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ABSTRACT

For most of the attention-based sequence-to-sequence mod-
els, the decoder predicts the output sequence conditioned on
the entire input sequence processed by the encoder. The asyn-
chronous problem between the encoding and decoding makes
these models difficult to be applied for online speech recog-
nition. In this paper, we propose a model named synchronous
transformer to address this problem, which can predict the
output sequence chunk by chunk. Once a fixed-length chunk
of the input sequence is processed by the encoder, the de-
coder begins to predict symbols immediately. During train-
ing, a forward-backward algorithm is introduced to optimize
all the possible alignment paths. Our model is evaluated on
a Mandarin dataset AISHELL-1. The experiments show that
the synchronous transformer is able to perform encoding and
decoding synchronously, and achieves a character error rate
of 8.91% on the test set.

Index Terms— Asynchronous Problem, Online Speech
Recognition, Synchronous Transformer, Chunk by Chunk,
Forward-Backward Algorithm

1. INTRODUCTION

Attention-based sequence-to-sequence models [1, 2, 3, 4, 5,
6], especially transformer model [2], have shown great suc-
cess in various tasks, e.g. neural machine translation [1, 2],
image captioning [3] and speech recognition [4, 5, 6].

For conventional attention-based sequence-to-sequence
models, the inference process can be divided into two stages.
The encoder first processes an entire input sequence into a
high-level state sequence. After that, the decoder predicts
the output sequence conditioned on the previous predicted
symbol and context vector extracted from the entire encoded
state sequence. This makes the models encode and decode
sequences asynchronously, and prevents it from being ap-
plied for online speech recognition. There are some works
trying to solve this problem. Tjandra et al. [7] propose a
local monotonic attention mechanism that forces the model
to predict a central position at every decoding step and cal-
culate soft attention weights only around the central position.

However, it’s difficult to accurately predict the next cen-
tral position just based on limited information. Monotonic
chunkwise attention [8] is proposed to adaptively split the
encoded state sequence into small chunks based on the pre-
dicted selection probabilities. But complex and tricky training
methods make it hard to implement. Triggered attention [9]
utilizes the spikes produced by connectionist temporal clas-
sification (CTC) model to split the sequence into many state
chunks, and then the decoder predicts the output sequence
in a chunkwise way. However, triggered attention requires
forced alignment to assist model training. Most of the pro-
posed models introduce additional components and have very
tricky training methods.

In this paper, we propose a synchronous transformer
model (Sync-Transformer), which can perform encoding
and decoding at the same time. The Sync-Transformer com-
bines the transformer [6] and self-attention transducer (SA-T)
[10] in great depth. Similar to the original transformer, the
Sync-Transformer has an encoder and a decoder. In order
to eliminate the dependencies of self-attention mechanism
on the future information, we first force every node in the
encoder to only focus on its left contexts and ignore its right
contexts completely. Once a fixed-length chunk of state se-
quence is produced by the encoder, the decoder begins to
predict symbols immediately. Similar to the Neural Trans-
ducer [11, 12, 13], the decoder generates the output sequence
chunk by chunk. However, restricted by the time-dependent
property of RNNs, the Neural Transducer model only op-
timizes the approximate best alignment path corresponding
to the chunk sequence. By contrast, we adopt a forward-
backward algorithm to optimize all possible alignment paths
and calculate the negative log loss function as the same as
the RNN-Transducer [14] and SA-T [10]. We evaluate our
Sync-Transformer on a Mandarin dataset AISHELL-1. The
experiments show that the Sync-Transformer is able to en-
code and decode sequences synchronously and achieves a
comparable performance with the transformer.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our proposed Sync-Transformer. Section 3
presents our experimental setup and results. The conclusions
and future work will be given in Section 4.
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(a) The Structure of Synchronous Transformer and Inference Process
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Fig. 1. (a) illustrates the whole structure of Sync-Transformer and the inference process. The Sync-Transformer consists of
an encoder and a decoder. Every node in the encoder only pays attention to its left contexts. The decoder generates symbols
chunk by chunk. Once a fixed-length chunk of sequence is processed by the encoder, the decoder begins to predict the output
symbols immediately. (b) illustrates the details of the decoder. (c) illustrates a output probability lattice utilized to sum over the
probabilities of all possible alignment paths by forward-backward algorithm.

2. SYNCHRONOUS TRANSFORMER

2.1. Model

Similar to the transformer [2], a Sync-Transformer consists
of an encoder and a decoder, as depicted in Fig.1(a). Both
encoder and decoder are composed of multi-head attentions
and feed-forward layers[2, 6, 10].

As shown in Fig.1(a), we put a 2D convolution front
end at the bottom of the encoder to process the input speech
feature sequences simply, including dimension transforma-
tion(transform feature dimensions from 40 to 256), time-axis
down-sampling and adding sine-cosine positional informa-
tion [2]. Let x1:T be the input feature sequence, the processed
sequence can be expressed as s1:L, where T and L are the
lengths of these two sequences respectively.

In order to get rid of the dependencies on the entire in-
put state sequences, we make the following modifications on
the original self-attention encoder, as depicted in Fig.1(a). On
the one hand, we force every node in the encoder to focus on
its left context and ignore its right contexts completely dur-
ing calculating self-attention weights. Although each inter-
mediate node can only model local dependencies informa-
tion, the top node of the encoder can still model long-term
dependencies. On the other hand, similar to transformer-xl
[15], the encoder of Sync-Transformer processes the input
sequence chunk by chunk. There is an overlap between two
adjacent chunks to maintain a smooth transition of informa-
tion between chunks. For the processed input sequence s1:L,
the encoder can split it into M encoded state chunks C1:M .
This means that the calculation of attention weights just de-
pend on a W -length chunk rather than the entire input se-
quence. Let B be the overlapping length of two adjacent

chunks. The relationship between M and L can be expressed
as M = d L−WW−B + 1e.

C1:M = Encoder(s1:L) (1)

At every decoding step, the decoder predicts a symbol
conditioned on the previous predicted symbols y0:u−1 (0 ≤
u ≤ U +1) and one chunk. Once a 〈blk〉 symbol is predicted,
the decoder will switch to the next chunk and continue decod-
ing. This process can be expressed by the following formula.

p(yu|y0:u−1, Cm) = Decoder(y0:u−1, Cm) (2)

whereCm (1 ≤ m ≤M ) represents them-th chunk produced
by the encoder.

2.2. Training

The training process is divided into two steps. In order to ac-
celerate the convergence, we first use a trained transformer
model to initialize the parameters of Sync-Transformer. Then
apply the following forward-backward algorithm to train a
Sync-Transformer.

The encoder splits the input sequence intoM chunks. The
decoding process in every chunk ends with 〈blk〉. It is difficult
to figure out which chunk each target symbol should belong
to. Therefore, we construct an output probability lattice graph
as shown in Fig.1(c) by calculating the probabilities of all tar-
get symbols in each chunk. Given the input sequence x1:T ,
the probability of the output y1:U is calculated by summing
over the probabilities of all possible alignment paths.

p(y1:U |x1,T ) =
∑
y∈Y

p(y1, y2, ..., y(U+M)|x1:T ) (3)
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Where Y represents the set of all possible alignment paths.
It’s intractable and inefficient to calculate the probability
p(y1:U |x1,T ) by enumerating all possible alignment paths.
Therefore, like transducer-based models in [16, 10], we in-
troduce a forward-backward algorithm to calculate the prob-
abilities efficiently.

The forward variable α(m,u) means the sum of the prob-
ability of all the possible paths, which begin with the start
symbol y0 ( = 〈blk〉) and end with yu in m-th chunk. Given
m-th chunk and the predicted symbol sequence y0:u−1, the
probabilities of predicting 〈blk〉 and yu are represented as
φ(m,u− 1) and yu(m,u− 1) respectively. For all 1 ≤ m ≤
M and 1 ≤ u ≤ U + 1, the forward variables can be calcu-
lated recursively using

α(m,u) = α(m− 1, u)φ(m,u)

+ α(m,u− 1)yu(m,u− 1)
(4)

And all paths begin with y0 ( = 〈blk〉), it means α(1, 1) = 1.
The probability p(y1:U |x1,T ) can be expressed by the forward
variable at the terminal node.

p(y1:U |x1,T ) = α(M,U + 1)φ(M,U + 1) (5)

Similarly, the backward variable β(m,u) means the sum
of the probabilities of all possible paths, which begin with yu
in m-th chunk and end with yU+1(=〈blk〉) in the last chunk.
The backward variables can be expressed as

β(m,u) = β(m+ 1, u)φ(m,u)

+ β(m,u+ 1)yu+1(m,u)
(6)

where the initial condition β(M,U + 1) = φ(M,U + 1).
Given an input feature sequence x1,T and a target se-

quence y1:U , the probability p(y1:U |x1,T ) is equal to the sum
of α(m,u)β(m,u) over any top-left to bottom-right diagonal
through the nodes. That is, ∀n : 2 ≤ n ≤ U +M + 1

p(y1:U |x1,T ) =
∑

(m,u):m+u=n

α(m,u)β(m,u) (7)

We train the model to minimize the negative log-loss func-
tion L = −lnp(y1:U |x1,T ). The calculation of gradients is
exactly the same as RNN-T [16].

2.3. Inference

The inference process is displayed in Fig.1(a). During infer-
ence, the decoder will predict the output symbols conditioned
on a fixed-length chunk of encoded state sequences and all the
previous predicted non-blank symbols. it might predict one or
more symbols in a chunk. Once a 〈blk〉 is predicted, It will
switch to the next chunk and continue decoding. The decoder
will repeat the above steps till all the chunks are processed.
To simplify the inference process, we don’t try to merge some
alignment paths with the same prefix.

3. EXPERIMENTS AND RESULTS

3.1. Dataset
In this work, all experiments are conducted on a public Man-
darin speech corpus AISHELL-11 [17]. The training set con-
tains about 150 hours of speech (120,098 utterances) recorded
by 340 speakers. The development set contains about 20
hours (14,326 utterances) recorded by 40 speakers. And about
10 hours (7,176 utterances) of speech is used to be test set.
The speakers of different sets are not overlapped.

3.2. Experiment Setup
For all experiments, we use 40-dimensional Mel-filter bank
coefficients (Fbank) features computed on a 25ms window
with a 10ms shift. Each feature is re-scaled to have zero mean
and unit variance for each speaker. We chose 4232 charac-
ters (including a blank symbol ’〈blk〉’ and a unknown symbol
’〈unk〉’ ) as model units.

We utilize Kaldi2 for data preparation. And our Sync-
Transformer is built on ESPNet [18] and warp-rnnt3. It con-
sists of 6 encoder blocks and 6 decoder blocks. There are
8 heads in multi-head attention. The 2D convolution front
end utilizes two-layer time-axis CNN with ReLU activation,
stride size 2, channels 256 and kernel size 3. The output size
of the multi-head attention and the feed-forward layers are
256. In order to accelerate the convergence, we replace the
ReLU activation function in the feed-forward network with
gated linear units [19]. We empirically set the left context
of every node in the encoder to 20 and the right context to
0. More context parameter settings will be explored in the fu-
ture. What’s more, we adopt an Adam optimizer with warmup
steps 25000 and the learning rate scheduler reported in [2].

During decoding, we use a beam search with a width of
5 for all the experiments. And set the maximum length of
symbols generated in a chunk is 10. We use character error
rate (CER) to evaluate the performance of different models.

3.3. Results

3.3.1. Comparison of different window lengths

We first explore how chunks with different lengths W affect
the performance of Sync-Transformer. For every experiment,
the overlapping range of adjacent chunks is set to 20% of the
chunk length. As shown in Table 1, the Sync-Transformer
with chunk length 10 can achieve a CER of 9.06% on the
test set. When the length is reduced to 5, Sync-Transformer
still performs well. However, if the length is greater than 20,
it leads to severe performance degradation. We suppose that
there may be more than one character in a long chunk, which
might make the model difficult to predict the output sequence
accurately.

1http://www.openslr.org/13/
2https://github.com/kaldi-asr/kaldi
3https://github.com/1ytic/warp-rnnt
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Table 1. Comparison of different window lengths (CER %).

W 5 10 15 20 25
Dev 8.64 7.99 8.57 8.68 11.04
Test 9.73 9.06 9.51 9.76 11.71

Table 2. Comparison of different overlap lengths (CER %).

B 4 3 2 1 0
Dev 8.60 7.91 7.99 9.53 9.61
Test 9.56 8.91 9.06 10.39 10.47

The length of speech segment represented by a fixed-
length is W × 4× 10ms, where 4 means that 2D convolution
front end can reduce the speech length by 4 times and 10ms
represents the frame shift. The Sync-Transformer can achieve
a competitive performance depending on a latency of 0.4s. If
the overlap is taken into account, it is actually 0.32s.

When the chunk length is 1, Sync-Transformer is similar
to a transducer model, which decodes a sequence frame by
frame. In turn, when the length is large enough, there is one
chunk for any utterances. In this case, it is equivalent to a
transformer model.

3.3.2. Comparison of different overlap lengths
Next, we try to figure out the effects of overlap between
chunks on the performance. Based on previous experiments,
we set the length of the chunks to 10 for all experiments in this
section. From Table 2, we find that the overlapping between
the chunks plays an important role. The Sync-Transformer
with overlap length 3 can achieve a CER of 8.91% on the
test set. When the overlap is set to 1 or 0, too little overlap
between two adjacent chunks may be the main cause of the
degradation of performance. Therefore, we suppose that a
decent overlap can maintain smooth transition of information
flow between the chunks. The performance of the model also
decreases when the overlap is set to 4. We guess that the
large overlap will cause the information contained in the two
adjacent chunks to be very similar, which will further degrade
the performance of the model.

3.3.3. Comparison with other end-to-end models
We also compare the Sync-Transformer with other end-to-
end models. The transformer model is trained according to
the recipe in ESPnet[18], which has the same settings as our
Sync-Transformer. The second column indicates whether the
model can decode in a streaming way. And the third column
indicates the number of steps required to decode a U -length
sentence. And M is the number of chunks and T is the num-
ber of speech frames.

The experiments show that the Sync-Transformer can
achieve a comparable result with the best transformer, which
is better than LAS [20], RNN-T and our previous (Chunk-
Flow) SA-T [10]. By contrast, the Sync-Transformer can
achieve online decoding with only a little degradation of the
performance.

Table 3. Comparisons with other models (CER %).

Model Online Steps Dev Test
LAS [20] No U - 10.56

Transformer No U 7.80 8.64
RNN-T [10] No T 10.13 11.82
SA-T [10] No T 8.30 9.30

Chunk-Flow SA-T [10] Yes T 8.58 9.80
Sync-Transformer Yes U+M 7.91 8.91

The relationship between the decoding steps of different
models is U ≤ U + M ≤ T . Most of the attention-based
models, like LAS and transformer, require the least steps dur-
ing inference. However, restricted by the dependencies of at-
tention on the entire input sequence, they cannot be directly
applied to online speech recognition tasks. Chunk-Flow SA-
T, an RNN-free transducer model, decodes a sequence frame
by frame. And it also consumes much more memory during
training. However, Sync-Transformer requires less decoding
steps compared with SA-T and RNN-T, which means fewer
costs in memory and time.

4. CONCLUSIONS AND DISCUSSION

In this paper, we propose a Sync-Transformer, which com-
bines the advantages of transformer and transducers model.
In order to get rid of the dependence on the entire input state
sequences, we force every node in the encoder to focus on
its left context and ignore its right contexts completely dur-
ing calculating self-attention. Once a fixed-length chunk of
state sequence is produced by the encoder, the decoder begins
to predict symbols immediately. During training, we intro-
duce a forward-backward algorithm to sum over the probabil-
ities of all possible alignment paths and apply a negative log-
loss function to optimize Sync-Transformer. The experiments
show that the Sync-Transformer can encode and decode syn-
chronously. What’s more, it outperforms our previous self-
attention transducer and achieves a comparable result with
the advanced transformer model. The experimental results
reveal that Sync-Transformer is a very promising model for
online speech recognition. However, there are some aspects
to be improved in the future. For example, Sync-Transformer
might raise more delete errors during inference, and recognize
the wrong words with similar pronunciation. All of these pre-
vent Sync-Transformer from being applied immediately. And
it will be our next research direction.
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