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a b s t r a c t 

Large-scale data with human annotations is of crucial importance for training deep convolutional neu- 

ral network (DCNN) to ensure stable and reliable performance. However, accurate annotations, such as 

bounding box and pixel-level annotations, demand expensive labeling effort s, which has prevented wide 

application of DCNN in industries. Focusing on the problem of surface defect detection, this paper pro- 

poses a weakly supervised learning method named Category-Aware object Detection network (CADN) to 

tackle the dilemma. CADN is trained with image tag annotations only and performs image classification 

and defect localization simultaneously. The weakly supervised learning is achieved by extracting category- 

aware spatial information in a classification pipeline. CADN could be equipped with either a lighter or a 

larger backbone network as the feature extractor resulting in better real-time performance or higher ac- 

curacy. To address the two conflicting objectives simultaneously, both of which are significant concerns in 

industrial applications, knowledge distillation strategy is adopted to force the learned features of a lighter 

CADN to mimic that of a larger CADN. Accordingly, the accuracy of the lighter CADN is improved while 

high real-time performance is maintained. The proposed approach is verified on our own defect dataset 

as well as on an open-source defect dataset. As demonstrated, satisfied performance is achieved by the 

proposed method, which could meet industrial requirements completely. Meanwhile, the method mini- 

mizes human effort s involved in image labelling, thus promoting the applications of DCNN in industries. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Surface inspection is a significant concern in industrial pro-

uction. Traditionally, surface inspection is performed manually.

ith the rapid development of image processing and deep learn-

ng technologies in recent years, it is expected that manual labor

nvolved in the inspection could be replaced by automated manner

ot only to cut labor cost but also to improve the efficiency [1–3] .

here is no doubt that DCNN has achieved great success in nat-

ral image tasks such as image classification [4] , object detection

5] and semantic segmentation [6] . However, it is rarely used in

ndustrial applications for the following reasons. Firstly, large-scale

ata with human annotations is required in the training process

o ensure stable and reliable performance of DCNN. Unfortunately,

ccurate annotations, such as bounding box and pixel-level anno-

ations, are time-consuming and commercially expensive to be ob-

ained. This difficulty is particularly prominent in case of industrial
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pplications due to the fact that the boundaries of weak defects

n industrial images are vague and are hard to be accurately rec-

gnized even for experienced workers. Secondly, DCNN model in-

olves complicated calculations and usually cannot meet the real-

ime requirement of industrial applications. Despite the high accu-

acy, the DCNN model cannot be applied. 

Weakly supervised learning (WSL) provides an efficient means

o reduce human efforts in image labelling by exploring alterna-

ive weak annotations. According to previous publications, weakly

earning methods successfully performed object detection [7,8] or

emantic segmentation task [9,10] with only image-level weak su-

ervision. Besides, some attention-based models [11,12] select rel-

vant regions to facilitate following decision procedure. Not inten-

ionally, these models could achieve weakly learning tasks simi-

arly as WSL methods. Among the above methods, several of them

7,9] adopt iterative training between two related networks leading

o longer training time or even difficulty of convergence. For the

thers [8,10] , additional time-consuming computation is involved

n the extraction of spatial information, degrading the real-time

erformance. It should also be pointed out the low accuracy in ob-

ect localization for the WSL methods. This is primarily driven by

https://doi.org/10.1016/j.patcog.2020.107571
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. The pipeline of the CADN Framework. The architecture of the proposed CADN network and the knowledge distillation strategy are illustrated. 
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the substantial reduction in resolution of feature map compared

with original image. In WSL methods, feature map is the basis for

spatial information extraction and thus its low resolution presents

a negative impact on localization accuracy. 

Actually, different strategies are proposed to increase the res-

olution of feature map, which, as pointed out above, is of great

help for the WSL methods to improve localization accuracy. These

strategies are summarized as follows. (1) The encoder-decoder

structure [13] , that captures context information in the encoder

path and recovers high-resolution feature map in the decoder path.

(2) Dilated convolution (a.k.a. atrous convolution) [6] , based on

which down-sampling operations, such as max pooling or strided

convolution, are removed and thus the feature map resolution can

be preserved. (3) Deconvolution (transposed convolution) [14] , in

which padding, interpolation and convolution are sequentially con-

ducted on the feature map to increase the resolution at the end

of a network. All the three methods are based on low-resolution

feature map to generate high-resolution one. Although effective,

spatial information missing is inevitable, which hinders further

improvement in resolution. In addition to the above, the latest

High-Resolution Network (HRNet) provides an efficient way to

keep high-resolution feature maps for input image while passing

throughout the network [15] . HRNet consists of multiple parallel

branches with different resolutions. Lower resolution branches cap-

ture contextual information while higher resolution branches pre-

serve spatial information. However, maintaining a high-resolution

branch from beginning to end requires more computational cost. 

Focusing on surface defect detection, a WSL method named

C ategory- A ware object D etection network (CADN) is proposed in

the paper. The method CADN performs image classification and de-

fect localization simultaneously but only requires economical im-

age tag annotations, which solves the difficulty of obtaining ac-

curate annotations in industrial applications. In CADN, a novel

Category-aware Conv-Pooling is proposed to explore weak image

tag annotation, by which weakly supervised learning could be

achieved. The module includes successive category-aware convolu-

tions and category-aware pooling. The former category-aware con-

volutions extract spatial information for each category of object

from the feature maps via a coarse-to-fine pipeline. The latter

category-aware pooling transforms the category-aware spatial in-

formation into classification scores. By using the operations, itera-

tive training and complex computations involved in previous WSL

methods could be avoided. Meanwhile, to obtain high-resolution
eature map, HRNet is adopted in CADN as the backbone. Natu-

ally, CADN can achieve better accuracy or faster speed by equip-

ing a large HRNet or a light HRNet, respectively. To address both

he issues to make CADN more practical in industrial environment,

nowledge distillation is utilized to force the outputs of a lighter

ADN (student) to mimic the outputs of a larger CADN (teacher)

n the training process of the student. Due to the additional su-

ervision of the knowledge from the teacher model, the perfor-

ance of the student model can be improved distinctly while its

aster speed is maintained. The complete pipeline of CADN and the

nowledge distillation strategy is illustrated in Fig. 1 . 

In conclusion, the main contributions of this paper can be de-

cribed as follows: 

1. A novel Category-aware Conv-Pooling module is proposed,

hich could explore weak image tag annotation to extract spa-

ial information. And the latest HRNet is adopted to obtain high-

esolution feature map to improve localization accuracy. 

2. Knowledge distillation strategy is adopted to force the feature

f a student CADN to mimic that of a teacher CADN, which con-

ributes to the improvement in terms of both accuracy and speed. 

3. As verified, weakly supervised defect detection is achieved

nd competitive results are obtained by using the proposed CADN

ethod. The performance of CADN could fully meet industrial re-

uirements. 

The remainder of this paper is organized as follows. In Section

I, we review the existing works related to our approach. In Section

II, our proposed WSL object detection network CADN is introduced

n details. Section IV describes the knowledge distillation strategy

hat improves the performance of the lighter and faster CADN. Sec-

ion V provides the experimental results that verified our method.

inally, the paper is concluded in Section VI. 

. Related work 

.1. DCNN-based surface inspection 

Compared with traditional methods, DCNN-based methods al-

eviate the difficulty of feature design while achieve improved ac-

uracy, thus promoting progresses in image-related tasks greatly.

n recent years, more and more attempts have been made to apply

CNN to surface inspection task to overcome the limitations of tra-

itional methods [1,2] . A significant number of methods [16,17] ac-

omplish the task by classifying normal and defect images. For
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w  
xample, MSPyrPool [16] is proposed to solve the steel defect clas-

ification problem on arbitrarily sized images. The network can

e seen as a fully supervised hierarchical bag-of-features exten-

ion that is trained online and can be fine-tuned for any given

ask. However, it is worth mentioning that classification of the de-

ect image cannot provide any size and location information for

he defects. Wang et al. [18] design a joint detection CNN archi-

ecture that contains two major parts: the global frame classifica-

ion part and the sub-frame detection part. The former learns to

lassify the whole image, and the later is implemented on the im-

ge patches generated by the sliding-window method. Ren et al.

19] propose a generic DCNN-based surface inspection approach.

here are two phases in the proposed method. The first phase

ncludes supervised training of patch classifier. The second phase

ses the trained classifier on extracted patches, and generates the

eatmap of whole image to predict the locations of defects. Based

n the image partitioning operation, these two methods achieve

efect localization roughly by using classification networks. Bene-

ted from the great success of object detection algorithms applied

n natural scenarios, Cha et al. [20] utilize Faster Region-based Con-

olutional Neural Network (Faster R-CNN) [5] to detect multiple

ypes of damages accurately. Chen [21] et al. propose a cascade

etwork to localize defects in a coarse-to-fine manner. The net-

ork includes two detectors to sequentially localize the cantilever

oints and their fasteners and a classifier to diagnose the defects.

owever, their detectors need to be trained with sizeable datasets

ncluding 2366 and 6371 images, respectively. The bounding box

nnotations need to be labeled manually for each image. In this

aper, a weakly supervised learning method is proposed to per-

orm surface inspection, with which image classification and de-

ect localization could be achieved simultaneously but only with

he requirement of image tag annotations. The recent work, LED-

et [22] , is similar to ours. However, LEDNet directly adopts the

lass activation mapping (CAM) technique [23] which is an explor-

ng but less-powerful WSL method. In contrary, a novel Category-

ware Conv-Pooling module is proposed in our paper, which is ex-

erimentally demonstrated to be more effective than the CAM. An-

ther recent work, a weakly supervised network [24] , is also pro-

osed for surface defect detection. The proposed network is de-

igned to be trained on a small number of images and achieves

igh classification accuracy. However, the method did not give a

uantified detection results. 

.2. Weakly supervised learning 

For a specific type of method, weakly supervised learning is

reated as a multiple instance learning (MIL) problem by rep-

esenting each image as a bag of instances (putative bounding

oxes). The methods often involve iterative learning that alter-

ates between training a regular-supervised model and selecting

he most confident positive instances. Boxsup [7] completes the

earning procedure by alternating between automatically generat-

ng region proposals and training a convolutional networks. Wang

t al. [9] propose an iterative bottom-up and top-down framework

hat alternatively expands object regions and optimizes segmen-

ation network. But frequently, these methods are susceptible to

oor initialization or are with the difficulty of convergence. Sev-

ral other methods extract or reserve higher-level features (e.g.

patial information generally, compared with class features) by de-

igning additional time-consuming computations in the networks.

AM [23] is the first attempt for weakly supervised object detec-

ion. CAM utilizes the weights of the fully connective layer to ob-

ain the weighted sum of feature maps to rebuilt the spatial fea-

ures on feature maps. Oquab et al. [25] select the most informa-

ive region for the MIL prediction by Max pooling. ProNet [26] is

 cascade of two networks, where the first generates bounding
oxes and the second classifies them. Similarly, Bilen and Vedaldi

27] propose a specific architecture with two branches respectively

edicated to classification and detection. In [8] , a weakly super-

ised region proposal network is proposed which is trained us-

ng only image-level annotations. Inspired by CAM and the method

roposed in [25] , a novel WSL method named CADN is proposed.

ADN is an end-to-end network which is trained with image tag

upervision to perform defect localization. The difference between

ADN and the related methods is obvious and needs to be em-

hasized. CAM utilizes the weights of the fully connected layer to

btain the weighted sum of feature maps to rebuilt the spatial fea-

ures. Then, the bounding boxes can be predicted on the rebuilt

aps. In [25] , the fixed size area (i.e. 224 × 224) correspond-

ng to the maximum value among the n × m (i.e. 2 × 3) scores

s treated as the bounding box of the object. In the training and

he inference processes, multi scale images are needed and are fed

o the network to detect objects with different scales. In CADN,

ased on the feature extracted by backbone network, Category-

ware Conv and pooling are conducted. CADN directly predicts the

ounding boxes on the category-aware heatmap. Compared with

revious methods, the inference of CADN is straightforward and

imple, meanwhile extra computations involved in CAM and the

ethod in [25] could be avoided. 

.3. Knowledge distillation 

Knowledge distillation referred as information transfer between

ifferent neural networks has been successfully exploited in many

omputer vision tasks. The research of exploring knowledge distil-

ation in neural networks is pioneered by Hinton et al. in [28] . The

uthors investigate image classification problem to define the soft

utput of the teacher network as knowledge that contains useful

nformation to represent intra-class similarity and inner-class di-

ersity. Subsequently, FitNets [29] employs intermediate-level hints

rom hidden layers of the teacher network to train a thin and

eep student network. In the study of object detection reported

n [30] , the small detection network is expected to learn more

bout object representation with the supervision of high-level fea-

ures from the large networks. Wei et al. [31] utilize mimic and

uantization strategies to train a very tiny detection network. In

he method, mimic improves the performance of a student net-

ork by transferring knowledge from a teacher network. Mean-

hile, quantization converts a full-precision network to a quan-

ized one without large degradation of performance. By using dis-

illation on unlabeled data, ADL [32] achieves better performance

han the data distillation methods that simply utilize hard tar-

ets. By adopting ADL, the performance of the student detector ex-

elled its teacher. Some researches [33,34] investigate the knowl-

dge distillation strategy for training small semantic segmentation

etworks with the additional supervision from large networks. Liu

t al. [34] simply view the segmentation problem as aggregated

eparate pixel classification problems and train compact seman-

ic segmentation networks by the knowledge distillation strategy.

e et al. [33] propose a new affinity distill module to transfer

hese long-rage dependencies among widely separated spatial re-

ions from a teacher model to a student model. In our work, a

nowledge distillation is developed to improve the detection ac-

uracy of the lighter CADN while maintaining the high real-time

erformance. To the best of our knowledge, this is the first work

o utilize knowledge distillation in surface inspection in industrial

cenario. 

. The CADN framework 

We propose a novel weakly supervised learning (WSL) frame-

ork named CADN for defect detection. As illustrated in Fig. 1 ,
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Fig. 2. Illustrating the architecture of the HRNet. 
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Table 1 

The parameters of Category-aware Conv module. 

Number of group Input channel Output channel Kernel size Stride 

φc1 1 15 C mK 3 × 3 1 

φc 2 k K m 1 1 × 1 1 
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the pipeline of CADN network generally consists of a backbone

network and a following Category-aware Conv-Pooling module.

The backbone network extracts high-resolution features of the in-

put image, and the following Category-aware Conv-Pooling module

achieves weakly supervised object detection. 

3.1. Backbone 

High-resolution feature maps are obtained by using HRNet

[15] as the backbone of our framework to improve the accuracy

of defect localization. As Fig. 2 shows, HRNet starts with a high-

resolution branch in the first stage. In every following stage, a new

branch is added to current branches in parallel with resolution 1/2

of the lowest resolution in current branches. As the network has

more stages, it will have more parallel branches with different res-

olutions and the resolutions from previous stages are all preserved

in later stages. 

In our framework, the backbone starts with two strided 3 × 3

convolutions which reduces the resolution of feature map to 1/4

of input image. Consequently, four successive stages are followed.

The 1 st stage of HRNet contains 4 residual units where each unit

is formed by a bottleneck structure with width (number of chan-

nels) of 64, followed by a 3 × 3 convolution reducing the width

of feature maps to C . The 2 nd, 3 rd, 4 th stages contain 1, 4, and

3 multi-resolution blocks, respectively. The widths of the convolu-

tions of the four brunches in the 4th stage are C , 2 C , 4 C , and 8 C ,

respectively. Each branch in the multi-resolution group convolution

has 4 residual units and each unit has two 3 × 3 convolutions

in each resolution. In the implementation, we set C to 18 and 32

for the lighter and the larger configuration which are called CADN-

18 and CADN-W32 respectively. 

In the original paper [15] of HRNet, only the feature maps of

the highest-resolution branch outputted by the 4th stage are used

to predict the human keypoints. Unlike the task of human pose

estimation which predicts the joint locations of the fixed size per-

sons in [15] , defect detection needs to predict all the defects with

different scales. So we use all the outputs of four branches in the

4th stage by using upsampling to transform the resolution of other

branches to the highest-resolution to obtain the concatenated fea-

ture maps F ∈ R 

W 

4 
× H 

4 
×15 C . 

3.2. Category-aware Conv-Pooling module 

The extraction and reserve of spatial information within fea-

ture maps plays a critical role in WSL object detection pipeline.

CADN proposes Category-aware Conv-Pooling module to perform

this task intuitively and graciously. 
On the basis of the high-resolution feature maps F ∈
 

W 

4 
× H 

4 
×15 C , as illustrated in Fig. 1 , Category-aware Conv-Pooling

odule consists of two components: the Category-aware Conv

odule φc and the Category-aware Pooling P c . The module of

ADN is to transform the spatial feature maps to a classification

ector so that the network can be trained under the supervision of

mage tag annotations. What’s more important, the category-aware

patial information are extracted and reserved in the intermediate

eature maps (also can be deemed as category-aware heatmaps). 

.2.1. Category-aware Conv module 

Category-aware Conv module extracts and reserves spatial in-

ormation via a coarse-to-fine pipeline. “Coarse” means each cat-

gory of defect is assigned m -channels feature map to extract its

patial information: 

 cat = φc1 (F ∈ R 

W 
4 × H 

4 ×15 C ) (1)

here K is the number of defect category. F cat ∈ R 

W 

4 
× H 

4 
×mK can

e seen as the category-aware features in which per extracted m

hannels features belonging to one-category defect. 

Then “fine” means the spatial information of each category is

ransformed into a single-channel feature map which can be seen

s category-aware heatmap: 

 cat k = φc2 k ( F cat k ∈ R 

W 
4 × H 

4 ×m ) (2)

here φc 2 k is the k th one of K groups convolutions φc2 , which

nly belongs to the k th category defect. So that the m chan-

els category-aware features of the k th category are transformed

nto a single-channel heatmap H cat k ∈ R 

W 

4 
× H 

4 . The parameters of

ategory-aware Conv module are listed in Table 1 intuitively. Sev-

ral samples of category-aware heatmaps are illustrated in Fig. 3 .

e can find that the spatial information of defect objects have

een represented on the category-aware heatmaps. 

With the obtained category-aware heatmaps H cat ∈ R 

W 

4 
× H 

4 
×K ,

he region with maximum score for each category is extracted

nd used for point-wise localization. We used a common method

n previous WSL methods [25,35] , in which the category-aware

eatmaps need to be threshold-ed to extract localization infor-

ation of the object. Specifically, at first, the category-aware

eatmaps are resized into the size of the input image. In the trans-

ormation of heatmaps to classification vector by the Category-

ware Pooling, the classification score outputted by the pooling

odule is selected as the threshold for binarization of the re-

ized heatmaps. Then, the bounding boxes can be obtained on

he threshold-ed heatmaps. Moreover, to improve the accuracy of

etection result, we adopt superpixels algorithm to modify the

oundary of detected boxes as introduced in Section 3.3 . 

.2.2. Category-aware Pooling 

The Category-aware Pooling uses global average pooling opera-

ion to transform the category-aware heatmaps H cat to a classifi-

ation vector Y ∈ R 

K as in Eq. (3) . For Category-aware Pooling, we

se global average pooling to transform the spatial activation of

bject into the classification score of the corresponding category.

lobal average pooling can extract more complete spatial feature

han max-pooling, as well as avoid the influence of unexpected ex-

reme activation. 

 = P c (H cat ∈ R 

W 
4 × H 

4 ×K ) (3)
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Fig. 3. Some sample results of category-aware heatmaps. The first row lists some images of a part of mobile phone cover-glass, which have defects on the edge. The second 

row lists corresponding category-aware heatmaps. 
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Fig. 4. The pipeline of knowledge distillation strategy. 
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In this way, the CADN network can be trained under the super-

ision of global image labels ˆ Y cls with Cross-Entropy loss: 

 cls = −
K ∑ 

k =1 

[ Y k log ̂  Y k + (1 − Y k ) log(1 − ˆ Y k )] (4)

.3. Superpixels post-processing 

To improve the accuracy of detection result, we adopt superpix-

ls algorithm to modify the boundary of detected boxes. The su-

erpixels regions of each image are generated by the superpixels

lgorithm in [36] . For each side of a detection bounding box, a su-

erpixels region which is located on this side and has the biggest

ntersection-over-union with the box is selected. Then this side of

he box is extended to the boundary of the superpixels region. 

. Knowledge distillation for CADN 

In industrial applications, both accuracy and speed are of cru-

ial importance. Larger network could achieve high accuracy while

maller network could run faster at the cost of lower accuracy. In

ontrast to previous methods that attempt to make a better trade-

ff between the two conflicting objectives, we adopt knowledge

istillation strategy to overcome the dilemma. Knowledge distilla-

ion forces the outputs a faster CADN (with a smaller backbone as

 student) to mimic the output of a high-performance CADN (with

 larger backbone as a teacher) in the training process of the stu-

ent model. By using the proposed strategy, the accuracy of the

maller network is improved while high real-time performance is

aintained. 

.1. Teacher and student models 

The student model has HRNet-18 as the backbone for feature

xtraction. To keep feature consistency between the teacher and

he student models, HRNet-32 is selected as the backbone of the

eacher model. As noted, HRNet-32 has the same architecture with

RNet-18 but is much larger. 

.2. Transfer module 

With the determined teacher and student models, the key next

tep is knowledge representation and knowledge alignment be-

ween the two models. There are two choices in knowledge repre-

entation, feature map or heatmap. Heatmap is chosen as the de-

ect knowledge based on the following two considerations. Firstly,
he distillation on feature map would be computationally expen-

ive due to the huge amount of channels. Secondly, the category-

ware heatmap includes more explicit spatial information which

an help the student model learn them more straightforwardly. 

As shown in Fig. 4 , the transfer module performing knowledge

istillation includes two components: the ROIAlign [37] and the

onvolutional adapter φadapter . In distillation, we argue that only

efect region needs to be considered to reduce calculation and im-

rove distillation accuracy. The ROIAlign operation is adopted to

xtract the area of heatmaps of the teacher and the student mod-

ls corresponding to defects detected by the techer model: 

 

s 
n = ROIAlign (H 

s ∈ R 

W 
4 × H 

4 ×K ) by bbox n (5)

here H 

s 
n ∈ R 

w ×h ×K , H 

s is the heatmap of student model, bbox n 
s the bounding box of the n th defect. The same operation is also

erformed on the teacher model. 

Then the convolutional adapter φadapter is carried out on the ex-

racted heatmap H 

tk 
n ∈ R 

w ×h ×K of the teacher model to transfer the
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latent knowledge better. The mimicked teacher knowledge is calcu-

lated by: 

H 

tk 
n = φadapter (H 

t 
n ∈ R 

w ×h ×K ) (6)

4.3. Mimicking pipeline 

Corresponding to Fig. 4 , the whole knowledge strategy proce-

dure is summarized in Algorithm 1 . In the algorithm, a trained

Algorithm 1 Knowledge distillation pipeline of CADN. 

Require: The trained teacher model T and the student model S. 

Ensure: The trained student model S 

STAGE 1 : Training student model CADN S: 

W S = arg min W S 
L cls 

STAGE 2 : Fine-tune student model CADN S for mimicking: 

W S = arg min W S 
(αL cls + βL dis ) 

high-performance CADN-W32 network is needed in advance to act

as the teacher model. In the entire training process, only the pa-

rameters of the student model are updated while those of the

teacher model are fixed. In the 1 st stage, the student model CADN-

18 is trained under the image tag supervision. Consequently, the

2 nd stage is fine-tunning process where knowledge distillation is

implemented and a different loss function is defined. The Mean-

Squared Error (MSE) function is chosen as the distillation loss: 

L kd = 

1 

N 

1 

K 

N ∑ 

n =1 

K ∑ 

k =1 

‖ H 

s 
n − H 

tk 
n ‖ 

2 
2 (7)

where H 

s 
n and H 

tk 
n specify the student heatmaps and the trans-

ferred teacher heatmaps for the n th defect object, calculated by

Eqs. (5) and (6) , respectively. 

By taking the advantage of the supervision of the teacher, the

performance of the student can be improved straightforwardly

while its faster speed has been maintained. The effectiveness of

the knowledge distillation strategy has been verified in the abla-

tion experiment in Section 5.3.3 . 

5. Experiments 

5.1. Datasets and metrics 

The proposed CADN network is experimentally verified on two

datasets. The first dataset constructed by ourselves includes thou-

sands of images of mobile phone cover glass (MPCG). The second

one is the open-source defect dataset, DAGM. The two datasets are

detailed as follows. 

MPCG Dataset: The dataset is built for recognition of the edge

crack defect of MPCG. The images in the dataset are collected

from actual industrial productions and can be categorized into

two classes: normal images and the ones with edge crack de-

fect. The MPCG dataset contains 11,808 images with a resolution of

50 0 × 40 0 pixels, in which 5389 images are normal and 6419 im-

ages are with edge crack defect. To validate our methods better, we

randomly split the whole dataset into training set and testing set

with a ratio of 3:1. The specific numbers are shown in Table 2 . The
Table 2 

The image numbers of our own MPCG dataset. 

MPCG dataset Training set Testing set 

Normal images 5389 4042 1341 

Defect images 6419 4814 1605 

Total images 11,808 8856 2952 

a

5

 

a  

s  

C  

c

efect images have bounding box annotations for algorithm valida-

ion. Some images in the dataset are shown in the bottom row of

ig. 5 . 

DAGM Dataset: Images in this dataset are artificially generated

ut are similar to real world problems. DAGM consists of multi-

le data sets, each of which includes 10 0 0 non-defect images and

50 images with labelled defects. The images in a single data set

re similar, but different data sets are generated by using different

exture models and defect models. Some images in the dataset are

hown in the bottom row of Fig. 5 . 

Metric: As commonly suggested, we use the metrics, Accuracy

nd F − measure to evaluate the performances of defective image

lassification, and use mean Average Precison (mAP) to evaluate

he performances of defect localization. Classification Accuracy is

alculated by dividing the number right-classified images of by the

umber of all testing images. Even a intuitive metric, Accuracy isn’t

ensitive and a true sense out of the evaluated method’s perfor-

ance when imbalanced class distribution occurs like in DAGM.

o the F − measur is adopted. The defective and normal images

re respectively treated as positive and negative samples in clas-

ification task. Then the values of True positive ( TP ), False positive

 FP ), True negative ( TN ) and False negative ( FN ) can be counted,

hich represent the numbers of right-classified defective images,

rong-classified normal images, right-classified normal images and

rong-classified defective images. So Precision and Recall can be

omputed as: 

 recison = 

T P 

T P + F P 
(8)

ecall = 

T P 

T P + F N 

(9)

The F − measure for evaluating the classification performance

an be defined as: 

 − measure = 

(γ 2 +1) ∗Precision ∗Recall 

γ 2 ∗Precision + Recall 
(10)

In the comparison experiments, setting the parameter γ to 1,

e get the F 1 − measure, which is the additional metric to obtain

bjective evaluations of classification performances of the meth-

ds. 

The metric mAP is used to evaluate the defect detection results.

or comparison fairness, a common threshold 0.5 is firstly selected

nd then, mAP is calculated by the manner adopted in Pascal VOC

valuation [38] . It means that, the detection bounding box is con-

idered as TP if it has IoU > 0.5 with one ground truth box. 

.2. Implementation details 

CADN is implemented by PyTorch on a sever with four Nvidia

eForce GTX 1080 GPUs, running on Ubuntu 16.04 operating sys-

em. In the training process, SGD optimizer is utilized with the

earning rate 0.02 and the batch size 16. We use a weight decay

f 0.0 0 01 and momentum of 0.9. The learning rate is dropped to

.0 02 and 0.0 0 02 at the 22nd and the 24th epoch, respectively. The

teration training is terminated after 26 epochs. The size of training

mage is set as 224 × 224. Parameter m in Category-aware Conv-

ooling module is set as 16. For knowledge distillation, α and β
re both set as 0.5. 

.3. Ablation studies 

To demonstrate the contributions of different parts of CADN,

blation experiments are conducted. In this section, ablation

tudies on high-resolution feature representation, Category-aware

onv-Pooling module, and knowledge distillation strategy are suc-

essively reported. 
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Fig. 5. Some sample results of CADN. The first row lists some defect localization results on MPCG Dataset. The second row lists defect localization results on DAGM Dataset. 

Table 3 

The performance of different backbones on the MPGC dataset. CADN achieves the 

highest performance by using HRNet-W32 than other backbones. 

Backbones Params GFLOPs Cls . Acc. Det . mAP 

VGG-11 133.96 7.83 82.9 46.9 

ResNet-50 27.59 4.61 93.8 63.4 

HRNet-W18 13.77 2.27 93.4 65.9 

HRNet-W32 26.63 4.72 98.7 68.5 
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Table 4 

The performance of CADN-W32 with different WSL com ponents on the MPCG 

dataset. Our proposed Category-aware Conv-Pooling module achieves the highest 

metrics. 

Weakly Supervised Strategy mAP 

(a) CAM [23] 55.1 

(b) Category-aware Conv module 60.2 

(c) Category-aware pooling 62.1 

(d) Category-aware Conv-Pooling 68.5 
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Table 5 

The performance of CADN-W18 with different knowledge distillation strategies on 

the MPCG dataset. Our proposed Category-aware Conv-Pooling module achieves the 

highest metrics. 

KD on Feaure map KD on Heatmap ROIAlign φadapter mAP 

(a) 65.9 

(b) � 66.2 

(c) � 66.5 

(d) � � 66.8 

(e) � � � 67.2 
.3.1. Ablation study for high-resolution feature representation 

In this experiment, we evaluate the effectiveness of high-

esolution feature representation by equipping different backbones

or CADN: VGG-11, ResNet-50 and HRNet-W32. Among them, VGG-

1 and ResNet-50 are commonly used backbones for visual recog-

ition tasks and both of their feature maps have a 1/32 resolution

f the input image. For the sake of fairness, knowledge distillation

s not adopted, and parameters (Params) and FLOPs of the back-

ones are calculated with the input size of 224 × 224 to reflect

he complexity of the backbones. As reported in Table 3 , HRNet-

32 gets the highest Accuracy and mAP scores on the MPGC

ataset among the three backbones, while its Params and GFLOPs

re far lower than VGG-11 and comparable with ResNet-50. It can

e concluded from Table 3 that HRNet-W32 achieves the best per-

ormance without any increase of memory space and computa-

ional cost. The superiority of the high-resolution feature represen-

ation is thus proved. 

.3.2. Ablation study for Category-aware Conv-Pooling module 

The Category-aware Conv-Pooling module is the core of CADN.

he module is designed to extract spatial information of fore-

round object within feature maps, based on which WSL is

chieved. To verify the effectiveness, the following comparison ex-

eriments are conducted where four different WSL configurations

re involved. (a) The WSL detection component in CAM [23] . It

tilizes the weights of the fully connective layer to obtain the

eighted sum of feature maps to generate the category-aware

eatmap. (b) Only using Category-aware Conv module. Each cat-

gory is assigned m channels feature map which is followed by

 exclusive CAM component without Category-aware Pooling. (c)

nly using Category-aware Pooling, which means a 1 × 1 con-

olutional layer replaces Category-aware Conv module to trans-
er feature maps to category-aware heatmap. (d) The proposed

ategory-aware Conv-Pooling module. As reported in Table 4 , (d)

chieves the best performance on the MPGC dataset among the

ifferent WSL configurations, proving the usefulness of the pro-

osed Category-aware Conv-Pooling module. 

.3.3. Ablation study for knowledge distillation 

Knowledge distillation and transfer module are of importance

o improve the performance of CADN with a lighter backbone,

hich need to be emphasized and verified. Comparison exper-

ments are conducted with the following different distillation

trategies. (a) CADN-W18 without knowledge distillation. (b) Per-

orming knowledge distillation on feature maps in CADN-W18. (c)

erforming knowledge distillation on heatmaps without transfer

odule in CADN-W18. (d) Using ROIAlign without convolutional

dapter φadapter . (e) CADN-W18 with the proposed knowledge dis-

illation strategy. The experimental results are listed in Table 5 .

s illustrated in the table, the strategy (e) can help (a) increase

AP by 1.3 (from 65.9 to 67.2) with the supervision of the teacher

odel, CADN-W32, which achieves the mAP of 68.5. Meanwhile,
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Fig. 6. The two images in (a) are from test sets of MPCG and DAGM Datasets. (b), (c) and (d) are their defect localization results by using Faster R-CNN, SSD and CADN-W32 

respectively. 
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the increases of mAP by using other strategies (b) ~ (d) are all

lower than 1.3. The superiority of the proposed knowledge distilla-

tion strategy is thus demonstrated. As listed in Table 3 , the GFLOPs

and the Params of HRNet-W18 are respectively 52% and 48% lower

than HRNet-W32. Meanwhile, mAP achieved by HRNet-W18 is 2.6

lower than HRNet-W32. By using distillation strategy, the mAP gap

is reduced to 1.3 (67.2 vs 68.5). That means that, nearly half of re-

quired memory space and computational cost could be saved at

the expense of only a slight mAP degrade (1.3). This is of great

significance for industrial applications. Therefore, knowledge distil-

lation makes CADN more practical. 

5.4. Comparison with the-state-of-the-art methods 

For further demonstration, the proposed CADN method is com-

pared with previous regular detection methods and WSL meth-

ods on the two dataset. Table 6 reports the results of classification

and detection performances on the MPCG test set. CADN-W32 ob-

tains classification accuracy of 98.1 and F 1 − measure of 98.3 which

greatly outperforms other weakly supervised (WS) methods and is

comparable with the regular supervised (RS) methods. In the ex-

periment, a universally acknowledged high-performance two-stage

detector Faster R-CNN [5] with RoIAlign proposed in [37] , a widely

used single-stage detector SSD [39] and a recent single-stage de-

tector FCOS [40] are selected as the comparison methods. These

two RS detectors can obtain more accurate defect localization re-

sults than CADN as shown in Fig. 6 by being trained under the

supervision of large quantities of manually labelled bounding box
Table 6 

Classification and detection performance on the MPCG test set. 

Method Type Cls . Acc. Cls . Pre. Cls . Rec. F 1 − M. Det . mAP 

SSD RS 97.8 97.2 98.6 98.0 71.8 

FCOS RS 98.2 97.7 99.1 98.4 74.3 

Faster R-CNN-50 RS 98.9 98.3 99.7 99.0 78.8 

CAM WS 88.9 86.7 94.0 90.2 55.1 

CADN-W18 WS 93.4 92.4 95.8 94.1 65.9 

CADN-W18(KD) WS 95.1 94.4 96.8 95.6 67.2 

CADN-W32 WS 98.1 97.7 98.8 98.3 68.5 

D  

c  

m  

T

D

nnotations. However, using only image-level annotations in train-

ng, CADN is more meaningful for practical applications even it

chieves a slight lower mAP score than the RS methods as it dra-

atically reduces human burden in image labelling. Among the

SL methods, all of the CADNs achieve much higher mAP scores

han CAM and CADN-W32 achieves the highest mAP score of 68.5,

hich is consistent with the analysis. Moreover, knowledge distil-

ation strategy help CADN-W18 improve the Accuracy and mAP by

.7 and 1.3 respectively without any increase of memory space and

omputational cost. We argue that such an improvement is signif-

cant in applying CADN-W18 in the industrial environment. 

Notably, these regular detectors are originally designed for nat-

ral image detections while the paper focuses on industrial image.

e can perceive that the two types of images are of discrepancy.

he boundaries of foreground objects on natural images are clear

hile the boundaries of defects on industrial images are vague and

re difficult to be accurately recognized. In response to that, we

valuate the impact of a lower IoU threshold in mAP calculations.

able 7 reports the results with the IoU threshold 0.3. As can be

een, the gap between CADN and regular supervised detectors has

arrowed to about 5 from about 10. We think that, CADN has the

apacity of defect recognition similar with regular detectors. How-

ver, the regular detectors could learn to accurately locate defect’s

oundaries with bounding box supervision while CADN could not.

he threshold 0.5 is a common choice in regular detectors and is

elected in the comparison experiments in Tables 6 and 8 for fair-

ess. 

Table 8 reports the results of the methods on DAGM test set.

espite the highest classification accuracy of 99.95, detection task

annot be accomplished by the method [41] and explicit infor-

ation about defect, i.e. location and size, cannot be provided.
able 7 

etection results with different the IoU thresholds on the MPCG dataset. 

Method Type regular Det . mAP mAP with 0.3 IoU threshold 

FCOS RS 74.3 78.3 

Faster R-CNN-50 RS 78.8 80.1 

CADN-W32 WS 68.5 75.1 
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Table 8 

Classification and Detection performance on DAGM defect test dataset. 

Method Type Cls . Acc. Cls . Pre. Cls . Rec. F 1 − M. Det . mAP 

SSD RS 88.2 53.0 90.1 66.8 65.2 

FCOS RS 88.6 54.0 91.4 67.9 68.9 

Faster R-CNN-50 RS 89.8 57.0 91.6 70.2 68.9 

Kim et al. [41] RS 99.95 - - - - 

Staar et al. [42] WS 83.0 - - - - 

CADN-W18 WS 86.2 48.7 90.0 63.2 56.8 

CADN-W18(KD) WS 87.6 51.6 90.7 65.8 58.3 

CADN-W32 WS 89.1 55.1 92.0 69.0 61.2 
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ompared with other regular supervised detection methods,

ADN-W32 achieves comparable F 1 − measure of 69.0 and has a

ap of 7.7 with Faster R-CNN on mAP. The result is consistent with

hat of experiments carried out on the MPCG dataset. It should

e also noted that, on such a imbalanced test set which includes

54 defective images and 2996 normal images, the metric Recall is

ore important for industries applications. As shown in Table 8 ,

ecall of CADN-W32 is even higher than Faster R-CNN which fur-

her validates our method. In summary, the experiments on the

wo datasets demonstrate that, the proposed CADN is effective and

an adapt to different industrial applications. 

. Conclusions 

In this paper, we focus on the surface inspection task for which

 weakly supervised learning method named CADN is proposed.

mage classification and defect localization could be simultane-

usly achieved by CADN trained under image tag supervisions. A

nowledge distillation strategy is adopted to improve the accuracy

f the lighter CADN while maintaining its high real-time perfor-

ance. Therefore, human efforts in image labelling, accuracy and

peed are simultaneously considered in CADN, making the method

ractical in industrial applications. An MPCG dataset is constructed

y collecting images from actual industrial productions and is em-

loyed together with the open source defect dataset DAGM to ver-

fy the proposed CADN method. Comparison and ablation experi-

ents sufficiently demonstrate the effectiveness and superiority of

ADN. Based on our work, further research should be continuous

mprovement of the lighter CADN. At present, the performance of

he lighter CADN is improved by the knowledge distillation strat-

gy, but still lags behind that of the larger CADN. Further improve-

ent on the detection accuracy of the lighter CADN to approach

r even exceed that of the larger CADN would be meaningful. Ad-

itionally, extending CADN to more general application scenarios

ould also be a promising research topic. 
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