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Abstract This paper proposes a novel regularized adaptation
method to improve the performance of multi-accent Mandarin
speech recognition task. The acoustic model is based on long
short term memory recurrent neural network trained with a
connectionist temporal classification loss function (LSTM-
RNN-CTC). In general, directly adjusting the network param-
eters with a small adaptation set may lead to over-fitting. In
order to avoid this problem, a regularization term is added to
the original training criterion. It forces the conditional proba-
bility distribution estimated from the adapted model to be
close to the accent independent model. Meanwhile, only the
accent-specific output layer needs to be fine-tuned using this
adaptation method. Experiments are conducted on RASC863
and CASIA regional accented speech corpus. The results
show that the proposed method obtains obvious improvement

when compared with LSTM-RNN-CTC baseline model. It
also outperforms other adaptation methods.

Keywords multi-accent . Mandarin speech recognition .

LSTM-RNN-CTC .model adaptation . CTC regularization

1 Introduction

Accent is one of the key factors to result in poor performance
of automatic speech recognition (ASR) system [1–3]. It is
particularly severe for Mandarin ASR system with regional
accented speech. The accented speech is determined by the
speaker’s native language or dialect [3, 4].

There are about seven major dialects in China: Guanhua
dialect, Wu dialect, Xiang dialect, Gan dialect, Kejia dialect,
Yue dialect and Min dialect [5]. There are many Chinese
speakers who learn Mandarin as a second language. Their
pronunciations are influenced by their native dialects.
Statistics [6] show that over 79.6% ofMandarin speakers have
regional accents, and 44.0% of them have heavy accents.
Therefore, it is very common that Mandarin speech has ac-
cent. The performance of the Mandarin ASR systems is not
well on accented speech, especially on multiple-accented
speech [4].

To solve this problem, many adaptation methods have been
proposed. These methods can be roughly classified into two
categorizations: lexicon adaptation method [1, 3, 10–13] and
model adaptation method [4, 5, 7–9, 14]. The former focuses
on phonetic variations. The common methods are to extend
phone set or augment pronunciation dictionary [10]. However,
these methods increase lexical confusions [11]. Thus they do
not gain obvious performance improvement. The pronuncia-
tion modeling technique proposed to reduce phonetic confu-
sions. This modeling method is at either phone level or HMM
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state level [12, 13]. The latter focuses on acoustic variations,
the most direct way is to build acoustic models for each accent
using a large amount of accent speech [14]. Previous studies
have shown that the model adaptation method is more effec-
tive than the lexicon adaptation method. In this paper, we
focus on the model adaptation method for multi-accent
Mandarin speech in ASR task.

There are many literatures on the model adaptation for
accented speech recognition. Previously, the simplest pro-
posed adaptation method is maximum likelihood linear re-
gression (MLLR). This method is based on GMM-HMM
model. Huang et al. [15] proposed standard speaker MLLR
adaptation to a Microsoft Whisper system that has been
trained on speech from speakers living in the Beijing area.
In [15, 16], MLLR is adapted not just to the single accented
test speaker, but to a larger number of accented speakers.
Research in [15–17] shows the effectiveness of MLLR or
MaximumAPosteriori (MAP) adaptation on accented speech.
Y. L. Zheng et al. [8] combined MLLR and MAP to perform
accent adaptation for Shanghai-AccentedMandarin ASR task.
Their experimental results show that this approach can im-
prove the performance of accented speech recognition.

Recently, deep neural networks (DNNs) have become
dominant methods for acoustic modeling in ASR system
[18–20]. DNNs have layer-by-layer invariant and can extract
high level representation features [21, 22]. Therefore, they can
help improve the performance of ASR system on the accented
speech. However, there are still large performance gap be-
tween the accented speech and the native speech for the deep
neural network hidden Markov model (DNN-HMM) based
acoustic model [23].

More recently, the multi-accent deep neural network with
accent-specific top layer is proposed to gain improvement for
recognizing foreign accented speech [23]. The method is in-
spired by the multilingual speech recognition using multitask
learning technology [24]. Furthermore, they have been proved
to be effective and efficient. Moreover, i-vectors have also
been used to perform accent adaptation for Mandarin speech
[25]. The results show that this method can achieve promising
results. These methods have been conducted for DNN-HMM
based acoustic model.

Most recently, long short term memory (LSTM) recurrent
neural networks (RNNs) outperform the state-of-the-art DNN-
HMM systems [26]. There are many literatures on LSTMRNN
based speaker adaptation [27–29]. A few studies on accent
adaptation are conducted based on LSTM RNN. It has been
reported that accent-specific bottleneck features can improve
the performance of multi-accent Mandarin ASR task [30].

However, the above models are hybrid models. These
DNN-HMM or RNN-HMM based acoustic models are
trained with a cross-entropy (CE) loss function. DNNs or
RNNs are used to classify speech frames into clustered
context-dependent (CD) states (i.e., senones). The frame-

level senones are generated from GMM-HMM based model.
Thus the training procedures of ASR are very complex.
Graves et al. [31] introduce the connectionist temporal classi-
fication (CTC) loss function to infer speech-label alignments
automatically. This CTC technique is further investigated in
[32–35] on large-scale acoustic modeling tasks. These end-to-
end acoustic models show promising results.

Naturally, we adopt LSTM RNN based acoustic model
trained with a CTC loss function (LSTM-RNN-CTC) to esti-
mate posteriors of initial and final (I/F) sequences. This meth-
od does not need alignments from GMM-HMM models. The
results show that this model can achieve promising results and
speed up decoding [36]. Nevertheless, adjusting the network
parameters directly with a small adaptation data may lead to
over-fitting [23–25].

In order to avoid over-fitting, this paper proposes a novel
regularized adaptation method to improve the performance of
multi-accent Mandarin speech recognition task. This method
is based on LSTM-RNN-CTC model. This regularized meth-
od is inspired by KLD regularized adaptation with a CE loss
function [37]. In [37], the method is used for speaker adapta-
tion. A regularization term is added to the original training
criterion. It forces the probability distribution over senones
estimated from the adapted model to be close to speaker inde-
pendent (SI) model. We apply this idea to accent adaptation
with a CTC loss function. Thus this paper proposes a CTC
regularized adaptation method for LSTM-RNN-CTC base
acoustic model.

Furthermore, inspired by the method in [23], we also pro-
pose a multi-accent LSTM-RNN-CTC model with accent-
specific output layer. This method only needs to adjust the
parameters of the output layer of the accent independent
(AI) model with the accent-specific adaptation set. The param-
eters of all the hidden layers of the AI model are shared for all
accented speech.

Experiments are conducted on RASC863 [38] and CASIA
[39] corpus. The results demonstrate that the proposedmethod
gains 37.7%, 10.5%, 5.8%, 6.5% and 13.2% for Beijing (BJ),
Shanghai (SH), Guangzhou (GZ), Chongqing (CQ) and
Xiamen (XM) accent speech relative word error rate (WER)
reduction against 260 hours LSTM-RNN-CTC based acoustic
model. The results also show that the proposed method out-
performs other adaptation methods.

Our main contributions are summarized as follows:

& A novel regularized adaptation method is proposed to im-
prove the performance of multi-accent Mandarin speech
recognition task. This method is called CTC regularized
adaptation.

& A multi-accent LSTM-RNN-CTC model with accent-
specific output layer is proposed for Mandarin speech rec-
ognition. The output labels of the LSTM-RNN-CTCmod-
el are initials and finals (I/F) sequences.
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& The results show that the proposed CTC regularized ad-
aptation method is effective. When the adaptation data is
small, this method can help avoid over-fitting. The regu-
larization weight is a hyper-parameter which can be ad-
justed according to the amount of the adaptation data.

The rest of this paper is organized as follows. In section 2,
the proposed regularized adaptation method is introduced in
detail. Section 3 describes the framework of our proposed
model adaptation method. In section 4, experiments and re-
sults are presented at some length. Section 5 discusses the
results. Section 6 concludes the paper.

2 Proposed Regularized Method

In this section, connectionist temporal classification (CTC)
loss function is reviewed briefly at first. Then, the proposed
CTC regularized model adaptation is introduced in detail.

2.1 Connectionist temporal classification

LSTMRNNwith CTC can be used as a classifier by selecting
the most probable label sequences for a given input sequence
[31, 32].

Let S denotes a set of training samples. The input space X is
the set of all sequences of m dimensional real value vectors.
The output space Z is the set of all sequences over the alphabet
L of labels. In general, each training sample in S is defined as a
pair of sequences (x, z).

Formally, for an input sequence x of length T, define a
LSTM RNN with m inputs and n outputs as a continuous
map f : y = f(x). y is the output sequence of the network. The
length of y is T. xt in x is them dimensional inputs at time t and
yt in y is the n dimensional outputs at time t. Then ytπt is
interpreted as the probability of observing label πt at time t,
which defines a distribution over the set L′T of length T se-
quences:

p πjxð Þ ¼ ∏
T

t¼1
ytπt ;∀π∈L

0T ð1Þ

where the alphabet L′ is defined as L ∪ {blank}, the element of
L′T is referred as path and is denoted as π. πt denotes the
element π at time t.

B is defined as a many-to-one map: L′T→L≤T, where L′T is
the set of all the paths π and L≤T is the set of possible output
labels z. Then all blanks and repeated labels can be removed
from the path π. For example, B(c − cd−) = B(cc − − cdd) =
ccd, c − cd− and cc − − cdd are the paths π. − denotes blank.
ccd is the possible output labels z. So B−1 is defined as a one-
to-many map: L≤T→L′T, the inverse of B, such as B−1(ccd) = c
− cd− or B−1(ccd) = cc − − cdd. Finally, the conditional

probability of a given label sequences z ∈ L≤T is defined as
the sum of the probabilities of all the paths π corresponding
to it [31]:

p zjxð Þ ¼ ∑
π∈B−1 zð Þ

p πjxð Þ ð2Þ

The aim of maximum likelihood training is to simulta-
neously maximise the log probabilities of all the correct clas-
sifications in the training set. This means minimising the fol-
lowing objective function:

L Sð Þ ¼ −ln ∏
x;zð Þ∈S

p zjxð Þ ¼ − ∑
x;zð Þ∈S

lnp zjxð Þ ð3Þ

where (x, z) ∈ S denotes training samples. The training is car-
ried out by back propagation through time (BPTT) algorithm.

2.2 Proposed CTC regularized adaptation

A direct method to adapt neural network is to fine-tune all the
parameters of accent independent (AI) LSTM-RNN-CTC
based acoustic model with adaptation sets. Nevertheless, it
may distort the probability distribution of the AI model and
cause over-fitting problem, especially if the adaptation set is
small.

To avoid over-fitting, the network should be adapted conser-
vatively. Thus we propose a CTC regularization method. The
output labels z is initials and finals (I/F) sequences. So what
estimated from the model are not the senone posteriors distribu-
tion but the I/Fs distribution. I/Fs form the fundamental elements
in Mandarin pinyin. For example B间jian^,间 is a Chinese char-
acter. Jian is the pinyin of the Chinese character间. j is initial (I)
and ian is final (F) of the pinyin.

The intuition behind the proposed method is that the con-
ditional probability distribution over I/F sequences estimated
from the adapted model should be close to the AI model.

Therefore, this constraint is realized by adding a penalty ρ

− ∑
x;zð Þ∈S

 
lnpAI zjxð ÞÞ as a regularization term to eq. (3). Thus

we get the adaptation criterion as follow:

L̂̂ Sð Þ ¼ 1−ρð ÞL Sð Þ þ ρ − ∑
x;zð Þ∈S

lnpAI zjxð Þ
 !

ð4Þ

where lnpAI(z| x) is the log probability of I/F label sequences
estimated using the AI model and ρ is the regularization
weight. This adaptation method is called as CTC regularized
adaptation. Then, eq. (4) can be reorganized to eq. (5) and (6):

L̂̂ Sð Þ ¼ − ∑
x;zð Þ∈S

1−ρð Þlnp zjxð Þ þ ρlnpAI zjxð Þ� � ð5Þ
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L̂̂ Sð Þ ¼ − ∑
x;zð Þ∈S

lnp̂̂ zjxð Þ ð6Þ

By eq. (5) and (6), and removing the unrelated terms, we
can define as follow:

lnp̂̂ zjxð Þ≜ 1−ρð Þlnp zjxð Þ þ ρlnpAI zjxð Þ ð7Þ
where lnp(z| x) is the log probability of I/F sequences estimat-
ed from the model using the original training criterion with
adaptation data. lnp̂ zjxð Þ is a linear interpolation of the log
probability ln p(z| x) and lnpAI(z| x).

By comparing equation (3) with equation (5) and (6), we
can see that applying the CTC regularization to the original
training criterion L(S) is equivalent to changing the log prob-
ability distribution from lnp(z| x) to lnp̂ zjxð Þ.

The CTC regularization constrains the log probability of the
I/F sequences rather than model parameters themselves.
Therefore, the normal BPTT algorithm can be directly used to
adapt the AI model. Then, the only thing needs to be changed is
the error signal at the output layer. The error signal is computed
According to the log probability lnp̂ zjxð Þ of the I/F sequences.

When the AI model is adapted with the adaptation set, the
regularization weight ρ in equation (7) can be adjusted using a
development set. When ρ = 1, it indicates that the AI model is
trusted completely and all new information is ignored from the
adaptation data. When =0, it indicates that the AI model is
only used to initialize the adapted model and the information
from the adaptation set is trusted completely. Intuitively, a
small regularization weight ρ can be used for a large adapta-
tion set. A large regularization weight ρ should be used for a
small adaptation set.

3 Framework of the Proposed Method

This section describes the framework of the proposed CTC
regularized adaptation method. The AI model should be
trained using all kinds of accented speech at first. Then, the
accent adaptation is performed based on the AI model with
different accent adaptation data.

The AI model is based on LSTM-RNN-CTC. The input data
of the AI model is the training set of all kinds of accented speech
data. The output labels of the AI model are I/Fs, such as "d ai k
ou y in d e y u y in sh i b ie zh un q ue l v z enm e y ang". The AI
model is used to initialize the adapted model. Then the adapted
model is fine-tuned with different adaptation sets for different
accented speech. The network architecture of the AI model is
depicted at the left of Fig. 1.

The accent adaptation is performed by starting from the AI
model. This method only needs to adjust the parameters of the
output layer of the AI model with the accent-specific adaptation
set. The parameters of all the hidden layers of the AI model are
shared for all accented speech. We do not need to store different

models for all kinds of accented speech. We only need to store
different parameters of the accent-specific output layers and the
shared hidden layers. Thus the storage cost can be reduced for
accent-specific models. The framework of the proposed accent
adaptationmethod for multi-accentMandarin speech recognition
is depicted at the right of Fig. 1.

In Fig. 1, the AI model is trained to be as the initialized
model at first. The AI model is trained with all kinds of
accented speech data. Then accent adaptation is performed
with different kinds of accented speech adaptation set. The
output labels of the accented speech (Accent 1) are the same
as other three accented speech (Accent 2, Accent 3 and Accent
4). Different accented speech has different output layer. All
accent-specific layers share the parameters of the hidden
layers of the AI model. For Accent 1, the adaptation is per-
formed to fine-tune the output layer of the AI model with the
adaptation set of Accent 1. For Accent 2, the adaptation is
performed to adjust the output layer of the AI model with
the adaptation set of Accent 2. The adaptation set of each
accent is a part of the training data of the AI model.

The proposed framework has two advantages. First, the
number of I/Fs is very small compared with the number of
senones. Thus training cost and decoding cost can be signifi-
cantly reduced. Second, the number of senones may change
with augmenting the adaptation data in the real ASR system,
especially when the adaptation data is large. In general, the set
of I/Fs is stationary for Mandarin speech.

4 Experiments

In this section, experimental data is described at first. Then
experimental setup and baseline models are introduced.
Finally, a series of experiments and results are described in
detail.

4.1 Data description

Our experiments are conducted on RASC863 [38] and
CASIA [39] regional accented speech corpus. RASC863 cor-
pus is 863 annotated 4 regional accented speech, namely
Shanghai (SH), Guangzhou (GZ), Chongqing (CQ) and
Xiamen (XM). The corpus consists of spontaneous speech,
read speech and selected dialectical words. CASIA corpus is
developed by Institute of Automation, Chinese Academy of
Sciences. The corpus consists of southern and northern
accented speech.

There are five kinds of regional accented speech selected to
form the experimental data. Four kinds of regional accented
speech are selected from RASC863. Beijing (BJ) accented
speech is selected from CASIA. The accented speech in our
experiments is spoken by native residents from BJ, SH, GZ,
CQ and XM respectively. BJ accented speech is very close to
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Mandarin speech while the others are seriously affected by
Wu dialect, Yue dialect, CQ dialect and Min dialect. These
four kinds of accented speech are very different from
Mandarin speech.

In all our experiments, the experimental data contains three
parts: training data, development data and test data. Moreover,
training data, development data and test data are mutually
exclusive. The parameters of the model are updated on the
training data. The learning rate is adjusted on the development
data. The training terminates when the performance fails to
decrease by 0.1% between two successive epochs on the de-
velopment data. The word error rate (WER) of all models is
calculated on the test data.

For all AI models, the training data is about 260 hours. The
development data is about 25 hours. The test data is about

14.7 hours. The statistics of the training data, the development
data and the test data used to train AI models in our experi-
ments are listed in Table 1.

For all adapted models, the adaptation data is selected from
the training data and development data that are used to train the
AI models. The adaptation data used to update the parameters of
the adapted models is called adaptation_tr data. The adaptation
data used to select adapted models, adjust the learning rate and
the regularized weight is called adaptation_cv data. The
adaptation_tr data is selected from the training data randomly
for each accent in Table 1. The adaptation_cv data is selected
from the development data randomly for each accent in Table 1.

There are three kinds of adaptation data used for accent
adaptation: Apt.1 k, Apt.10 k and Apt.tot. These adaptation
data are selected from the training data of Table 1. Apt.1 k

All accent

...

Hidden layers

Input Layer

LSTM

LSTM

LSTM

LSTM

LSTM

Input

initials/finals
Output Layer
fine-tuned for 

accent adapation

shared for 
accent adapation

CTC loss function

Accent1 Accent3Accent2 Accent4

... ... ... ...

Accent1 initials/finals

Shared Feature 
Transformation

Input Layer

LSTM

LSTM

LSTM

LSTM

LSTM

Input

Accent Specific 
Output Layer

Accent2 initials/finals Accent3 initials/finals Accent4 initials/finals

CTC loss function

Figure 1 Framework of the proposed adaptation method. Left: Network
architecture of accent independent (AI) model for Mandarin speech
recognition. Right: Framework of multi-accent LSTM-RNN-CTC based

model adaptation for speech recognition. Note: The labels of output layer
are initials and finals which are same for different kinds of accented
speech.

Table 1 Statistics of the training
data, the development data and
the test data used to train AI
models in our experiments.

Accent Training data Development data Test data

#utterances #hours #utterances #hours #utterances #hours

BJ 70,996 55 7099 5.1 4004 3.1

SH 33,576 63 3357 6.2 1894 3.6

GZ 13,448 25 1344 2.4 758 1.4

CQ 30,835 67 3083 6.5 1738 3.8

XM 30,059 50 3005 4.8 1693 2.8

TOTAL 178,914 260 17,888 25 10,087 14.7
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denotes that the adaptation_tr data contains 1000 utterances
for each accented speech. Apt.10 k denotes that the
adaptation_tr data contains 10,000 utterances for each
accented speech. Apt.tot denotes that the adaptation_tr data
contains all utterances for each accented speech. The statistics
of these three kinds of adaptation data for conducting accent
adaptation in our experiments are listed in Table 2.

The test data for the adapted models is the same as the test
data for the AI models. This means that the test data in Table 1
is used in all our experiments.

4.2 Experimental setup

In our experiments, the CTC regularization method is imple-
mented based on the eesen toolkit [33]. The open source Kaldi
speech recognition toolkit [40] is used to compare the perfor-
mance among different baseline models.

The sampling frequency of speech data is 16 KHz. The
feature vector is 40-dimensional filter bank (FBANK) features
plus their first and second order derivatives. The frame length
is 25 ms and the frame shift is 10 ms. The features are nor-
malized via mean subtraction and variance normalization on
the utterance basis.

At first, we train the AI model using the training data
of all five kinds of accented speech in Table 1. Then, we
adjust the parameters of the output layer of the AI model
for each accent using the adaptation_tr data of the corre-
sponding kind of accented speech. The learning rate and
the regularized weight are adjusted on the adaptation_cv
data of the corresponding kind of accented speech. The
adaptation procedure usually takes 1 or 2 iterations before
the parameters of the accent-specific output layer con-
verge. The training of all neural network based models
is speeded up by multiple GPUs across different ma-
chines. This parallel implementation is based on
Message Passing Interface (MPI).

The language model (LM) used in all experiments is a 3-g
LM trained with the transcriptions of the training data about
13 M. However, it excludes the transcriptions of the test data.

The vocabulary used has 80 Kwords. Our decoding is weight-
ed finite-state transducers (WFST) based approach.

4.3 Baseline model

This section describes different modeling technique among
Gaussian mixture model hidden Markov model (GMM-HMM),
DNN-HMM, LSTM-RNN-HMMand LSTM-RNN-CTC.

These models are trained using the training data and the
development data of all five kinds of accented speech data in
Table 1. The training data is about 260 hours. The develop-
ment data is about 25 hours. The GMM-HMM model has
90,000 Gaussian components and 18,251 senones optimized
with the maximum likelihood estimation (MLE) procedure.
The speaker-independent crossword triphones use the com-
mon 3-state topology. The DNN-HMM model uses a sliding
context window of 11 frames. It is trained with 6 hidden layers
and each layer has 1024 nodes. The output labels are 18,251
nodes which are identical to the senones generated from the
GMM-HMM model.

The LSTM-RNN-HMM model uses a single frame as in-
put. It has 4 stacked LSTM layers with projection, and each
layer has 640 memory cells and 320 output units. The output
labels are 18,251 nodes which are identical to the senones
generated from the GMM-HMM model.

The LSTM-RNN-CTC model uses a single frame as input.
It has 4 stacked LSTM layers with projection, and each layer
has 640 memory cells and 320 output units. Particularly, it
adopts a CTC loss function to infer the alignments between
speech and target sequences. The output labels are I/Fs, such
as such as "y u y in sh i b ie blank". There are 61 output nodes
in the softmax layer. The number of I/Fs is 60. One of the
output labels is blank. The output labels are independent.

For the hybrid models (DNN-HMM and LSTM-RNN-
HMM) are trained with a CE loss function. They are trained
using stochastic gradient decent (SGD). DNN-HMM, LSTM-
RNN-HMM and LSTM-RNN-CTC are trained using 4 GPUs
across 2 machines. The initial learning rate of DNN-HMM
and LSTM-RNN-HMM is set to 2×10−5. For LSTM-RNN-

Table 2 Statistics of the three kinds of the adaptation data for conducting accent adaptation in our experiments.

Accent Apt.1 k Apt.10 k Apt.tot

#adaptation_tr
utterances

#adaptation_cv
utterances

#adaptation_tr
utterances

# adaptation_cv
utterances

#adaptation_tr
utterances

# adaptation_cv
utterances

BJ 1000 100 10,000 1000 70,996 7099

SH 1000 100 10,000 1000 33,576 3357

GZ 1000 100 10,000 1000 13,448 1344

CQ 1000 100 10,000 1000 30,835 3083

XM 1000 100 10,000 1000 30,059 3005

J Sign Process Syst

Author's personal copy



CTC, the initial learning rate and momentum are set to 5×10−7

and 0.9 respectively.
Table 3 and Fig. 2 list word error rate (WER) for different

acoustic models on five kinds of accented speech test sets. The
results demonstrate that the LSTM-RNN-CTC model outper-
forms DNN-HMM and GMM-HMM on all test data. The
LSTM-RNN-HMM model obtains the best performance.
The reason is that RNN can model long-term dependency
via its recurrent structure.

Although the LSTM-RNN-HMMmodel obtains the best per-
formance, the loss function of this model is CE. In this paper, the
regularized adaptationmethod is based on the CTC loss function.
Therefore, we select the LSTM-RNN-CTC model as our base-
line model. The baseline model is trained using the training data
of all five kinds of accented speech. The baseline model is used
as the AI model for accent adaptation. The CTC regularization
adaptation is evaluated based on the AI model in the rest of
experiments. The adaptation is conducted on the adaptation_tr
data for each accent. In addition, all the hyper parameters are
adjusted on the adaptation_cv data, such as the regularized
weight ρ and the learning rate etc.

4.4 Regularization weight of adaptation

Starting from the AI model (LSTM-RNN-CTC), two groups of
experiments are conducted to find out how the improvement is
influenced by different CTC regularization weights with differ-
ent accented speech. The adapted models are evaluated using
the test data of five kinds of accented speech in Table 1.

One group of experiments are designed to adapt model with
different adaptation data through setting different regularization
weights, such as [0 0.25]. There are three kinds of adaptation data
used to conduct experiments: Apt.1 k, Apt.10 k and Apt.tot.
Figure 3 depicts the WER of three kinds of adaptation data for
BJ accent with different CTC regularization weights. Figure 4
depicts the WER of three kinds of adaptation data for SH accent
with different CTC regularization weights.

The other group of experiments are conducted to adjust the
model with Apt.10 k adaptation data for GZ, CQ and XM
accent with different regularization weights. The regularized

weights are set to be within [0 0.25]. The results of the exper-
iments are shown in Fig. 5.

We conduct these experiments for 10 trials. The adaptation
data (Apt.1 k, Apt.10 k and Apt.tot) is selected randomly from the
training data in Table 1 for each trial. So the adaptation data may
be different between two trails for one experiment. The result of
the experiment is the average of the results from 10 trails.

The orange dashed line is the WER of the AI model for
each accent in Figs. 3, 4, and 5. We get the following obser-
vations by studying in Fig. 3 and Fig. 4 together:

& When the regularization weight is ρ = 0, the WER curves
of the adapted model are above the orange dashed line
both for BJ and SH accent on the adaptation data
Apt.1 k. It means that directly adjusting the parameters of
the AI model is prone to cause over-fitting with a small
adaptation set.

& When the regularization weight is set to (0, 0.25), the WER
curves of the adaptedmodel are all below the orange dashed
line both for BJ and SH accent on three adaptation data.

Table 3 Word error rate (WER %) of four acoustic models on five
accented speech test sets.

Accent GMM-
HMM

DNN-
HMM

LSTM-RNN-
HMM

LSTM-RNN-
CTC

BJ 4.18 2.78 0.51 0.61

SH 7.36 5.84 3.82 4.24

GZ 10.72 7.56 3.05 3.27

CQ 7.50 4.72 2.61 2.76

XM 9.54 7.04 2.95 3.25

TOTAL 7.15 5.10 2.01 2.59

Figure 2 Word error rate (WER %) of four acoustic models on five
accented speech test sets.

Figure 3 WER (%) of Apt.1 k, Apt.10 k and Apt.tot adaptation data for
BJ accent with different CTC regularization weights.
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& When the adaptation data is Apt.tot, the best WER reduc-
tion can be obtained with a smaller ρ. For BJ accent, it can
gain 37.7% relative WER reduction with ρ = 0.0078125.
For SH accent, it can achieve best relative WER reduction
of 10.4% with ρ = 0.0078125.

& When the adaptation data is Apt.1 k, the best WER reduc-
tion can be obtained with a larger ρ. For BJ accent, it can
gain 24.6% relative WER reduction with ρ = 0.125. For
SH accent, it can achieve the relative WER reduction of
6.4% with ρ = 0.0625.

& When the adaptation data is Apt.tot or Apt.10 k, the WER
curves of the adapted model are all below the orange
dashed line both for BJ and SH accent on three kinds of
adaptation data with different regularization weight ρ.

From Fig. 5, when we perform the experiments of the ad-
aptation on the adaptation data Apt.10 k, we can see that:

& The WER curves of the adapted model are all below the
orange dashed line for GZ, CQ and XM accent with dif-
ferent regularization weight ρ.

& The best performance for GZ, CQ and XM accent is
achieved when the weight ρ is set to 0.03125, 0.03125
and 0.0625 respectively.

& The regularized weight is robust for all kinds of accented
speech.

4.5 Amount of accent adaptation data

This series of experiments investigate how the performance is
affected by different amount of adaptation data with CTC
regularized adaptation method. The proposed regularized ad-
aptation is not only compared with the baseline model, but
also compared with the other adaptation methods. The other
adaptation methods are as follows.

L2-Reg: L2 regularization adaptation is proposed by Li
et al. [41]. They produce an adapted model by using a
regularizer that penalizes distance from unadaptedmodel.
In this paper, we generate an accent dependent model by
using a L2 regularizer to penalize distance from the ac-
cent dependent baseline model.
LHN: It is a linear transform adaptation [27, 42]. This
method is performed by inserting an accent-specific lin-
ear layer on top of each LSTM layer to transform the
hidden activations. The linear layer is inserted at different
hidden layers which denotes LHN-N (N = 1, 2, 3, 4). For
example, LHN-1 denotes the linear layer inserted on top
of the first LSTM layer in the baseline model. We only
adjust the linear layer using adaptation utterances.

The experiments are conducted using the adaption data
with different utterances (Apt.1 k, Apt.10 k and Apt.tot) for
BJ, SH, GZ, CQ and XM accent. The adapted models are
evaluated using the test data of five accented speech.

These experiments are conducted for 10 trials. The adaptation
data may be different between two trails for one experiment. To
our proposed adaptation, we select the best result from the
adapted model with different regularized weight for each trial.
To L2-Reg adaptation, the value of L2 is set to 0.002, 0.0001,
0.000002 relative to the best result with Apt.1 k, Apt.10 k, Apt.tot
adaptation utterances respectively. To LHN adaptation, the train-
ing is early stopped by 2 iterations. The results of the experiments
are the average of the best results from 10 trails. The results of the
experiments are summarized in Table 4. From Table 4, we can
get some observations:

& Compared with the baseline model (the AI model), all the
adapted models outperform the baseline model for all five
kinds of accent.

& The best relative WER reduction is obtained for BJ accent
even with a small adaptation data.

& When the adaptation data is Apt.1 k, the relative WER
reduction of CQ accent is not obvious.

& When the adaptation data is Apt.tot, the relativeWER reduc-
tion of GZ accent is the smallest. It is because that the total
utterances of GZ accented speech data is the smallest.

& The relative WER reduction of XM accent increases from
1.5% to 13.2%with the adaptation data increased from 1 k
to the total utterances.

Figure 4 WER (%) of Apt.1 k, Apt.10 k and Apt.tot adaptation data for
SH accent with different CTC regularization weights.

Figure 5 WER (%) of Apt.10 k adaptation data for GZ, CQ and XM
accent with different CTC regularization weights.
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& The adaptation model can gain better performance with
augmenting the adaptation data.

& The LHN method can obtain better performance than the
L2-Reg method with the large adaptation set.

& For the LHN adaptation, we can achieve the best perfor-
mance when adapting the linear layer at the top hidden
layer. But there is very little gain by adapting the linear
transformation at the bottom hidden layer. The conclusion
is consistent to the result in [27].

& Compared with the L2-Reg and LHN method, all the pro-
posed adapted models outperform the other adapted model.
It is easy to cause over-fitting when performing adaptation
using LHN method using the small adaptation data.
However, the proposed adaptation can avoid this over-
fitting problem.

4.6 Adaptation based on LSTM-RNN-HMM model

In this section, the proposed regularized adaptation is com-
pared with the KLD regularized adaptation [37] base on
LSTM-RNN-HMM model. The baseline model is LSTM-
RNN-HMM model.

The KLD adaptation is started from the AI baseline model.
We conduct these experiments for 10 trials. The adaptation
data (Apt.1 k, Apt.10 k and Apt.tot) is selected randomly from
the training data in Table 1 for each trial. So the adaptation
data may be different between two trails for one experiment.
We also select the best result from the adapted model with
different regularized weight for each trial. The result of the
experiment is the average of the results from 10 trails. The

regularized weights are set to be within [0 0.25]. The results of
the experiments are shown in Table 5.

The relativeWER reduction of the proposed adaptation and
KLD adaptation are compared in Figs. 6, 7, and 8. The Fig. 6
denotes that the model is adapted with Apt.1 k utterances. The
Fig. 7 denotes that the model is adapted with Apt.10 k utter-
ances. The Fig. 8 denotes that the model is adapted with
Apt.tot utterances.

From Table 5 and Table 4, we can find that both the pro-
posed and the KLD adaptation can obtain improvement when
compared with the AI baseline model.

From Fig. 6 to Fig. 8, we can see that the proposed adap-
tation can obtain more performance gain over the KLD adap-
tation based on the LSTM-RNN-HMM model.

5 Discussions

In summary, the above experiments explore how the improve-
ment is affected by the regularization weight, the amount of
adaptation data and the accent of adaptation data. The results

Table 4 WER (%) and relativeWER reduction (% in parentheses) of the adaption data with different utterances(Apt.1 k, Apt.10 k and Apt.tot) for five
kinds of accent test data.

Accent Baseline Amount L2-Reg LHN-1 LHN-2 LHN-3 LHN-4 Proposed

BJ 0.61 Apt.1 k 0.58(4.9) 0.69(−13.1) 0.65(−6.6) 0.63(−3.3) 0.62(−1.6) 0.46(24.6)

Apt.10 k 0.51(16.4) 0.58(4.9) 0.54(11.5) 0.52(14.8) 0.49(19.7) 0.41(32.8)

Apt.tot 0.46(24.6) 0.49(19.7) 0.46(24.6) 0.45(26.2) 0.41(32.8) 0.38(37.7)

SH 4.24 Apt.1 k 4.23(0.2) 4.47(−5.4) 4.39(−3.5) 4.32(−1.9) 4.29(−1.2) 3.97(6.4)

Apt.10 k 4.12(2.8) 4.19(1.2) 4.16(1.9) 4.15(2.1) 4.12(2.8) 3.91(7.8)

Apt.tot 3.91(7.8) 3.97(6.4) 3.86(9.0) 3.81(10.1) 3.81(10.1) 3.80(10.4)

GZ 3.27 Apt.1 k 3.25(0.6) 3.59(−9.8) 3.48(−6.4) 3.43(−4.9) 3.42(−4.6) 3.17(3.1)

Apt.10 k 3.18(2.8) 3.28(−0.3) 3.25(0.6) 3.21(1.8) 3.16(3.4) 3.10(5.2)

Apt.tot 3.14(4.0) 3.19(2.4) 3.12(4.6) 3.09(5.5) 3.08(5.8) 3.08(5.8)

CQ 2.76 Apt.1 k 2.75(0.4) 2.91(−5.4) 2.89(−4.7) 2.85(−3.3) 2.79(−1.1) 2.74(0.7)

Apt.10 k 2.65(4.0) 2.71(1.8) 2.69(2.5) 2.65(4.0) 2.64(4.3) 2.62(5.1)

Apt.tot 2.62(5.1) 2.75(0.4) 2.75(0.4) 2.66(3.6) 2.60(5.8) 2.58(6.5)

XM 3.25 Apt.1 k 3.24(0.3) 3.33(−2.5) 3.31(−1.8) 3.28(−0.9) 3.27(−0.6) 3.20(1.5)

Apt.10 k 3.05(6.2) 3.11(4.3) 3.11(4.3) 3.06(5.8) 3.04(6.5) 2.91(10.5)

Apt.tot 2.94(9.5) 3.02(7.1) 3.01(7.4) 2.94(9.5) 2.92(10.2) 2.82(13.2)

Table 5 WER (%) and relative WER reduction (% in parentheses) of
the adaption data with different utterances(Apt.1 k, Apt.10 k and Apt.tot)
for the KLD adaptation.

Acc- ent Base- line Apt.1 k Apt.10 k Apt.tot

BJ 0.51 0.40(21.6) 0.38(25.5) 0.36(29.4)

SH 3.82 3.71(2.9) 3.60(5.8) 3.55(7.1)

GZ 3.05 2.97(2.6) 2.90(4.9) 2.85(6.6)

CQ 2.61 2.61(0.0) 2.58(1.1) 2.54(2.7)

XM 2.95 2.91(1.4) 2.82(4.4) 2.74(7.1)
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show that the proposed method is effective. We make some
interesting observations as follow.

The CTC regularized adaptation method can help avoid
over-fitting with a small adaptation data. The regularization
weight is set to zero, which means that directly adjusting the
parameters of the AI model. It causes over-fitting with a small
adaptation data. When the regularization weight is set to
(0.0.25), the WER of the adapted model reduces. It is because
that the proposed regularized method makes the conditional
probability distribution over I/F sequences estimated from the
adapted model to be not far from the AI model.

The regularization weight should be adjusted with the
amount of the adaptation data. A large regularization weight
ρ should be set for a small adaptation data to avoid over-
fitting. A small regularization weight ρ can be set for a large
adaptation data. If the adaptation data is smaller, the AI model

will get more trust than the new knowledge from the adapta-
tion data. If the adaptation data is larger, the AI model will get
less trust than the new information from the adaptation data.

Better performance can be achieved with increasing the
adaptation data. When augmenting the adaptation data of BJ,
SH, CQ and XM accent, the relative WER reduction is obvi-
ous. However, when the adaptation data is Apt.tot, the relative
WER reduction of GZ accent is the smallest. It is because that
the total utterances of GZ accented speech data is the smallest.

The proposed method also outperforms the L2-Reg and
LHN adaptation. It is easy to cause over-fitting when
performing adaptation using LHN method using the small
adaptation data. However, the proposed adaptation can avoid
this over-fitting problem.

Pronunciation dictionary is a key factor to affect the perfor-
mance of the accent adaptation. The pronunciation dictionary
used in our experiments is of Mandarin. The pronunciation
dictionaries of Wu dialect, Yue dialect and Min dialect are a
pretty different fromMandarin. The pronunciation dictionary of
CQ dialect is similar to Mandarin. So when the adaptation data
is small, the relative WER reduction of SH, GZ and XM accent
are improved obviously while the improvement of CQ accent
are moderate. In fact, articulation of BJ dialect is very similar to
Mandarin. Therefore, the performance of the AI model for BJ
accent is very high. So the best relative WER reduction is
obtained for BJ accent even with a small adaptation data.

6 Conclusions

This paper proposes a novel regularized adaptationmethod for
LSTM-RNN-CTC based acoustic model to improve the per-
formance of multi-accent Mandarin ASR task. The basic idea
of this method is that the distribution over I/F sequences esti-
mated from the adapted model should be close to the

Figure 6 Curves of relative WER reduction (%) of the adaption data
with Apt.1 k utterances for five accent test data.

Figure 7 Curves of relative WER reduction (%) of the adaption data
with Apt.10 k utterances for five accent test data.

Figure 8 Curves of relative WER reduction (%) of the adaption data
with Apt.tot utterances for five accent test data.
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distribution estimated from the AI model. This constraint is
realized by adding a regularization to the original training
criterion. Meanwhile, hidden layers should not be adjusted,
but only the accent-specific output layer needs to be fine-
tuned using the proposed CTC regularized method.
Experiments are conducted on RASC863 and CASIA corpus.
The results show that the proposed method gains 37.7%,
10.5%, 5.8%, 6.5% and 13.2% for BJ, SH, GZ, CQ and XM
accent speech WERR against 260 hours LSTM-RNN-CTC
based acoustic model. The results show that the proposed
the CTC regularized adaptation method is effective. When
the adaptation data is small, this method can help avoid
over-fitting. The regularization weight should be adjusted
with the amount of the adaptation data. Better performance
can be achieved with increasing the adaptation data.
Pronunciation dictionary is a key factor to affect the perfor-
mance of the accent adaptation. The results also show that the
proposed method outperforms other adaptation methods. In
future studies, we are going to apply the proposed method to
other different tasks, such as speaker adaptation, environment
adaptation.
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