
3972 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 11, NOVEMBER 2020

Neuro-Optimal Control for Discrete Stochastic
Processes via a Novel Policy Iteration Algorithm

Mingming Liang, Ding Wang , Member, IEEE, and Derong Liu , Fellow, IEEE

Abstract—In this paper, a novel policy iteration adaptive
dynamic programming (ADP) algorithm is presented which is
called “local policy iteration ADP algorithm” to obtain the
optimal control for discrete stochastic processes. In the proposed
local policy iteration ADP algorithm, the iterative decision rules
are updated in a local space of the whole state space. Hence,
we can significantly reduce the computational burden for the
CPU in comparison with the conventional policy iteration algo-
rithm. By analyzing the convergence properties of the proposed
algorithm, it is shown that the iterative value functions are mono-
tonically nonincreasing. Besides, the iterative value functions can
converge to the optimum in a local policy space. In addition, this
local policy space will be described in detail for the first time.
Under a few weak constraints, it is also shown that the iterative
value function will converge to the optimal performance index
function of the global policy space. Finally, a simulation exam-
ple is presented to validate the effectiveness of the developed
method.

Index Terms—Adaptive critic designs, adaptive dynamic pro-
gramming (ADP), local policy iteration, neuro-dynamic program-
ming, optimal control, stochastic processes.

I. INTRODUCTION

MAIN control techniques include robust control [1]–[3],
adaptive control [4], [5], intelligent control [6], [7],

optimal control [8], [9] and stochastic control [10].
Wang et al. [1]–[3] showed the sliding mode technique has a
strong robustness for uncertain parts of the dynamic systems.
Adaptive dynamic programming (ADP) presented in Werbos’
papers for the very first time [4], [5], has shown great effec-
tiveness and feasibility in obtaining the optimal control policy

Manuscript received August 21, 2018; revised January 15, 2019; accepted
March 14, 2019. Date of publication April 12, 2019; date of current version
October 15, 2020. This work was supported in part by the National Natural
Science Foundation of China under Grant 61773373, Grant U1501251, and
Grant 61533017, in part by the Young Elite Scientists Sponsorship Program by
the China Association for Science and Technology, and in part by the Youth
Innovation Promotion Association of the Chinese Academy of Sciences. This
paper was recommended by Associate Editor H. R. Karimi. (Corresponding
author: Ding Wang.)

M. Liang is with the State Key Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China (e-mail: liangmingming2015@ia.ac.cn).

D. Wang is with the Faculty of Information Technology, Beijing
University of Technology, Beijing 100124, China, and also with the
Beijing Key Laboratory of Computational Intelligence and Intelligent
System, Beijing University of Technology, Beijing 100124, China (e-mail:
dingwang@bjut.edu.cn).

D. Liu is with the School of Automation, Guangdong University of
Technology, Guangzhou 510006, China (e-mail: derongliu@foxmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2019.2907991

for nonlinear systems [6]–[9] and stochastic processes [10].
The biggest breakthrough of this algorithm lies in that it
uses neural networks to represent the iterative value function
and the iterative control law. Hence, ADP can successfully
avoid the so called “curse of dimensionality.” Meanwhile, this
breakthrough also enable the algorithm to update the value
function and decision rule forward-in-time. Because of the
superiority of ADP in obtaining the optimal decision rule for
dynamic systems, many researchers have paid close attention
to related research of this algorithm [11], [12]. In [13], depend-
ing on its implementation method, ADP could be categorized
into six classes: 1) heuristic dynamic programming (HDP);
2) action-dependent HDP; 3) dual HDP (DHP) [14]–[17];
4) action-dependent DHP; 5) globalized DHP (GDHP); and
6) ADGDHP. Iterative method is a powerful route to analyze
the convergence and other properties of ADP. Policy iteration
and value iteration are two frequently used methods in the
ADP algorithms [18].

Bertsekas and Tsitsiklis [10] for the first time investigated
the ADP algorithm with value iteration method which was
applied to discrete-time dynamic systems. In [19], it was
shown that if the value iteration algorithm was initialized by a
zero value function, then the obtained decision rule sequence
and value function sequence would converge to the optimal
decision rule and the optimal performance index function,
respectively. In [20], the condition that the value iteration
algorithm must start with a zero value function was suc-
cessfully released. The authors provided an effective method
to prove that the obtained decision rule sequence and value
function sequence would converge to the optimal decision
rule and the optimal performance index function, respec-
tively, no matter how the initial value function was chosen.
Bertsekas and Tsitsiklis [10] for the first time investigated
the ADP algorithm with policy iteration method which was
applied to discrete-time nonlinear systems. Murray et al. [22]
applied the ADP algorithm with policy iteration method to
the continuous-time systems. Wei and Liu [23] proposed a
novel policy iteration algorithm which was called “θ -ADP.”
The restriction that the policy iteration algorithm must start
with an admissible decision rule was successfully released. It
is also shown that each iterative decision rule obtained by the
proposed θ -ADP algorithm could be guaranteed to stabilize the
nonlinear system. Liu et al. [24] established the error bounds
for the ADP algorithm with policy iteration method. And the
sequence of iterative decision rules obtained by the algorithm
would finally converge to within a finite neighborhood of the
optimal value function under a few weak constraints. In [25],

2168-2216 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 23,2020 at 00:22:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7149-5712
https://orcid.org/0000-0003-3715-4778

LIANG et al.: NEURO-OPTIMAL CONTROL FOR DISCRETE STOCHASTIC PROCESSES VIA NOVEL POLICY ITERATION ALGORITHM 3973

an effective off-policy learning-based policy iteration algo-
rithm was proposed to solve the optimal control problem for
completely unknown continuous-time systems with unknown
disturbances. In [26], a generalized policy iteration algorithm
was presented, which adopted the technical advantages of both
the policy iteration and value iteration algorithms. It is shown
that the proposed algorithm is also able to obtain the optimal
decision rule and the optimal performance index function for
the dynamic system. Meanwhile, the generalized framework
is of great significance for the development of ADP theory.
Zhang et al. [29] made great achievements in solving the
coupled Hamilton–Jacobi equations via constructing a novel
relax adaptive matrix for the nonzero-sum games. Meanwhile,
the strict restriction of initially stabilized control policies had
been successfully removed by proposing a new switch opera-
tor. These results provide an important theoretical foundation
for the optimal control and differential games of nonlinear
systems.

Bertsekas [30] for the first time proved that the proper
policy iteration method could not only be applied to solve
the shortest path problems (SSPs) with finite state space
(which can be viewed as Markov decision processes), but also
could be applied to solve SSP with infinite state space. For
Markov decision processes, Bertsekas presented the method
of “approximate policy iteration” (policy iteration ADP algo-
rithm) to obtain the optimal performance index function for
discrete stochastic processes with large state space using
neural-structure to approximate the corresponding control law
or value function in [34]. Bertsekas [35] discussed sev-
eral issues related to approximate policy iteration method
(policy iteration ADP algorithm) such as convergence and
convergence rate for the sequence of polices. Bertsekas [36]
presented the implementations of the method of combining
the λ-policy iteration algorithm and the approximate policy
iteration algorithm to review the issues such as the bias issue
and the exploration issue. Approximate policy iteration method
is also applied to many actual Markov decision processes such
as missile defense and interceptor allocation problems [38] and
retailer inventory management problems [39].

However, to obtain the optimal decision rule and the optimal
performance index function for dynamic systems, the pol-
icy iteration algorithms mentioned above require that the
iterative decision rule and the iterative value function should
be renewed for every state in the global system state space
in each iteration epoch [10], [12], [22]–[24], [26]. We call
these policy iteration algorithms the conventional global pol-
icy iteration algorithms. However, in practical projects, it is
very difficult to meet these requirements for the conventional
policy iteration algorithms. First, for many practical applica-
tions, the existence of noise makes it very hard to implement
the policy iteration algorithms mentioned above. Second, it is
usually difficult to gather the state data for the global system
state set in each iteration epoch, since the practical dynamic
system is generally operating in a local space of the global
system state space. To implement the conventional global pol-
icy iteration algorithms, the computer must stop to wait until
the program has explored all the data of the global state set and
all the information needed has been loaded in RAM. That is

to say, the CPU in the computer has a great chance of being
in idle state. Hence, the time-efficiency of the conventional
global policy iteration algorithm will be very low. Third, in
numerical implementation of the ADP algorithm, the computer
usually computes the refreshed decision rule and value func-
tion in a parallel manner. When we want to refresh the iterative
decision rule and the iterative value function for every state in
the global state set, the computer will calculate all the values
for the whole state set simultaneously. Hence, if the global
state set is too large, the computer will have a great chance
of being overloaded. That is to say, the computational load of
the conventional policy iteration algorithm is too excessive for
the computer. It is required to propose some methods to over-
come these shortcomings of the conventional policy iteration
algorithm.

In this paper, we present a novel policy iteration ADP algo-
rithm which is called “local policy iteration ADP algorithm”
to solve optimal control problems for the stochastic processes.
Here, we summarize our main contributions and novelties of
our paper as follows.

1) For the first time, we apply the local policy iteration
ADP algorithm to stochastic processes in order to obtain
the optimal performance index function.

2) For the first time, we combine the local policy iteration
method with neural networks to overcome the problems
arisen in stochastic models with large state space such
as the curse of dimensionality and the heavy burden in
computation.

3) We show that the sequence of value functions gener-
ated by our algorithm can finally reach an optimum in a
local policy space. Furthermore, this local policy space
is described theoretically in detail for the first time.

4) Our proposed algorithm is able to reach the optimum
in the global policy space under some weak conditions
which is validated in our simulations.

5) Our proposed algorithm can significantly reduce the
burden in computation which is validated in simulations.

This paper is organized as follows. In Section II, we present
the system dynamic characteristics and some assumptions. The
proposed local policy iteration ADP algorithm for stochas-
tic processes is derived. In Section III, the monotonicity and
the convergence properties of the iterative value function is
developed. In Section IV, we illustrate how our algorithm
utilize the neural networks to approximate the corresponding
value functions and decision rules. In Section V, a simula-
tion example is presented to validate the effectiveness of the
developed method. Finally, in Section VI, we will make a
simple summary about points of this paper.

II. PROBLEM FORMULATION

A. System Description

In this paper, we will focus on the following discrete-time
dynamic system:

x(k + 1) = F(x(k), a(k), ω(k), k), k = 0, 1, 2, 3, . . . (1)

where x(k) ∈ Rn is the system state, a(k) is the action made
by the decision maker observing the system state x(k), and

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 23,2020 at 00:22:15 UTC from IEEE Xplore. Restrictions apply.

3974 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 11, NOVEMBER 2020

ω(k) is the environment disturbance which is independent of
ω(τ) for all τ < k.

Here, we denote the set of possible system states by X
and the allowable actions in state x by Ax. Given the cur-
rent system state x(k) and the current action a(k), according
to [27], the next system state x(k + 1) is determined by a
probability distribution p(· | x(k), a(k)).

We denote decision rule as function d(x) : X → Ax, which
specify the action choice a when the system occupies state x.
Let policy π = (d(x, 0), d(x, 1), d(x, 2), . . . , d(x, k), . . .) be
an arbitrary sequence of decision rules where d(x, k) denotes
the decision rule at time k. The expected total discounted
reward for state x0 under the policy π is defined as

Jπ (x0) = E

{ ∞∑
k=0

λkU(x(k), d(x, k))

}
(2)

where U(x, a) = U(x(k), d(x, k)) is the utility function, λ is a
discount factor, and the mathematical symbol E{·} represents
the expectation of the random variable inside the bracket.

The goal of the presented algorithm is to find an optimal
policy to minimize the performance index function (2). For
convenience of analysis, results of this paper are based on the
following assumption.

Assumption 1 (See [27]): The function F(x, a, ω, k) is
Lipschitz continuous on its dominate. The system state set X
and the action set Ax are discrete (finite or countably infinite).
Function U(x, a) and p(· | x, a) do not vary with time. The
utility function U(x, a) satisfies |U(x, a)| ≤ M < ∞ for all
a ∈ Ax and x ∈ X. The discount factor λ satisfies 0 < λ < 1.

Remark 1: There are many practical cases which meet our
assumptions.

1) Wireless Communication Systems [31]: Zhou et al. [31]
proposed an optimal dynamic multicast scheduling to mini-
mize the delay, power, and fetching costs for cache-enabled
content-centric wireless networks. Here, the random process
{Q(k)} is a Markov decision process, the system state is the
request queues sent from users to base stations. The state space
is denoted by Q �

∏
m∈M Qm, where Qm � {0, 1, . . . , Nm}.

Hence, the system state space is countable. And the immediate
cost is the weighted sum of current delay cost, fetching cost,
and current power cost which is obviously finite according
to [31].

2) Thermal Management for High Performance
Processors [32]: Jung and Pedram [32] presented a
dynamic thermal management technique to minimize the
power dissipation and on-chip temperature for processors.
Here, the on-chip temperature change is a Markov decision
process. The system state is the current CPU temperature at
time k defined to be one of three states: s1, s2, or s3 as shown
in [32] which is obviously countable. The immediate cost
is the sum of current power dissipation and current on-chip
temperature of the CPU which is obviously finite according
to [32].

3) Energy Control for Sustainable Manufacturing
Systems [33]: In [33], the complex interaction between
the adopted energy control decisions and system state evolu-
tions is actually a Markov decision process. The energy states

and the operation states are obviously countable according
to [33]. The immediate cost is the energy consumption
incurred before the system reaching the next decision epoch
which is finite according to [33]. Other applications, such as
queuing control problems, inventory problems, and SSPs [27],
are all in line with our assumptions. Hence, our assumptions
here are made based on actual applications and reasonable.

Define the set of decision rules at time k as Dk, and let
� denote the set of all policies from time 0 to infinity, i.e.,
� = D0 ×D1 ×D2 ×D3 . . . Then, we can express the optimal
performance index function as

J∗(x) = inf
π∈�

{
Jπ (x)

}
. (3)

To obtain this optimal index function, a new policy iteration
algorithm will be developed.

B. Derivation of the Local Policy Iteration ADP Algorithm

In this section, we develop a local iterative algorithm to
obtain the optimal policy and the optimal index function
for the stochastic processes. For the proposed algorithm, we
refresh the iterative decision rule in a local space of the
whole system state set in each iteration epoch. We denote the
sequence of the local spaces of the whole system state set as
{Bi

x}, i = 0, 1, 2, 3 . . . For any local space of the whole system
state, we have Bi

x ⊆ X ∀i.
For all x ∈ X, let π̃0 ≡ (d0(x), d0(x), d0(x), . . .) denote

the initial stationary policy which uses the same decision rule
d0(x) ∈ D = D0 = D1 = D2 . . . at each time k. For all x ∈ X,
let V0(x) be the initial iterative value function that satisfies the
following equation:

V0(x) = U(x, d0(x)) +
∑
j∈X

λp(j | x, d0(x))V0(j) (4)

where p(· | x, d0(x)) denotes the transition probability under
decision rule d0(x).

Then, for all x ∈ B0
x , the iterative decision rule d1(x) which

forms the stationary policy π̃1 ≡ (d1(x), d1(x), d1(x), . . .) is
computed as

d1(x) = arg min
a∈Ax

⎧⎨
⎩U(x, a) +

∑
j∈X

λp(j | x, a)V0(j)

⎫⎬
⎭. (5)

Let d1(x) = d0(x), for all x ∈ X\B0
x . For all i = 1, 2, 3, . . . ,

let Vi(x) be the iterative value function that satisfies the
following equation:

Vi(x) = U(x, di(x)) +
∑
j∈X

λp(j | x, di(x))Vi(j). (6)

For all x ∈ Bi
x, the iterative decision rule di+1(x) which forms

the stationary policy π̃i+1 ≡ (di+1(x), di+1(x).di+1(x), . . .) is
computed as

di+1(x) = arg min
a∈Ax

⎧⎨
⎩U(x, a) +

∑
j∈X

λp(j | x, a)Vi(j)

⎫⎬
⎭. (7)

Let di+1(x) = di(x), for all x ∈ X\Bi
x.

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 23,2020 at 00:22:15 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: NEURO-OPTIMAL CONTROL FOR DISCRETE STOCHASTIC PROCESSES VIA NOVEL POLICY ITERATION ALGORITHM 3975

III. LOCAL POLICY ITERATION ADP ALGORITHM

A. Properties of the Local Policy Iteration ADP Algorithm

In this section, we will show that the sequence of the
iterative value functions obtained by the proposed algorithm
have a very good property in terms of monotonicity. And the
sequence of the value functions obtained by the proposed algo-
rithm will finally converge to the optimal performance index
function in a local policy space or in the global policy space
depending on different conditions.

In the remainder of this paper, we will let |X| denote the
number of elements in X, Ud(x) denote the |X|-dimensional
vector with component U(x, d(x)) for each x ∈ X, V denote
the |X|-dimensional vector with xth component V(x), and
Pd(x) denote the |X| × |X| matrix with (x, j)th entry given by
p(j | x, d(x)).

Let V denote the set of bounded real-valued functions on
X, for each V(x) ∈ V , define the norm of V(x) by

‖V(x)‖ = sup
x∈X

|V(x)|. (8)

For discrete set X, we refer to elements of V as vectors. Define
the norm of vector Ud(x), denoted by ‖Ud(x)‖ as∥∥Ud(x)

∥∥ = sup
x∈X

|U(x, d(x))|. (9)

Define the norm of vector V, denoted by ‖V‖ as

‖V‖ = sup
x∈X

|V(x)|. (10)

According to [28], Pd(x) is a bounded linear transformation
on V . Define the norm of Pd(x), denoted by ‖Pd(x)‖ as∥∥Pd(x)

∥∥ = sup
{∥∥Pd(x)V

∥∥, ‖V‖ ≤ 1, V ∈ V
}
. (11)

When X is discrete, so that Pd(x) is a matrix with components
p(j | x, d(x)), this definition implies that∥∥Pd(x)

∥∥ = sup
x∈X

∑
j∈X

p(j | x, d(x)). (12)

When Pd(x) is a probability matrix, ‖Pd(x)‖ = 1.
Now, let us present the following lemma.
Lemma 1: Suppose 0 ≤ λ < 1, and let the stationary

policy be π̃ = (d(x), d(x), d(x), . . .), then there exists a real-
valued and bounded function V(x) that satisfies the following
equation:

V(x) = U(x, d(x)) +
∑
j∈X

λp(j | x, d(x))V(j) (13)

or in vector notation

V = Ud(x) + λPd(x)V. (14)

Proof: According to the definition of the value function of
stationary policy π̃ , we have

Vπ̃ =
∞∑

k=0

λkPk
d(x)Ud(k) (15)

where P0
d(x) = I.

Then, we can derive∥∥∥Pk
d(x)

∥∥∥ =
∥∥∥Pk

d(x)

∥∥∥
≤ ∥∥Pd(x)

∥∥k

= 1. (16)

Hence

∥∥Vπ̃
∥∥ =

∥∥∥∥∥
∞∑

k=0

λkPk
d(x)Ud(x)

∥∥∥∥∥ (17)

≤
∞∑

k=0

∥∥∥λkPk
d(x)Ud(x)

∥∥∥ (18)

≤
∞∑

k=0

∣∣∣λk
∣∣∣∥∥∥Pk

d(x)

∥∥∥∥∥Ud(x)
∥∥ (19)

≤
∞∑

k=0

λkM (20)

= M

1 − λ
(21)

< ∞ (22)

thus Vπ̃ is a bounded real-valued function. Let V = Vπ̃ , the
proof is completed.

According to Lemma 1, for any stationary π ∈ �, there
exists a real-valued and bounded function V0(x) that satis-
fies (4). Thus, the iterative value function V0(x) can be defined.
Next, we will shed some light on the monotonicity property
of the sequence of the iterative value functions obtained by
the proposed algorithm.

Theorem 1: For i = 0, 1, 2, 3, . . ., let Vi(x) and di(x) be
obtained by (4)–(7). If Assumption 1 holds, then for all x ∈ X
and any i = 0, 1, 2, 3, . . ., we have the following conclusion:{

Vi+1(x) ≤ Vi(x)
‖Vi+1‖ < ∞.

(23)

Proof: Equation (23) will be proven by mathematical induc-
tion. First, we consider i = 0. Let Vq

1 (x), q = 0, 1, 2, 3, . . . ,

be an iterative value function that satisfies

Vq+1
1 (x) = U(x, d1(x)) +

∑
j∈X

λp(j | x, d1(x))V
q
1 (j) (24)

where V0
1 (x) = V0(x) and the iterative decision rules d1(x) is

obtained by (5). From Lemma 1, the iterative value function
V0(x) is bounded and real-valued. Next, we will prove

Vq+1
1 (x) ≤ V0(x) (25)∥∥∥Vq+1

1

∥∥∥ ≤ M

1 − λ
< ∞ (26)

holds for any q = 0, 1, 2, 3, . . .

We use the mathematical induction. First, for q = 0 and for
all x ∈ B0

x , according to (5), we can get

V1
1 (x) = U(x, d1(x)) +

∑
j∈X

λp(j | x, d1(x))V
0
1 (j)

= min
a∈Ax

⎧⎨
⎩U(x, a) +

∑
j∈X

λp(j | x, a)V0(j)

⎫⎬
⎭

≤ U(x, d0(x)) +
∑
j∈X

λp(j | x, d0(x))V0(j)

= V0(x). (27)

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 23,2020 at 00:22:15 UTC from IEEE Xplore. Restrictions apply.

3976 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 11, NOVEMBER 2020

For q = 0 and for all x ∈ X\B0
x , we obtain

V1
1 (x) = U(x, d1(x)) +

∑
j∈X

λp(j | x, d1(x))V
0
1 (j)

= U(x, d0(x)) +
∑
j∈X

λp(j | x, d0(x))V0(j)

= V0(x). (28)

According to (27) and (28), for all x ∈ X, we derive that

V1
1 (x) ≤ V0(x). (29)

For q = 0 and for all x ∈ X, according to Lemma 1, we have
the conclusion

∣∣∣V1
1 (x)

∣∣∣ =
∣∣∣∣∣∣U(x, d1(x)) +

∑
j∈X

λp(j|x, d1(x))V
0
1 (j)

∣∣∣∣∣∣
≤ |U(x, d1(x))| + λ

∑
j∈X

|p(j | x, d1(x))V0(j)|

≤ |U(x, d1(x))| + λ‖V0‖
≤ M + λM

1 − λ

= M

1 − λ
. (30)

Considering the supremum over x in the above expression,
we can get ∥∥∥V1

1

∥∥∥ ≤ M

1 − λ
. (31)

Assume (25) and (26) hold for q = l − 1, l = 2, 3, 4, 5, . . .,
that is

Vl
1(x) ≤ V0(x) (32)∥∥∥Vl

1

∥∥∥ ≤ M

1 − λ
. (33)

Then, for q = l and x ∈ B0
x , we obtain

Vl+1
1 (x) = U(x, d1(x)) +

∑
j∈X

λp(j | x, d1(x))V
l
1(j)

≤ U(x, d1(x)) +
∑
j∈X

λp(j | x, d1(x))V0(j)

= min
a∈Ax

⎧⎨
⎩U(x, a) +

∑
j∈X

λp(j | x, a)V0(j)

⎫⎬
⎭

≤ U(x, d0(x)) +
∑
j∈X

λp(j | x, d0(x))V0(j)

= V0(x). (34)

For x ∈ X\B0
x , we can derive

Vl+1
1 (x) = U(x, d1(x)) +

∑
j∈X

λp(j | x, d1(x))V
l
1(j)

= U(x, d0(x)) +
∑
j∈X

λp(j | x, d0(x))V
l
1(j)

≤ U(x, d0(x)) +
∑
j∈X

λp(j | x, d0(x))V0(j)

= V0(x). (35)

According to (34) and (35), for all x ∈ X, we have the
conclusion

Vl+1
1 (x) ≤ V0(x). (36)

For q = l and for x ∈ X, according to (33), we have

∣∣∣Vl+1
1 (x)

∣∣∣ =
∣∣∣∣∣∣U(x, d1(x)) +

∑
j∈X

λp(j | x, d1(x))V
l
1(j)

∣∣∣∣∣∣
≤ |U(x, d1(x))| + λ

∑
j∈X

∣∣∣p(j | x, d1(x))V
l
1(j)

∣∣∣
≤ |U(x, d1(x))| + λ

∥∥∥Vl
1

∥∥∥
≤ M + λM

1 − λ

= M

1 − λ
. (37)

Taking the supremum over x in the above expression, we
can get ∥∥∥Vl+1

1

∥∥∥ ≤ M

1 − λ
. (38)

Then, according to (29), (31), (36), and (38), we can get the
conclusion that

Vq+1
1 (x) ≤ V0(x) (39)∥∥∥Vq+1

1

∥∥∥ ≤ M

1 − λ
(40)

holds for any q = 0, 1, 2, 3, . . .

Now, we define the operator Ld1 : V → V as

Ld1(V(x)) = U(x, d1(x)) +
∑
j∈X

λp(j | x, d1(x))V(j). (41)

Setting V0
1 (x) = V0(x), as the operator Ld1 is a contraction

mapping, the sequence {Vq+1
1 (x)} defined by

Vq+1
1 (x) = Ld1

(
Vq

1 (x)
) = Lq+1

d1
(V0(x)) (42)

converges to a unique V∞
1 (x) which satisfies

Ld1

(
V∞

1 (x)
) = V∞

1 (x). (43)

That is

V∞
1 (x) = U(x, d1(x)) +

∑
j∈X

λp(j | x, d1(x))V
∞
1 (j). (44)

According to the uniqueness of V∞
1 (x) and the definition of

V1(x) in (6), we can obtain that

lim
q→∞ Vq+1

1 (x) = V∞
1 (x) = V1(x). (45)

According to (39), (40), and (44), we can obtain that

V1(x) ≤ V0(x) (46)

‖V1‖ ≤ M

1 − λ
. (47)

Assume the conclusion holds for i = l−1, l = 2, 3, 4, 5, . . .,
that is

Vl(x) ≤ Vl−1(x) (48)

‖Vl‖ ≤ M

1 − λ
. (49)

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 23,2020 at 00:22:15 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: NEURO-OPTIMAL CONTROL FOR DISCRETE STOCHASTIC PROCESSES VIA NOVEL POLICY ITERATION ALGORITHM 3977

For i = l, let Vq
l+1(x), q = 0, 1, 2, 3, . . . be an iterative value

function that satisfies

Vq+1
l+1 (x) = U(x, dl+1(x)) +

∑
j∈X

λp(j | x, dl+1(x))V
q
l+1(j) (50)

where V0
l+1(x) = Vl(x). According to the idea of the mathe-

matical induction from (24)–(40), for all x ∈ X, we can obtain
that

Vq+1
l+1 (x) ≤ Vl(x) (51)∥∥∥Vq+1

l+1

∥∥∥ ≤ M

1 − λ
(52)

holds for any q = 0, 1, 2, 3, . . .

Define the operator Ldl+1 : V → V as

Ldl+1(V(x)) = U(x, dl+1(x)) +
∑
j∈X

λp(j | x, dl+1(x))V(j).

(53)

Using the same technique in (41)–(47), we can obtain

Vl+1(x) ≤ Vl(x) (54)

‖Vl+1‖ ≤ M

1 − λ
. (55)

The mathematical induction is complete.
As for i = 0, 1, 2, 3, . . ., the iterative decision rule is

updated in Bi
x. For a state x ∈ X, it can be located in sev-

eral state sets, i.e., x ∈ {Bi0
x ∩ Bi1

x ∩ . . .}, iη ∈ {0, 1, 2, 3, . . .}
and η = 0, 1, 2, 3, . . .

Let the set T (x) of iη be expressed as

T (x) =
{

iη | x ∈ B
iη
x , iη ∈ {0, 1, 2, 3, . . .}

η = 0, 1, 2, 3, . . . , i0 ≤ i1 ≤ · · · ≤ iη ≤ · · · }. (56)

Let φ(x) denotes the number of the elements in T (x), which
is expressed as

φ(x) = |T (x)|. (57)

Let G denotes the subset of X, which is expressed as

G = {x | x ∈ X, φ(x) < ∞}. (58)

Then, we can derive the following theorem.
Theorem 2 (Local Optimality Property): For

i = 0, 1, 2, 3, . . ., let Vi(x) and di+1(x) be obtained
by (4)–(7), then we can get the conclusion that

lim
η→∞ Viη (x) = min

π∈�
Vπ (x) = inf

π∈�
Vπ (x) (59)

where � is a subspace of the policy space � which will be
explained later in the following proof.

Proof: Based on Theorem 1, we have the conclusion that
the bounded sequence of the iterative value functions obtained
by the proposed algorithm are monotonically decreasing and
will finally reach convergence. Now, we choose any x̃ ∈ X\G,
then φ(̃x) in (57) satisfies φ(̃x) → ∞, and we can also get

x̃ ∈ ∩∞
η=0B

iη
x , iη ∈ {0, 1, 2, 3, . . .}. (60)

Then, for the sequence {Viη (x)}, we have the conclusion that

lim
i→∞ Vi(x) = lim

η→∞ Viη (x). (61)

Here, we denote the limit of the sequence {Viη (x)} as VL∞(x).
For any η = 0, 1, 2, 3, . . . and x ∈ X, according to (50), the

iterative value function Vq+1
iη+1 is defined as

Vq+1
iη+1(x) = U

(
x, diη+1(x)

) +
∑
j∈X

λp
(

j | x, diη+1(x)
)
Vq

iη+1(j)

(62)

where V0
iη+1(x) = Viη (x) and diη+1(x) is defined in (7). For

q = 0, according to (34) and (35), we obtain⎧⎨
⎩

V1
iη+1(x) ≤ Viη (x) ∀x ∈ B

iη
x

Viη+1(x) = Viη (x) ∀x ∈ X\
(

B
iη
x

) (63)

which means

V1
iη+1(x) ≤ Viη (x) ∀x ∈ X. (64)

For q = 1 and for all x ∈ X, we get

V2
iη+1(x) = U

(
x, diη+1(x)

) +
∑
j∈X

λp
(

j | x, diη+1(x)
)
V1

iη+1(j)

≤ U
(
x, diη+1(x)

) +
∑
j∈X

λp
(

j | x, dIη+1(x)
)
Viη (j)

= V1
iη+1(x). (65)

By mathematical induction, we can derive that

Vq+1
iη+1(x) ≤ Vq

iη+1(x) (66)

holds for all x ∈ X, and q = 0, 1, 2, 3, . . .

Letting q → ∞, based on Theorem 1, for any η =
0, 1, 2, 3, . . . and all x ∈ X, we can get

V1
iη+1(x) ≥ lim

q→∞ Vq
iη+1(x) = Viη+1(x). (67)

According to (62)–(64), for all x ∈ B
iη
x , we have

V1
iη+1(x) = U

(
x, diη+1(x)

) +
∑
j∈X

λp
(

j | x, diη+1(x)
)
V0

iη+1(j)

= U
(
x, diη+1(x)

) +
∑
j∈X

λp
(

j | x, diη+1(x)
)
Viη (j)

= min
a∈Ax

⎧⎨
⎩U(x, a) +

∑
j∈X

λp(j | x, a)Viη (j)

⎫⎬
⎭

≤ Viη (x). (68)

Letting η → ∞, we get

min
a∈Ax

⎧⎨
⎩U(x, a) +

∑
j∈X

λp(j | x, a)VL∞(j)

⎫⎬
⎭ ≤ VL∞(x) (69)

holds for all x ∈ ∩∞
η=0B

iη
x . It is very obvious that (69) holds

for x̃. Then, since x̃ is chosen arbitrarily in the set X\G, we
can get the conclusion that (69) holds for all x ∈ X\G.

Suppose for all x ∈ X, we have

dL∞ = lim
i→∞ di(x) (70)

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 23,2020 at 00:22:15 UTC from IEEE Xplore. Restrictions apply.

3978 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 11, NOVEMBER 2020

where di(x) is defined in (7). Then, according to (4)–(7) we
can get

VL∞(x) = U
(
x, dL∞(x)

) +
∑
j∈X

λp
(

j | x, dL∞(x)
)
VL∞(j). (71)

Now, let us set the decision rule d̃L∞ as follows. For x ∈ G,
define d̃L∞(x) as

d̃L∞(x) = dL∞(x). (72)

For x ∈ X\G, define d̃L∞(x) as

d̃L∞(x) = min
a∈Ax

⎧⎨
⎩U(x, a) +

∑
j∈X

λp(j | x, a)VL∞(j)

⎫⎬
⎭. (73)

Then, define the set DL
k of the decision rules at time k as

follows:

DL
k = {

d(x, k) | d(x, k) ∈ Dk : d(x, k) = dL∞(x) ∀x ∈ G
}
.

(74)

Besides, we set the subspace � of the policy space � as
follows:

� = {
DL

0 × DL
1 × DL

2 × DL
3 · · · }. (75)

Then, according to (71)–(74), we can transform (69) into

min
d∈DL

⎧⎨
⎩U(x, d(x)) +

∑
j∈X

λp(j | x, d(x))VL∞(j)

⎫⎬
⎭

= inf
d∈DL

⎧⎨
⎩U(x, d(x)) +

∑
j∈X

λp(j | x, d(x))VL∞(j)

⎫⎬
⎭

≤ VL∞(x) (76)

where DL = DL
0 = DL

1 = DL
2 . . .

Writing (76) in vector form, we can get

inf
d∈DL

{
Ud(x) + λPd(x)VL∞

} ≤ VL∞. (77)

According to (77), we have that for arbitrary ε > 0,
there exists a policy which is expressed as π =
(d(x, 0), d(x, 1), d(x, 2), . . . , d(x, k), . . .) ∈ �, such that

VL∞ ≥ Ud(x,0) + λPd(x,0)VL∞ − εe

≥ Ud(x,0) + λPd(x,0)

{
Ud(x,1) + λPd(x,1)VL∞ − εe

} − εe

= Ud(x,0) + λPd(x,0)Ud(x,1) + λ2Pd(x,0)Pd(x,1)VL∞
− (εe + λεe)

≥ Ud(x,0) + λPd(x,0)Ud(x,1) + λ2Pd(x,0)Pd(x,1)

× {
Ud(x,2) + λPd(x,2)VL∞ − εe

} − (εe + λεe)

= Ud(x,0) + λPd(x,0)Ud(x,1) + λ2Pd(x,0)Pd(x,1)Ud(x,2)

+ λ3Pd(x,0)Pd(x,1)Pd(x,2)VL∞ −
(
εe + λεe + λ2εe

)

≥ Ud(x,0) +
n−1∑
l=1

{
λl

{
l−1∏
m=0

Pd(x,m)

}
Ud(x,l)

}

+ λn

{
n−1∏
m=0

Pd(x,m)

}
VL∞

−
(
εe + λεe + λ2εe + · · · + λn−1εe

)
. (78)

Then, letting n → ∞, we have

lim
n→∞ λn

{
n−1∏
m=0

Pd(x,m)

}
VL∞ = 0 (79)

lim
n→∞

{
Ud(x,0) +

n−1∑
l=1

{
λl

{
l−1∏
m=0

Pd(x,m)

}
Ud(x,l)

}}
= Vπ . (80)

Then, when n → ∞, (78) becomes

VL∞ ≥ Vπ − (1 − λ)−1εe. (81)

Since ε was arbitrary, we can easily get

VL∞ ≥ inf
π∈�

Vπ . (82)

On the other hand, according to (67), for all x ∈ B
iη
x , we

can obtain

V1
iη+1(x) = U

(
x, diη+1(x)

) +
∑
j∈X

λp
(

j | x, diη+1(x)
)
V0

iη+1(j)

= U
(
x, diη+1(x)

) +
∑
j∈X

λp
(

j | x, diη+1(x)
)
Viη (j)

= min
a∈Ax

⎧⎨
⎩U(x, a) +

∑
j∈X

λp(j | x, a)Viη (j)

⎫⎬
⎭

≥ Viη+1(x). (83)

Letting η → ∞, for all x ∈ ∩∞
η=0B

iη
x , we can get

min
a∈Ax

⎧⎨
⎩U(x, a) +

∑
j∈X

λp(j | x, a)VL∞(j)

⎫⎬
⎭ ≥ VL∞(x). (84)

It is obvious that (84) holds also for x̃. Then, since x̃ is
chosen arbitrarily in the set X\G, we can get the conclusion
that (84) holds for all x ∈ X\G.

Then, according to (71)–(74), we can transform (84) into

min
d∈DL

⎧⎨
⎩U(x, d(x)) +

∑
j∈X

λp(j | x, d(x))VL∞(j)

⎫⎬
⎭

= inf
d∈DL

⎧⎨
⎩U(x, d(x)) +

∑
j∈X

λp(j | x, d(x))VL∞(j)

⎫⎬
⎭

≥ VL∞(x). (85)

Writing (85) in vector format, we can get

inf
d∈DL

{
Ud(x) + λPd(x)VL∞

} ≥ VL∞. (86)

Then, choosing π = (d(x, 0), d(x, 1), d(x, 2), . . . , d(x, k), . . .)
∈ �, according to (86), we have

VL∞ ≤ Ud(x,0) + λPd(x,0)VL∞
≤ Ud(x,0) + λPd(x,0)

{
Ud(x,1) + λPd(x,1)VL∞

}
= Ud(x,0) + λPd(x,0)Ud(x,1) + λ2Pd(x,0)Pd(x,1)VL∞. (87)

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 23,2020 at 00:22:15 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: NEURO-OPTIMAL CONTROL FOR DISCRETE STOCHASTIC PROCESSES VIA NOVEL POLICY ITERATION ALGORITHM 3979

By mathematical induction, it follows that, for n ≥ 1:

VL∞ ≤ Ud(x,0) +
n−1∑
l=1

{
λl

{
l−1∏
m=0

Pd(x,m)

}
Ud(x,l)

}

+ λn

{
n−1∏
m=0

Pd(x,m)

}
VL∞. (88)

Thus

VL∞ − Vπ ≤ λn

{
n−1∏
m=0

Pd(x,m)

}
VL∞

−
∞∑

l=1

{
λl

{
l−1∏
m=0

Pd(x,m)

}
Ud(x,l)

}
. (89)

Choosing ε > 0, since∥∥∥∥∥λn

{
n−1∏
m=0

Pd(x,m)

}
VL∞

∥∥∥∥∥ ≤ λn
∥∥VL∞

∥∥ (90)

and 0 ≤ λ < 1, if n is sufficiently large, we have

− (ε/2)e ≤ λn

{
n−1∏
m=0

Pd(x,m)

}
VL∞ ≤ (ε/2)e (91)

where e denotes a vector of 1’s. As result of the assumption

− λnMe
1 − λ

≤
∞∑

l=1

{
λl

{
l−1∏
m=0

Pd(x,m)

}
Ud(x,l)

}
≤ λnMe

1 − λ
. (92)

By choosing a sufficiently large n, the second expression on
the right-hand side of (89) can be bounded above and below
by (ε/2)e. Since the left-hand side of (89) does not depend
on n, it follows that:

VL∞ ≤ Vπ + εe. (93)

Since ε was arbitrary, then we can get

VL∞ ≤ inf
π∈�

Vπ . (94)

According to (82) and (94), we can get the conclusion that

VL∞ = inf
π∈�

Vπ . (95)

This completes the proof.
Remark 2: From Theorem 2, it is shown that the sequence

of iterative value functions is monotonically decreasing and
will finally converge to the optimum in a local policy space
with the local policy iteration ADP algorithm. We should also
pay attention to the situation where the iterative decision rule
di(x) is only refreshed for finite times for some state x ∈ .
Then under this situation, we could get the conclusion that the
sequence of iterative value functions obtained by the proposed
algorithm are monotonically nonincreasing and will converge
to the optimal performance index function in a local policy
space. Hence, if the sequence of the iterative decision rules
di(x) are refreshed only finite times for some system state
x ∈ X, then it is not guaranteed that the last converged value
function obtained by the proposed algorithm is optimal in the
global policy space. Thus, to guarantee that the sequence of

the iterative value functions finally converge to the global opti-
mum, the iterative decision rule should be refreshed for every
state which is within the whole system state set for infinite
times. Then it is not guaranteed that the last converged value
function obtained by the proposed algorithm is optimal in the
global policy space. We will discuss this property further in
the following theorem.

Theorem 3 (Global Optimality Property): For i =
0, 1, 2, 3, . . . and all x ∈ X, let Vi(x) and di+1(x) be obtained
by (4)–(7). Let Nj, j = 01, 2, 3, . . . , be non-negative inte-
gers, which satisfy N0 ≤ N1 ≤ . . . Assume that iNj ≤
iNj+1 ∀j = 0, 1, 2, 3, . . . If for any j = 0, 1, 2, 3, . . ., the state
set Bi

x, i = 0, 1, 2, 3, . . . , satisfies

∪iNj
l=iNj−1

Bi
x = X (96)

where we let iNj−1 = −1 for j = 0. Then, the iterative value
function ViNj

(x) satisfies

lim
j→∞ ViNj

(x) = inf
π∈�

Vπ (x). (97)

Proof: As iNj ≤ iNj+1 ∀j = 0, 1, 2, 3, . . ., we have iNj →
∞ with j → ∞. Based on Theorem 1, the sequence of the
iterative value functions will finally converge, that is,

V∞(x) = lim
j→∞ ViNj

(x). (98)

From (96), we can get the conclusion that given any
x ∈ X, there always exists an iρj , where iρj ∈
{0, 1, 2, 3, . . .}, iNj−1+1 ≤ iρj ≤ iNj , j = 0, 1, 2, 3, . . . sat-

isfying x ∈ B
iρj
x . That is to say, given any x ∈ X, we

have

x ∈ ∩∞
j=0B

iρj
x . (99)

Then, according to the definition of the set G, we can get the
conclusion that

G = ∅. (100)

Then, similar to Theorem 2, we can easily get the conclusion
that

lim
η→∞ Viη (x) = inf

π∈�
Vπ (x) (101)

where � = �.

B. Summary of the Local Policy Iteration ADP Algorithm

Based on the above preparations, we summarize the local
policy iteration ADP algorithm as in Algorithm 1.

IV. NEURAL NETWORK IMPLEMENTATION FOR LOCAL

POLICY ITERATION ADP ALGORITHM

In practical cases, the number of system states for the
stochastic processes is usually very large. Hence, we need
to utilize approximation structures such as neural networks
to approximate the iterative value functions and the iterative
decision rules obtained by the policy iteration algorithm. Here,
we use three-layer BP neural networks to approximate di(x)
and Vi(x) for i = 0, 1, 2, 3, . . . We use κ to define the hidden

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 23,2020 at 00:22:15 UTC from IEEE Xplore. Restrictions apply.

3980 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 11, NOVEMBER 2020

Algorithm 1 Local Policy Iteration ADP Algorithm for
Stochastic Processes
Initialization:

Choose parameter λ;
Choose a computation precision ε;
Give an initial decision rule d0(x);
Construct a sequence of the local spaces of the whole
system state set as

{
Bi

x

}
, i = 0, 1, 2, 3

Iteration:
1: Let the iteration index i = 0;
2: Obtain the value function V0(x) by (4);
3: Let i = i + 1;
4: Do Policy Improvement

If x ∈ Bi−1
x , then

di(x) = arg min
a∈Ax

⎧⎨
⎩U(x, a) +

∑
j∈X

λp(j|x, a)Vi−1(j)

⎫⎬
⎭

else
di(x) = di−1(x)

end if;
5: Obtain Vi(x) by doing Policy Evaluation

Vi(x) = U(x, di(x)) +
∑
j∈X

λp(j|x, di(x))Vi(j);

6: If ‖Vi − Vi−1‖ < ε, then the optimal performance index
function and optimal decision rule are obtained. Goto Step
7. Else goto Step 3;

7: return Vi(x) and di(x).

Fig. 1. Structure diagram of the algorithm.

layer size, Wh to define the weight matrix from the input layer
to hidden layer, and Wo to define the weight matrix from hid-
den layer to output layer. We use bh to define the bias vector
for hidden layer and bo to define the bias vector for output
layer. Then, we can represent our neural network as

N̂(Wh, Wo, bh, bo, x) = WT
o

{
f
(

WT
h x + bh

)}
+ bo (102)

where f (WT
h x+bh) is a κ-dimensional vector, [f (z)]i = 2/(1+

e(−2zi))−1, i = 1, 2, 3, . . . , κ . Here, we use f as the activation
function.

In our algorithm, we utilize two neural networks [also
known as critic network V̂i(x) and action network d̂i(x)] to
approximate the performance index function Vi(x) and the
decision rule di(x), respectively. We demonstrate the overall
structure diagram in Fig. 1.

A. Critic Network

We utilize the critic network to approximate the iterative
performance index function Vi(x). The output of the critic
network can be expressed as

V̂l
i (x) = WlT

oci

{
f
(

WT
hcx + bhc

)}
+ bl

oci (103)

where l = 0, 1, 2, 3, . . . Let W0
oci, Whc, bhc, and b0

oci be ran-
dom weight matrices. In simulation, when we train the neural
network, the hidden-output weight matrix Wl

oci and the bias
bl

oci will be refreshed, while the input-hidden weight matrix
Whc and the bias bhc are fixed. Here, we can present the target
of the critic network as

Vi(x) = U
(

x, d̂i(x)
)

+
∑
j∈X

(
λp(j|x, d̂i(x))V̂

l
i (j)

)
. (104)

Then, we define the error function for the critic network as

el
ci(x) = Vi(x) − V̂l

i (x). (105)

Then, applying (103) and (104) into (105), we can obtain

el
ci(x) =

⎧⎨
⎩U

(
x, d̂i(x)

)
+

∑
j∈X

(
λp

(
j|x, d̂i(x)

)
V̂l

i (j)
)⎫⎬
⎭

−
{

WlT
oci

{
f
(

WT
hcx + bhc

)}
+ bl

oci

}
. (106)

Combining (103) with (106), we can define ∇c as

∇c � ∂el
ci(x)

∂Wl
oci

=
⎧⎨
⎩

∑
j∈X

{
λp

(
j|x, d̂i(x)

)
f
(

WT
hcj + bhc

)}⎫⎬
⎭

− f
(

WT
hcx + bhc

)
. (107)

The objective function to be minimized in the critic
network is

El
ci(x) = 1

2

(
el

ci(x)
)2

. (108)

The gradient-based weight update rule can be applied to train
the critic network

Wl+1
oci = Wl

oci + �Wl
oci

= Wl
oci − ρcw

{
∂El

ci(x)

∂el
ci(x)

∂el
ci(x)

∂Wl
oci

}

= Wl
oci − ρcwel

ci(x)∇c (109)

bl+1
oci = bl

oci + �bl
oci

= bl
oci − ρcb

{
∂El

ci(x)

∂V̂l
i+1(x)

∂V̂l
i+1(x)

∂bl
oci

}

= bl
oci − ρcbel

ci(x) (110)

where ρcw > 0 and ρcb > 0 are the learning rates of the critic
network. If the training precision is achieved, then we say that
the performance index function Vi(x) can be approximated by
the critic network.

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 23,2020 at 00:22:15 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: NEURO-OPTIMAL CONTROL FOR DISCRETE STOCHASTIC PROCESSES VIA NOVEL POLICY ITERATION ALGORITHM 3981

B. Action Network

Here, we utilize the action network to approximate the
iterative decision rule di(x). The output of the action network
can be expressed as

d̂l
i(x) = WlT

oai

{
f
(

WT
hax + bha

)}
+ bl

oai (111)

where l = 0, 1, 2, 3, . . . Let W0
oai, Wha, bha, and b0

oai be ran-
dom weight matrices. In simulation, when we train the neural
network, the hidden-output weight matrix Wl

oai and the bias
bl

oai will be refreshed, while the input-hidden weight matrix
Wha and the bias bha are fixed. Here, we present the target
function di(x) as follows. If x ∈ Bi−1

x , then

di(x) = arg min
a∈Ax

⎧⎨
⎩U(x, a) +

∑
j∈X

λp(j|x, a)V̂i−1(j)

⎫⎬
⎭. (112)

If x ∈ X\Bi−1
x , then

di(x) = d̂i−1(x). (113)

Then, we define the error function for the action network for
all x ∈ X as

el
ai(x) = d̂l

i(x) − di(x). (114)

The objective function to be minimized in the action network is

El
ai(x) = 1

2

(
el

ai(x)
)T(

el
ai(x)

)
. (115)

The gradient-based weight update rule can be applied here
to train the action network

Wl+1
oai = Wl

oai + �Wl
oai

= Wl
oai − ρaw

{
∂El

ai(x)

∂el
ai(x)

∂el
ai(x)

∂ d̂l
i(x)

∂ d̂l
i(x)

∂Wl
oai

}

= Wl
oai − ρawf

(
WT

hax + bha

)(
el

ai(x)
)T

(116)

bl+1
oai = bl

oai + �bl
oai

= bl
oai − ρab

{
∂El

ai(x)

∂el
ai(x)

∂el
ai(x)

∂ d̂l
i(x)

∂ d̂l
i(x)

∂bl
oai

}

= bl
oai − ρabel

ai(x) (117)

where ρaw > 0 and ρab > 0 are the learning rates of the
action network. If the training precision is achieved, then we
say that the decision rule di(x) can be approximated by the
action network.

Remark 3: With the above algorithm implemented with the
help of neural networks, we actually get a sequence of approx-
imate decision rules and a sequence of approximate value
functions. Hence, there will be errors between the approximate
decision rules and the “true” decision rules. And there will
also be errors between the approximate value functions and the
“true” value functions. In the following section, we will estab-
lish the error bounds between the approximate performance
index function and the optimal performance index function
under some conditions.

Fig. 2. Direct-current machine.

C. Error Bounds of Local Policy Iteration ADP Algorithm

We consider the local policy iteration ADP algorithm which
generates a sequence of approximate iterative decision rules
d̂i(x) and a corresponding sequence of approximate iterative
value functions V̂i(x) satisfying∥∥∥V̂i − Vπ̂i

∥∥∥ ≤ ε ∀i = 0, 1, 2, 3, . . . (118)

and

sup
∣∣∣Ld̂i+1

(
V̂i(x)

)
− L

(
V̂i(x)

)∣∣∣ ≤ δ ∀i = 0, 1, 2, 3, . . . (119)

where ε and δ are some positive scalars, stationary policy π̂0 =
π0 = (d0(x), d0(x), d0(x), . . . , d0(x), . . .) is the given initial
policy, π̂i = (d̂i(x), d̂i(x), d̂i(x), . . . , d̂i(x), . . .) is the approxi-
mate iterative policy, and the operator L : V → V is defined
as L(V(x)) = mina∈Ax{U(x, a) + ∑

j∈X λp(j|x, a)Vi(j)}.
Then, we can establish the error bounds between the approx-

imate performance index function and the optimal performance
index function.

Lemma 2 (See [10]): The sequence of the approximate
value functions generated by the local policy iteration ADP
algorithm satisfies

lim supi→∞
∥∥∥∥V̂i − inf

π∈�
Vπ

∥∥∥∥ ≤ δ + 2λε

1 − λ2
. (120)

V. SIMULATION EXAMPLE

We consider the system of the direct-current machine, which
is shown in Fig. 2. if is the current of the field winding; ra is
the resistance of the rotor coil; LAA is the self-inductance of the
armature winding; and LAF is the mutual inductance between
the field and the rotating armature coils. A random exogenous
load torque TL is applied to the system. J is the inertia of the
rotor. The constant Bm is a damping coefficient associated with
the mechanical rotational system of the machine. Let armature
current ia and rotor speed ωr be the system states and let
armature voltage va be the control input. This direct-current
machine system can be derived as

dia
dt

= −LAF

LAA
if ωr − ra

LAA
ia + 1

LAA
va

dωr

dt
= LAF

J if ia − Bm

J ωr − 1

J TL. (121)

We will discretize the above system using the sampling
interval �T . This yields

ia(k + 1) = −�TLAF

LAA
if ωr(k) + LA − �Tra

LAA
ia(k) + �T

LAA
va(k)

ωr(k + 1) = �TLAF

J if ia(k) + J − �Bm

J ωr(k) − �T

J TL(k).

(122)

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 23,2020 at 00:22:15 UTC from IEEE Xplore. Restrictions apply.

3982 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 11, NOVEMBER 2020

TABLE I
PARAMETERS SETTING UP

Fig. 3. Iterative value functions by local policy iteration ADP algorithm.

The utility function is chosen as

U(ia, ωr, va) = U1(ia, ωr, va) + U2(ia, ωr, va)

+ U3(ia, ωr, va) (123)

where

U1(ia, ωr, va) = k1(ωr − ωc)
2

U2(ia, ωr, va) = k2i2a

U3(ia, ωr, va) = k3

{
ia −

{−�TLAF

LAA
if ωr + LA − �Tra

LAA
ia

+ �T

LAA
va

}}2

. (124)

In the utility function, U1(ia, ωr, va) is to make the
rotors speed track the arbitrarily given speed command ωc;
U2(ia, ωr, va) is to minimize the energy consumed by the
system; and U3(ia, ωr, va) is to ensure that the armature
current changes as smooth as possible.

The parameters for the model are given in Table I.
We denote system state x as

x =
[

x1

x2

]
=

[
ia
ωr

]
. (125)

(a) (b)

(c) (d)

Fig. 4. Iterative decision rules by local policy iteration ADP algorithm.
(a) d0(x). (b) d1(x). (c) d3(x). (d) d∞(x).

Let the state space be expressed as = {(x1, x2) | −5 ≤ x1 ≤
30, 0 ≤ x2 ≤ 200}. Let the initial state be x0 = [0, 0]T. Neural
networks are used to implement the developed local iterative
ADP algorithm. For y ≥ 0 and z ≥ 0, let rem(y, z) denote the
remainder of y/z. For i = 0, 1, . . . , the state set Brem(i,4)

x is
defined as

Brem(i,4)
x ∈

{
B0

x, B1
x, B2

x, B3
x

}
(126)

where we let B0
x = {0 ≤ x1 ≤ 30, 100 ≤ x2 ≤ 200},

B1
x = {−5 ≤ x1 ≤ 0, 100 ≤ x2 ≤ 200}, B2

x = {−5 ≤ x1 ≤
0, 0 ≤ x2 ≤ 100}, and B3

x = {0 ≤ x1 ≤ 30, 0 ≤ x2 ≤ 100}.
From (126), we know that ∪3

j=0Bj
x = . For i = 0, 1, 2, 3, . . .,

the iterative decision rule is refreshed in local space of the
whole system state set. And for any x ∈ X, these local spaces
of the whole system state set satisfy

x ∈ Brem(i,4)
x , i = 0, 1, 2, 3, . . . (127)

According to [10], we can build the initial decision rule
using action network, where the initial decision rule can be
expressed as va0(x) = Wa2,initialσ(Ya1,initialx + ba1,initial) +
ba2,initial. Here, the function σ(·) is chosen as the sigmoid
function. We set up the values for the parameters randomly.

In numerical implementation, we refresh the iterative deci-
sion rule and iterative value function for 100 times until the
computation precision ε = 0.01 is satisfied. Fig. 3 demon-
strates the iterative value functions using local policy iteration
ADP algorithm, where “In” indicates the initial iteration item
and “Lm” indicates the limiting iteration item. Fig. 4 demon-
strates the iterative decision rules di(x) using local policy
iteration ADP algorithm. As in each iteration, the iterative
decision rule di(x) is only renewed in a local space of the
global state set, i.e., Brem(i,4)∈

x . From Figs. 3 and 4, we can see
that the sequence of iterative value functions obtained by the
proposed algorithm are monotonically nonincreasing and will
reach certain convergency. Fig. 6 demonstrates the iterative
control trajectories using local policy iteration ADP algorithm.
Fig. 5 demonstrates the iterative system state trajectories using

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 23,2020 at 00:22:15 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: NEURO-OPTIMAL CONTROL FOR DISCRETE STOCHASTIC PROCESSES VIA NOVEL POLICY ITERATION ALGORITHM 3983

(a) (b)

(c) (d)

Fig. 5. Iterative trajectories of rotor speed. (a) ωr with i = 0. (b) ωr with
i = 4. (c) ωr with i = 11. (d) ωr with i = ∞.

(a) (b)

(c) (d)

Fig. 6. Iterative trajectories of armature voltage. (a) va with i = 0. (b) va
with i = 8. (c) va with i = 11. (d) va with i = ∞.

local policy iteration algorithm. From Figs. 5 and 6, it is
obvious that the last converged system rotor speed trajectory
(also known as the system state trajectory) using the proposed
algorithm is able to effectively track the given speed target
curve.

Now, if we let Bi
x ≡ , i = 0, 1, . . ., then the local pol-

icy iteration ADP algorithm will become conventional global
policy iteration algorithm. Here, we refresh the iterative deci-
sion rule and iterative value function using the conventional
global policy iteration algorithm for 100 times until the com-
putation precision ε = 0.01 is satisfied. Fig. 7(a) demonstrates
the iterative value functions using the conventional global pol-
icy iteration algorithm. From Fig. 7(a), it is shown that the
sequence of iterative value functions obtained by the con-
ventional global policy iteration algorithm are monotonically

Fig. 7. Traditional policy iteration algorithm. (a) Vi(x) by traditional policy
iteration algorithm. (b) di(x) by traditional policy iteration algorithm. Iterative
trajectories of states: (c) speed, (d) voltage, and (e) current.

nonincreasing and the last converged value function obtained
by the conventional global policy iteration algorithm is the
optimal performance index function in the global policy space.
Compare Fig. 7(a) with Fig. 3, we can see that the last con-
verged value function obtained by the local policy iteration
ADP algorithm is also the optimal performance index function
in the global policy space. Fig. 7(b) demonstrates the iterative
decision rules using the conventional global policy iteration
algorithm. Fig. 7(c) and (e) demonstrates the iterative system
state trajectories using the conventional global policy iteration
algorithm. Fig. 7(d) demonstrates the iterative control trajec-
tories using the conventional global policy iteration algorithm.
Hence, if the local spaces used in the proposed algorithm sat-
isfy the condition in Theorem 3, then the sequence of value
functions obtained in the proposed algorithm and the sequence
obtained in the conventional global policy iteration algorithm
will reach the same convergence which is exactly the optimal
performance index function in the global policy space of the
stochastic processes. However, in the conventional global pol-
icy iteration algorithm, we refresh the iterative decision rule
and iterative value function for every state data in the global
system state simultaneously. Meanwhile, in the local policy
iteration ADP algorithm, we only refresh the iterative decision

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 23,2020 at 00:22:15 UTC from IEEE Xplore. Restrictions apply.

3984 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 11, NOVEMBER 2020

Fig. 8. System load. (a) CPU utilization when system is running conventional
policy iteration algorithm for. (b) Memory usage when system is running
conventional policy iteration algorithm. (c) CPU utilization when system is
running local policy iteration ADP algorithm for. (d) Memory usage when
system is running local policy iteration ADP algorithm.

rule and iterative value function in a local space of the system
state. This means that the calculation load for the computer
could be significantly released using the proposed algorithm.

Fig. 8 demonstrates the system load using conventional
policy iteration algorithm and local policy iteration ADP algo-
rithm, respectively. It is shown that the CPU utilization is
around 50% and the maximum memory usage is nearly 100%
when using the conventional policy iteration algorithm. At
the same time, the CPU utilization is around 25% and the
memory usage is around 50% when using local policy iteration
algorithm.

Therefore, the simulation validates that the proposed algo-
rithm is able to release the massive calculation load for the
computer while achieving the goal of finding the optimal
performance index function for the stochastic processes.

VI. CONCLUSION

In this paper, to obtain the optimal performance index func-
tion for the stochastic processes, a novel local policy iteration
ADP algorithm is presented. We present simulations to vali-
date that the proposed algorithm is able to release the massive
calculation load for the computer CPU which is caused by the
conventional global policy iteration algorithm while achieving
the goal of finding the optimal performance index function
for the stochastic processes. However, our proposed algorithm
evaluates policies on the basis of expected total discounted
reward of the system. When decisions are made frequently, so
that the discount factor is very close to 1, or when performance
criterion can easily be described, the decision maker may pre-
fer to compare policies on the basis of the average expected
reward instead of the expected total discounted reward of the
system. Our proposed algorithm may not be suitable for these
models. We will focus on this issue in our future work.

REFERENCES

[1] Y. Wang, H. Shen, H. R. Karimi, and D. Duan, “Dissipativity-based
fuzzy integral sliding mode control of continuous-time T–S fuzzy
systems,” IEEE Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1164–1176,
Jun. 2018.

[2] Y. Wang, Y. Gao, H. R. Karimi, H. Shen, and Z. Fang, “Sliding mode
control of fuzzy singularly perturbed systems with application to electric
circuit,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 10, pp. 1–9,
Oct. 2018.

[3] Y. Wang, Y. Xia, H. Shen, and P. Zhou, “SMC design for robust sta-
bilization of nonlinear Markovian jump singular systems,” IEEE Trans.
Autom. Control, vol. 63, no. 1, pp. 219–224, Jan. 2018.

[4] P. J. Werbos, “Advanced forecasting methods for global crisis warn-
ing and models of intelligence,” Gen. Syst. Yearbook, vol. 22, no. 12,
pp. 25–38, 1977.

[5] P. J. Werbos, “A menu of designs for reinforcement learning over
time,” in Neural Networks for Control, W. T. Miller, R. S. Sutton, and
P. J. Werbos, Eds. Cambridge, MA, USA: MIT Press, 1991, pp. 67–95.

[6] D. Wang, H. He, and D. Liu, “Adaptive critic nonlinear robust control: A
survey,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 3429–3451, Oct. 2017.

[7] D. Wang, C.-X. Mu, and D.-R. Liu, “Data-driven nonlinear near-
optimal regulation based on iterative neural dynamic programming,”
Acta Automatica Sinica, vol. 43, no. 3, pp. 366–375, Mar. 2017.

[8] D. Liu, Y. Xu, Q. Wei, and X. Liu. “Residential energy scheduling for
variable weather solar energy based on adaptive dynamic programming,”
IEEE/CAA J. Automatica Sinica, vol. 5, no. 1, pp. 36–46, Jan. 2018.

[9] D. Wang and C. Mu, “Developing nonlinear adaptive optimal regulators
through an improved neural learning mechanism,” Sci. China Inf. Sci.,
vol. 60, no. 5, Nov. 2017, Art. no. 058201.

[10] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA, USA: Athena Sci., 1996.

[11] D. Wang, C. Mu, H. He, and D. Liu, “Event-driven adaptive robust
control of nonlinear systems with uncertainties through NDP strategy,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 7, pp. 1358–1370,
Jul. 2017.

[12] D. Wang, D. Liu, Q. Zhang, and D. Zhao, “Data-based adaptive critic
designs for nonlinear robust optimal control with uncertain dynamics,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 11, pp. 1544–1555,
Nov. 2016.

[13] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE
Trans. Neural Netw., vol. 8, no. 5, pp. 997–1007, Sep. 1997.

[14] H. Zhang, C. Qin, and Y. Luo, “Neural-network-based constrained
optimal control scheme for discrete-time switched nonlinear system
using dual heuristic programming,” IEEE Trans. Autom. Sci. Eng.,
vol. 11, no. 3, pp. 839–849, Jul. 2014.

[15] Q. Wei, F. L. Lewis, Q. Sun, P. Yan, and R. Song, “Discrete-time
deterministic Q-learning: A novel convergence analysis,” IEEE Trans.
Cybern., vol. 47, no. 5, pp. 1224–1237, May 2017.

[16] Z. Ni, H. He, X. Zhong, and D. V. Prokhorov, “Model-free dual heuristic
dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26,
no. 8, pp. 1834–1839, Aug. 2015.

[17] Z. Ni, H. He, D. Zhao, X. Xu, and D. V. Prokhorov, “GrDHP: A general
utility function representation for dual heuristic dynamic programming,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 3, pp. 614–627,
Mar. 2015.

[18] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement learn-
ing and feedback control: Using natural decision methods to design
optimal adaptive controllers,” IEEE Control Syst., vol. 32, no. 6,
pp. 76–105, Dec. 2012.

[19] Q. Wei, F.-Y. Wang, D. Liu, and X. Yang, “Finite-approximation-
errorbased discrete-time iterative adaptive dynamic programming,” IEEE
Trans. Cybern., vol. 44, no. 12, pp. 2820–2833, Dec. 2014.

[20] Q. Wei, D. Liu, and H. Lin, “Value iteration adaptive dynamic pro-
gramming for optimal control of discrete-time nonlinear systems,” IEEE
Trans. Cybern., vol. 46, no. 3, pp. 840–853, Mar. 2016.

[21] D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li, Adaptive Dynamic
Programming With Applications in Optimal Control. Cham, Switzerland:
Springer, 2017.

[22] J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks, “Adaptive dynamic
programming,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 32,
no. 2, pp. 140–153, May 2002.

[23] Q. Wei and D. Liu, “A novel iterative θ -adaptive dynamic program-
ming for discrete-time nonlinear systems,” IEEE Trans. Autom. Sci. Eng.,
vol. 11, no. 4, pp. 1176–1190, Oct. 2014.

[24] D. Liu, H. Li, and D. Wang, “Error bounds of adaptive dynamic
programming algorithms for solving undiscounted optimal control
problems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6,
pp. 1323–1334, Jun. 2015.

[25] R. Song, F. L. Lewis, Q. Wei, and H. Zhang, “Off-policy actor-critic
structure for optimal control of unknown systems with disturbances,”
IEEE Trans. Cybern., vol. 46, no. 5, pp. 1041–1050, May 2016.

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 23,2020 at 00:22:15 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: NEURO-OPTIMAL CONTROL FOR DISCRETE STOCHASTIC PROCESSES VIA NOVEL POLICY ITERATION ALGORITHM 3985

[26] D. Liu, Q. Wei, and P. Yan, “Generalized policy iteration adaptive
dynamic programming for discrete-time nonlinear systems,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 45, no. 12, pp. 1577–1591, Dec. 2015.

[27] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Hoboken, NJ, USA: Wiley, 1994.

[28] E. Kreyszig, Introductory Functional Analysis With Applications.
New York, NY, USA: Wiley, 1989.

[29] H. Zhang, L. Cui, and Y. Luo, “Near-optimal control for nonzero-sum
differential games of continuous-time nonlinear systems using single-
network ADP,” IEEE Trans. Cybern., vol. 43, no. 1, pp. 206–216,
Feb. 2013.

[30] D. P. Bertsekas, “Proper policies in infinite-state stochastic shortest
path problems,” Lab. Inf. Decis. Syst., Massachusetts Inst. Technol.,
Cambridge, MA, USA, Rep. LIDS-3507, May 2017.

[31] B. Zhou, Y. Cui, and M. Tao, “Optimal dynamic multicast schedul-
ing for cache-enabled content-centric wireless networks,” IEEE Trans.
Commun., vol. 65, no. 7, pp. 2956–2970, Jul. 2017.

[32] H. Jung and M. Pedram, “Stochastic dynamic thermal management: A
Markovian decision-based approach,” in Proc. 25th Int. Conf. Comput.
Design, San Jose, CA, USA, Nov. 2007, pp. 452–457.

[33] L. Li and Z. Sun, “Dynamic energy control for energy efficiency
improvement of sustainable manufacturing systems using Markov deci-
sion process,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 5,
pp. 1195–1205, Sep. 2013.

[34] D. P. Bertsekas, Dynamic Programming and Optimal Control, vols. 1–2.
Belmont, MA, USA: Athena Sci., 1995.

[35] D. P. Bertsekas, “Approximate policy iteration: A survey and some
new methods,” J. Control Theory Appl., vol. 9, no. 3, pp. 310–335,
Aug. 2011.

[36] D. P. Bertsekas, “Lambda-policy iteration: A review and a new
implementation,” Lab. Inf. Decis. Syst., Massachusetts Inst. Technol.,
Cambridge, MA, USA, Rep. LIDS-P-2874, Oct. 2011.

[37] H. Yu and D. P. Bertsekas, “Q-learning and policy iteration algorithms
for stochastic shortest path problems,” Ann. Oper. Res., vol. 208, no. 1,
pp. 95–132, Sep. 2013.

[38] D. P. Bertsekas, M. L. Homer, D. A. Logan, S. D. Patek, and
N. R. Sandell, “Missile defense and interceptor allocation by neuro-
dynamic programming,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 30,
no. 1, pp. 42–51, Jan. 2000.

[39] B. Van Roy, D. P. Bertsekas, Y. Lee, and J. N. Tsitsiklis, “A neuro-
dynamic programming approach to retailer inventory management,” in
Proc. IEEE Conf. Decis. Control, San Diego, CA, USA, Aug. 1997,
pp. 4052–4057.

[40] H. Zhang, T. Feng, H. Liang, and Y. Luo, “LQR-based optimal dis-
tributed cooperative design for linear discrete-time multiagent systems,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 599–611,
Mar. 2017.

[41] H. Jiang and H. Zhang, “Iterative ADP learning algorithms for discrete-
time multi-player games,” Artif. Intell. Rev., vol. 50, no. 1, pp. 75–91,
Jun. 2018.

Mingming Liang received the B.S. degree
in automation from the Dalian University of
Technology, Dalian, China, in 2015. He is currently
pursuing the Ph.D. degree in control theory and
control engineering with the State Key Laboratory
of Management and Control for Complex Systems,
Institute of Automation, Chinese Academy of
Sciences, Beijing, China.

He is also with the University of Chinese
Academy of Sciences, Beijing. His current research
interests include neural networks, reinforcement

learning, and stochastic processes.

Ding Wang (M’15) received the B.S. degree in
mathematics from the Zhengzhou University of
Light Industry, Zhengzhou, China, in 2007, the M.S.
degree in operations research and cybernetics from
Northeastern University, Shenyang, China, in 2009,
and the Ph.D. degree in control theory and con-
trol engineering from the Institute of Automation,
Chinese Academy of Sciences, Beijing, China, in
2012.

From 2015 to 2017, he was a Visiting Scholar
with the Department of Electrical, Computer, and

Biomedical Engineering, University of Rhode Island, Kingston, RI, USA. He
was an Associate Professor with the State Key Laboratory of Management
and Control for Complex Systems, Institute of Automation, Chinese Academy
of Sciences. He is currently a Professor with the Faculty of Information
Technology, Beijing University of Technology, Beijing. He has authored or
coauthored over 120 journal and conference papers and three monographs.
His current research interests include adaptive and learning systems, compu-
tational intelligence, and intelligent control.

Dr. Wang was a recipient of the Excellent Doctoral Dissertation Award of
Chinese Academy of Sciences in 2013, and a nomination of the Excellent
Doctoral Dissertation Award of Chinese Association of Automation in 2014.
He was selected for the Young Elite Scientists Sponsorship Program by the
China Association for Science and Technology in 2017, and also selected
for the Youth Innovation Promotion Association of the Chinese Academy of
Sciences in 2018. He was the Finance Chair of the 12th World Congress
on Intelligent Control and Automation in 2016, and the Publications Chair
of the 24th International Conference on Neural Information Processing
in 2017. He currently or formerly serves as an Associate Editor of the
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,
Neurocomputing, and Acta Automatica Sinica.

Derong Liu (S’91–M’94–SM’96–F’05) received the
Ph.D. degree in electrical engineering from the
University of Notre Dame, Notre Dame, IN, USA,
in 1994.

From 1993 to 1995, he was a Staff Fellow
with the General Motors Research and Development
Center, Detroit, MI, USA. From 1995 to 1999, he
was an Assistant Professor with the Department
of Electrical and Computer Engineering, Stevens
Institute of Technology, Hoboken, NJ, USA. He
joined the University of Illinois at Chicago, Chicago,

IL, USA, in 1999, where he became a Full Professor of Electrical and
Computer Engineering and Computer Science in 2006. He was the Associate
Director with the State Key Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing, China. He has authored or coauthored over 19 books.

Dr. Liu was a recipient of the Faculty Early Career Development Award
from the National Science Foundation in 1999, the University Scholar Award
from University of Illinois from 2006 to 2009, the Overseas Outstanding
Young Scholar Award from the National Natural Science Foundation of China
in 2008, and the Outstanding Achievement Award from Asia–Pacific Neural
Network Assembly in 2014. He was selected for the 100 Talents Program
by the Chinese Academy of Sciences in 2008. He is the Editor-in-Chief
of Artificial Intelligence Review (Springer). From 2010 to 2015, he was the
Editor-in-Chief of the IEEE TRANSACTIONS ON NEURAL NETWORKS AND

LEARNING SYSTEMS. He is a fellow of the International Neural Network
Society and the International Association of Pattern Recognition.

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 23,2020 at 00:22:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

