstrates the two different
implicit curves specified using 2-D piecewise algebraic spline
B3A7 s(x,y) with the same set of contour points extracted from
the vessel cross section. Implicit curve presented on the left is
constructed with 6 = 0.4, which is much closer to the “original”
point sets, but with less smoothness. Although the smoothness
can be improved by increasing the spatial resolution, it would
cost much more time to display the cruve/surface. On the other
hand, the implicit curve presented on the right is constructed
with 6 = 1.2, which is not so close to the “original” point sets
as to the left curve, but it is much smoother than that of left
curve displaying on the same resolution to represent the real-
istic vessel cross section. Therefore, to some extent, a trade off
needs to be made between the faithfulness of the reconstructed
surface to the “original” point sets and the smoothness of its
appearance. In this paper, the § is generally set as 0.8, which
can guarantee a reasonable trade-off between accuracy and
smoothness.

The other key ingredient is that we employ a partial shape pre-
serving (PSP) spline basis functions [14], [15] to smoothly com-
bine the collection of implicit control surfaces. As stated in [15],
the PSP-spline basis function not only has all the advantages of
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PSP-spline basis functions B;(z). From left to right, the controlling parameter
6 in B3;(z) is changed from 0.5 to 1.1 with an increasing interval 0.2.
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Fig. 13. Quantitative analysis for our reconstructed surfaces. The correlation
between the measured distances and mean curvatures for: the carotid artery con-
structed from CTA dataset (top left), the cerebral vessels constructed from MRA
dataset (top right), the abdominal aorta constructed from MRA dataset (bottom
left), the liver portal vein from binary segmentation result (bottom right).

the conventional B-spline technique, but it is also a shape-pre-
serving spline, which can preserve the original cross-section
surfaces as much as possible. In addition, it is very flexible to
specify the blending range of shapes by simply adjusting the
smoothing parameter. Fig. 12 shows the blending of a set of
cross sections C; (, y) with different PSP-spline basis functions
Bi (Z)

2) Quantitative Validation: Besides the visual inspection,
the quantitative validation analysis is necessary for estimating
whether the underlying data (segmented vessel dataset) are
faithfully represented with certain smoothness [6]. For judging
the accuracy of reconstruction, we analyse the distances be-
tween segmented data and our reconstructed surface. The
comparison is realized in the following way: for each vertex
on the isosurface of the segmentation result, the Euclidean
distance to its closest point on our reconstructed surface is
calculated. For estimating the smoothness, we examined the
mean curvature of each vertex on the reconstructed surface,
since the mean curvature has the ability of getting insight to the
degree of smoothness of the surface [38].

Curve in Fig. 13 illustrates the correlation between the
measured distances and mean curvatures for our experimental
datasets. The vertical axis represents the mean distances of
each vertex on the isosurface of the segmentation result to our
reconstructed surface; and the horizontal axis represents the av-
erage of the unsigned mean curvatures (AUMC) for all voxels.
As demonstrated in the curve, the minimum deviation can be
as small as 0.12 mm with certain smoothness (the AUMC is
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TABLE 1
QUANTITATIVE COMPARISON BETWEEN OUR RECONSTRUCTED SURFACES AND
THAT BASED ON MPUI METHOD. DISTANCES ARE GIVEN IN MILLIMETERS.
THE ACCURACY IS MEASURED BY CALCULATING THE MEAN DISTANCES
BETWEEN THE SEGMENTATION RESULT TO THE RECONSTRUCTED SURFACE,
AND THE SMOOTHNESS IS ESTIMATED BY MEASURING THE AUMC
OF THE RECONSTRUCTED SURFACE

Datasets  MPUI based method Our method
Dis(mm) AUMC Dis(mm) AUMC

CA 0.27 0.29 0.17 0.21

CcV 0.27 0.35 0.16 0.28

AA 0.44 027 021 0.19

LPV 0.37 0.20 027 0.15

less than 0.4) and the maximum deviation cannot be bigger
than 0.31 mm even the level of smoothness is set quite high. As
discussed in the last section, the accuracy and the smoothness
of the reconstructed surface from the discrete point sets needs
to be balanced. Generally, our method can achieve highly
accurate reconstructed surface, of which the mean deviation
is as small as 0.20 mm, which is quite smaller than the mean
distance (0.39 mm) presented in [6] and the median of the
deviations (0.30 mm) presented in [19]. Furthermore, the mean
deviation is much less than half of the mean diagonal voxel size
(1.28 mm) of the used datasets (0.96 mm for the CTA carotid
artery dataset, 1.05 mm for the MRA cerebral vessel dataset,
1.17 mm for the MRA abdominal aorta dataset, and 1.94 mm
for the segmented liver portal vein). In addition, the surfaces
are reconstructed with quite satisfied smoothness, not only in
visual inspection but also the quantitative analysis (the AUMC
is generally as small as 0.207).

The quantitative comparison has also been conducted be-
tween the surfaces reconstructed using our method and that
based on MPUI method. As have been shown in Table I, the
mean deviations and AUMC corresponding to the surfaces built
from our method are much smaller than that for the surfaces
reconstructed based on the MPUI method for each experimental
data set. In other words, our method can achieve more accurate
and smoother vessel structures than the MPUI based method.

C. Computational Complexity

Generally, a skeletal branch is long. Thus, it is necessary
to partition the space along the skeleton for the purpose of
accelerating the computation. In other words, the long skeleton
is divided into several sub-skeletons, and for each sub-skeleton,
an axis-aligned bounding box is computed in voxel coordinates
(see Fig. 14). Then for each sub-skeleton, its local implicit
function is constructed within its corresponding axis-aligned
bounding box. Finally, all of the local implicit functions are
summarized together to form the global implicit function
representing the vessel structure reconstructed from the whole
skeletal branch. In addition, we employ the NVIDIA CUDA
(compute unified device architecture) [39] to evaluate each
local implicit function value in GPU, which can greatly reduce
the visualization time.

To demonstrate the complexity of our algorithm, Table II
presents the information concerning the complexity of the re-
sulting models and the reconstruction and visualization time of
our implicit surfaces based on the medical datasets used above,
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Fig. 14. Subskeleton subdivided from the whole skeleton (left), and its corre-
sponding axis-aligned bounding box (right).

TABLE 11
PERFORMANCE MEASUREMENTS FOR THE IMPLICIT SURFACE RECONSTRUCTION
FROM ANATOMIC VASCULAR STRUCTURES CARRIED OUT ON AN AMD
ATHLON CPU 4600+, 2.41 GHz SYSTEM WITH 2.00 GB RAM AND
NVIDA GEFORCE 8600 GT GRAPHICS CARD WITH 32 STREAM
PROCESSORS AND 540 MHZ FREQUENCY

Datasets  Number of faces  Time (second)
CA 133116 86.37
Cv 157018 143.99
AA 155224 165.30
LPV 112980 189.52

which includes the time of point extraction, construction of im-
plicit functions, evaluation of scalar values, and generation of
patch faces.

D. Reconstruction for Pathological Vasculatures

Our technique has also been applied for the reconstruction
of pathological vasculatures from the patient data sets with
vessel disease. The first example is the reconstruction of carotid
artery with stenosis for the 3-D CTA images with a resolution
of 512 x 512 x 100 and spacing of 0.48 mm x 0.48 mm X 0.65
mm [see Fig. 15 (left)]. As can be seen from the rectangle area,
our algorithm can faithfully represent the stenosis of carotid
artery and achieve superior visual quality.

Another example is the reconstruction of peripheral artery
with aneurysm for the 3-D CTA images with a resolution of
512 x 512 x 240 and spacing of 0.83 mm X 0.83 mm x 1.00
mm [see Fig. 15 (right)]. As shown in the rectangle area, our
technique can accurately reconstruct the peripheral artery with
aneurysm in the form of implicit functions, which would be
helpful to perform the quantitative analysis for the pathological
vessel.

E. Virtual Angioscopy

The accurate reconstruction of vascular tree is very crucial
for virtual angioscopy, a noninvasive medical diagnosis proce-
dure for exploring the human vascular system [40], which gen-
erates an interactive environment for the vascular examination
from a point of view inside the vessels [41]. Actually, virtual
fly-through of vascular structures is a useful technique for ed-
ucational purposes and some diagnostic tasks, as well as inter-
vention planning and intraoperative navigation [1]. In general,
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Fig. 15. The reconstruction of pathological vasculatures: carotid artery with
stenosis(left), and peripheral artery with aneurysm (right).

it is essential to combine detailed views of the inner structures
with an overview of the anatomic structures (see Fig. 16).

One of the main issues associated with the virtual angioscopy
is the requirement of high visual quality of perspective view in-
side the dataset. Generally, the common approach for the visu-
alization of a virtual angioscopy is surface rendering, yielding
images close to a real endoscopy. However, the direct appli-
cation of surface rendering algorithms (i.e., Marching Cubes)
to the segmented vasculatures may suffer from the typical dia-
mond shaped artifacts [see Fig. 16 (right)] caused by the trilinear
interpolation [42]. Therefore, the smooth and accurate recon-
struction of vascular tree is very crucial for virtual angioscopy.
Based on our implicit representation of vasculatures, the surface
rendering methods can achieve high quality perspective views
as well as accurate cross sections (without model assumption)
[see Fig. 16 (middle)], which is suitable for training purposes
and diagnosis tasks.

Besides rendering, the camera navigation paradigm is another
key problem required to be solved for the development of a vir-
tual angioscopy system. Various virtual angioscopy techniques
can be roughly classified into three classes: automatic naviga-
tion, manual or free navigation and guided navigation [43]. The
drawback of automatic navigation is the lack of interactivity,
which means that user interaction is limited and the irrelevant
regions cannot be easily skipped [42]. By manual navigation,
user can completely control over all parameters of the virtual
camera without any constraints. However, collision avoidance
is required, which is costly query operation and easily to result
in significant lags between interaction and rendering [42].

While based on the implicit vascular geometry, the collision
avoidance for the camera navigation of virtual angioscopy can
be easily solved, since our method can guarantee to define an im-
plicit volume by replacing the equality in (7) with an inequality

F(e,y,2) = f(X(2,9,2),Y(2,y,2), Z(x,y,2)) 2 0. (9)

That is, the vasculatures are represented as a global implicit
function I'(x,y,z). When F(x,y,z) = 0, it represents the
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Fig. 16. Virtual angioscopy. The overview of the vessel structures, and the arrow indicating the current position and orientation of the camera (left); The per-
spective view inside the vessel based on our implicit modelling vasculatures (middle), and on direct application of Marching Cubes to the segmented vasculatures

(right).

vessel surfaces; when F'(x,y,z) > 0, it represents implicit
volume inside the vessel structures; and when F'(z, y, z) < 0, it
represents the implicit volume outside the vessel structures. The
implicit volume is a favourite kind of geometric object when
performing collision detection [14]. When the vasculatures are
modelled as implicit volume, one can tell directly whether a
point lies inside or outside the vasculatures and the problem of
collision detection can be easily solved [44].

VI. CONCLUSION AND FUTURE WORK

In this paper, a technique for accurately reconstructing
vascular structures has been presented, which is underpinned
by a skeleton-based implicit generalized cylinder modeling
method. With the proposed method, an implicit surface with
extraordinary smoothness and accuracy can be constructed
from a given segmented medical dataset. The experimental
results and validations have shown that our method can achieve
accurate, faithful and smooth vascular structures. In addition,
virtual angioscopy has been implemented to demonstrate one
of the strengths of our proposed method.

Our proposed method can accurately construct the contin-
uous geometry of vasculatures in the form of implicit functions,
which not only allows to achieve better visualization, but can
also be very useful for the vessel shape analysis. Generally, our
method has three main advantages over other techniques for re-
constructing vasculatures. Firstly, the reconstructed surface is
a kind of isosurface and can achieve extremely high smooth-
ness and accuracy to the segmented discrete vascular surface
points. Secondly, the modeling result of our method is an im-
plicit volume, and can be directly applied for virtual angioscopy.
Finally, the reconstructed implicit surfaces based on our method
are easy to calculate, since there is an explicit analytic represen-
tation for the resulting shape.

It should be pointed out that the reconstruction accuracy of
our method depends on the accuracy of segmentation results,
since the implicit surfaces built with our method are based on
the segmented data. So far, various segmentation methods have

been developed, but the accurate segmentation of vasculatures
still remains a challenging task, especially for noisy datasets.
The development of highly accurate vascular-specific segmen-
tation method will be one of our main tasks in the future. An-
other task that is worth of investigation in the future would be
to apply the reconstructed vessel geometry for the simulation
of computational fluid dynamics (CFD). A highly accurate and
smooth vessel geometry representation is crucial for CFD to
guarantee correct simulation results and to avoid numerical in-
stabilities [19]. Simulations of the blood flow enable the study
of hemodynamic characteristics such as intra-aneurysmal flow
patterns or the wall shear stress, which plays an important role
in the areas of predictive medicine and vascular disease study.
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