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Abstract—Although text recognition methods based on deep
neural networks have promising performance, there are still
challenges due to the variety of text styles, perspective distortion,
text with large curvature, and so on. To obtain a robust text
recognizer, we have improved the performance from two aspects:
data aspect and feature representation aspect. In terms of data,
we transform the input images into S-shape distorted images
in order to increase the diversity of training data. Besides,
we explore the effects of different training data. In terms of
feature representation, the combination of instance normalization
and batch normalization improves the model’s capacity and
generalization ability. This paper proposes a robust scene text
recognizer IBN-STR, which is an attention-based model. Through
extensive experiments, the model analysis and comparison have
been carried out from the aspects of data and feature repre-
sentation, and the effectiveness of IBN-STR on both regular and
irregular text instances has been verified. Furthermore, IBN-STR
is an end-to-end recognition system that can achieve state-of-the-
art performance.

I. INTRODUCTION

Text is a vital cue in natural scene images. Text recogni-
tion is a branch of computer vision, which can help people
understand the content of images and can be widely used as
auxiliary aids in intelligent transportation, auxiliary transla-
tion, image retrieval, and so on. Research on text recognition
has a long history. Traditional pattern classification provides
many solutions for text recognition [1]–[3], and due to the
development of deep learning and computational power, text
recognition has recently achieved great breakthroughs.

Although text recognition methods [4]–[6] based deep learn-
ing perform well, there are still challenges in text recognition
due to the large curvature of text instances, the variety of text
styles, similar characters, occlusion, uneven illumination, and
shooting environments. Therefore, a robust text recognizer is
of great significance.

Most text recognizers [4]–[7] are trained on synthetic data
and evaluated on real data. As we can see in Figure 1, the
curvature of text in commonly used synthetic datasets is less
volatile, but the curvature of text in real images is greater
and the appearance of the text will be more variable. This
means that there is a gap between the distribution of training
data and test data. In view of the above problems, we first
consider improving from the data aspect. It is necessary to
use data augmentation to increase the diversity of training data.
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(a) Real text (b) Synthetic text

Fig. 1. Various text.

Secondly, for the feature representation aspect, we attempt to
mine a robust and efficient module to extract features.

For the data aspect, we utilize S-shape distortion to en-
rich the text curvature of the training data. Considering the
contribution of instance normalization (IN) in style transfer
task [8], [9], IN can introduce appearance invariance, and
batch normalization (BN) can preserve content information.
For the feature representation aspect, a robust instance-batch
normalization (IBN) module is proposed to introduce text
appearance invariance and improve performance.

In this paper, we propose a Scene Text Recognizer with
Instance-Batch Normalization module (named IBN-STR) to
achieve regular text and irregular text recognition in natural
scenes. The contributions of this paper are as follows:

• In terms of data, we demonstrate the impact of data
augmentation and different training data on text recog-
nition. The input images will be S-shape distorted to
increase the diversity of training data and further improve
performance.

• In terms of feature representation, instance normalization
is introduced into text recognition for the first time to
improve the model’s capacity and generalization ability.
The IBN module combines instance normalization with
batch normalization, which helps the model extract more
effective feature maps and it is effective for both regular
text and irregular text.

• With the rectification network, we propose an IBN-STR
model for text recognition and achieve state-of-the-art
performance.

The remainder of this paper is organized as follows. Section
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Fig. 2. Instance-batch normalization (IBN) module.

II introduces the related works of text recognition. Section III
illustrates the proposed method. Section IV demonstrates the
experimental results to verify the effectiveness of the proposed
method. Section V will make a summary of this paper.

II. RELATED WORKS

Traditional text recognition methods mainly rely on manual
design features such as connected components [10], stroke
width transform [11]–[13]. Recently, methods based on deep
neural networks have shown advantages in text recognition.
Jaderberg et al. [14] proposed a model combining convolu-
tional neural network (CNN) and conditional random field,
which is optimized by structured output loss. Most CNN-
based methods tend to treat text recognition as a sequence
recognition task. Inspired by speech recognition, CRNN [8]
introduced CTC loss into text recognition. CRNN is an end-
to-end system that utilizes CNN and recurrent neural network
(RNN) to generate character sequence features. Vanilla CTC
can only deal with 1D probability distributions, while 2D-
CTC [13] can compute the conditional probability of labels
from 2D distributions, which is suitable for irregular text. With
the popularity of attention mechanism, attention-based text
recognition methods are proposed [5], [6], [15]. RARE [5],
ASTER [6], MORAN [7], and RCN [16] transformed irregular
text images into rectified images, and then used the attention-
based recognition network of an encoder-decoder framework
to achieve text recognition. In the absence of a rectification
network, Lyu et al. [17] proposed a relation attention module
and a parallel attention module to transform text images
into character feature sequences, which can be workable for
irregular text recognition.

Our method is based on the attentional sequence-to-
sequence (seq2seq) model. Different from previous methods,
the proposed IBN-STR introduces IN for the first time to im-
prove the capacity and generalization ability of text recognizer.

III. METHOD

As shown in Figure 3, the proposed IBN-STR model con-
sists of a rectification network and a text recognition network.
The rectification network is based on the spatial transformer
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Fig. 3. Overview of text recognizer. The dashed lines mean the direction of
gradient propagation.

network and generates rectified images. The text recognition
network follows the encoder-decoder framework which is
widely used in seq2seq text recognition. It consists of a CNN-
BLSTM encoder and an attention-based decoder. The encoder
first extracts stacked convolutional features of input images
and utilizes bidirectional long short-term memory (BLSTM)
to convert the image features into feature sequences. The
decoder is a sequence-to-sequence model that translates the
feature sequence into a character sequence. The IBN module
is embedded in the stacked convolutional modules to improve
the capacity and generalization ability of text recognizer.

A. IBN Module

Batch normalization [18] is proposed to normalize data and
preserve the representations of data. BN enables the model
less sensitive to parameters and converges faster by limiting
the input data to a certain range through the mean and variance.

Given the feature map x ∈ RN×C×H×W with N samples,
C channels, H height, and W width. The normalized data can
be formulated as

x
′
= γ(

x− µ(x)
σ(x)

) + β. (1)

where γ, β are scaling and shift factors. BN retains the channel
dimension when calculating the mean and variance:

µc(x) =
1

NHW

N∑
n=1

H∑
h=1

W∑
w=1

xnchw, (2)

σc(x) =

√√√√ 1

NHW

N∑
n=1

H∑
h=1

W∑
w=1

(xnchw − µc(x))2 + ε. (3)



In the training phase, the mean/variance is calculated base on
samples of the mini-batch. All means and variance of mini-
batches during training will be saved for testing. In the test
phase, the mean/variance of each mini-batch from the training
phase will be weighted average and obtain the estimated value.

Instance normalization [19] is mainly used in the field of
style transfer [8], [9] because IN can learn features that are
invariant to styles or appearance. For style transfer, each image
should be regarded as a domain. In order to maintain the
independence between different image instances, IN retains
the dimensions of N and C, and only operates of averaging
and standard deviation for H and W within the channel. The
mean and variance can be formulated as:

µnc(x) =
1

HW

H∑
h=1

W∑
w=1

xnchw, (4)

σnc(x) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(xnchw − µnc(x))2 + ε. (5)

Texts in natural scenes are very variable in appearances.
Inspired by the contribution of Instance normalization to style
transfer tasks [8], [9], we introduce IN to obtain a robust
text recognizer in natural scenes. As shown in Figure 2, two
types of IBN modules are provided. In the IBN a module,
the feature maps are divided into two parts and sent to IN
and BN respectively, and the outputs of IN and BN will be
concatenated and sent to the next convolutional layer. IBN a
module can integrate appearance invariant features and content
related information to improve the performance. To explore the
generalization ability of the different types of IBN modules,
the IBN b module is proposed. The IN layer will be placed
before the residual block output.

The experimental results in section IV verify the effective-
ness of the proposed IBN module. Particularly, most of the
time IBN a module performs better than the IBN b module
in text recognition and improves regular and irregular text
recognition.

TABLE I
ARCHITECTURE OF TEXT RECOGNITION NETWORK. BLSTM MEANS

BIDIRECTIONAL LONG SHORT-TERM MEMORY LAYER.

Layers Configurations Outsize

en
co

de
r

Block 0 3× 3 conv, s 1× 1, bn 32× 32× 100

Block 1 1× 1 conv, 32, bn ×3, s 2× 2 32× 16× 50
3× 3 conv, 32, bn

Block 2 1× 1 conv, 64, ibn ×4, s 2× 2 64× 8× 25
3× 3 conv, 64, bn

Block 3 1× 1 conv, 128, ibn ×6, s 2× 1 128× 4× 25
3× 3 conv, 128, bn

Block 4 1× 1 conv, 256, ibn ×6, s 2× 1 256× 2× 25
3× 3 conv, 256, bn

Block 5 1× 1 conv, 512, bn ×3, s 2× 1 512× 1× 25
3× 3 conv, 512, bn

BLSTM1 256 hidden units 25× 256
BLSTM2 256 hidden units 25× 256

de
co

de
r

GRU 256 hidden units 25× 256

B. Encoder
The encoder aims to extract rich and discriminative features.

As illustrated in Table I, the main structure of the encoder is
the CNN-BLSTM framework. The encoder first extracts spatial
feature maps from the input image through stacked convolu-
tional layers with residual connections [20]. The proposed IBN
module can be employed in the shallow layers to obtain strong
spatial features. Based on ResNet45 [21], the proposed IBN-
STR model uses the IBN module in the residual Block 2 to
residual Block 4.

The CNN of encoder aims to capture the features of local
regions. To capture the long-range dependencies of characters,
a multi-layer bidirectional long short-term memory [22] is
introduced. BLSTM can encode feature sequences bidirection-
ally, capture long-range dependencies in both directions, and
model global context information, thereby leveraging richer
context and improving performance.

C. Decoder
The decoder is attention-based which can achieve sequence

to sequence prediction. As shown in Table I, GRU cell
[23] is utilized to decode output dependencies. Through T
iterations, the decoder generates a predicted symbol sequence
(y1, ..., yT ), where T is the number of characters. To generate
a variable-length sequence, a special end-of-sequence symbol
(EOS) is inserted at the end of the target sequence. At step t,
the decoder produces a predicted output yt and the probability
of yt is p(yt):

p(yt) = Softmax(Woutst + bout),

yt ∼ p(yt),
(6)

where st is the hidden state at the current time, and Wout and
bout are trainable parameters. In this paper, the embedding
vectors and st−1 (the hidden state at the previous time) will
be fed into GRU to update st:

st = GRU(st−1, (gt, f(yt−1))), (7)

gt =

L∑
i=1

(αt,ihi), (8)

where (gt, f(yt−1)) is the concatenation of gt glimpse vectors
and f(yt−1) embedding vectors of the previous output yt−1.
The glimpse vectors focus on a small part of the whole context.
In the formula 8, L is the length of feature maps; αt,i is the
attentional weights vector and it can be generated by

αt,i = exp(et,i)/

L∑
j=1

(exp(et,j)), (9)

et,i = Tanh(Wst−1 + V hi + b), (10)

where W,V and b are trainable parameters.
Given the predicted symbol sequence, the recognition loss

can be formulated as

Lrec = −
1

T

T∑
t=1

(logpl2r(yt) + logpr2l(yt)), (11)



where pl2r(yt) and pr2l(yt) are the probabilities of the se-
quence from left to right and from right to left.

D. Rectification

The rectification network is based on the spatial transformer
network [24], similar to RARE [5]. First, fiducial points
are predicted by the localization network, and then thin-
plate-spline transformation [25] matrices will be calculated to
generate the sampling grid. Finally, the sampler uses bilinear
interpolation to obtain the rectified image. Table II illustrates
the architecture of the localization network. The input image
is scaled to 32 × 100 and fed into convolutional layers
and pooling layers. Each convolution layer is followed by
a batch normalization layer and a ReLU layer. The adaptive
average pooling layer is used to generate feature vectors and
then feature vectors pass through 2 fully connected layers to
generate predicted fiducial points.

E. Data augmentation

To enrich the diversity of training data, it is necessary to
adopt data augmentation for input images. Here, we utilize the
trigonometric function to generate S-shape distortion transfor-
mation. Given the position of original image (i, j) and the
position of rectified image (i

′
, j

′
), the correspondences of

between (i, j) and (i
′
, j

′
) are as follows:

i
′
=a1i+ a2Sin(θ, j) + a3,

j
′
= j,

(12)

where a1, a2, a3 are scaling and shifting parameter. θ deter-
mines the distortion mode for the entire image. In this paper,
the original image is S-shape distorted with a probability of
0.4. As shown in Figure 4, there are 16 distortion modes, one
of which will be randomly selected as the input image. The
experimental results demonstrate the effectiveness of S-shape
distortion.

The proposed method focuses on alphanumeric character
recognition, but non-alphanumeric characters occur frequently
in text images of natural scenes. Therefore, this paper also
discusses whether to use non-alphanumeric text images in
section IV.

TABLE II
ARCHITECTURE OF THE LOCALIZATION NETWORK. CONV MEANS

CONVOLUTION LAYER, MP MEANS MAXPOOLING LAYER AND ADAPAVGP
MEANS ADAPTIVE AVERAGE POOLING LAYER.

Layers Configurations Outsize
Conv 1 3× 3 conv, 64, s 1× 1 64× 32× 100
MP 1 2× 2 64× 16× 50

Conv 2 3× 3 conv, 128, s 1× 1 128× 16× 50
MP 2 2× 2 128× 8× 25

Conv 3 3× 3 conv, 256, s 1× 1 256× 8× 25
MP 3 2× 2 256× 4× 12

Conv 4 3× 3 conv, 512, s 1× 1 512× 4× 12
AdapAvgP 1× 1 512× 1× 1
Linear 1 512, 256 256
Linear 2 256, 2K 2K

(a) origin image (b) distorted images

Fig. 4. S-shape distortion.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to verify
the effectiveness of the proposed method. The performances
of all the methods are measured by word accuracy.

A. Benchmark Datasets

• Street View Text (SVT). Street View Text dataset [1]
has 350 images collected from Google street view. The
dataset has 647 word instances, and each instance has a
50-word lexicon.

• IIIT5K-Words (IIIT5K). The IIIT5K-word dataset [26]
has 3,000 cropped word instances for testing. The dataset
provides a 50-word and a 1k-word lexicons for each word
instance.

• ICDAR 2013 (IC13). ICDAR 2013 [27] has 1,095 word
instances cropped from 233 scene images. After filtering
words with non-alphanumeric characters, 1,015 cropped
word instances are obtained for evaluation.

• ICDAR 2015 (IC15). ICDAR 2015 [28] provides 2,077
word instances in multi-oriented for text recognition. The
word instances are cropped from test scene images. Re-
move non-alphanumeric characters, words with a length
less than 3 and irregular text will obtain 1,811 word
instances.

• SVT-Perspective (SVT-P). SVT-Perspective dataset [29]
has 639 perspective text instances and a 50-lexicon is
provided for each instance.

• CUTE80 (CUTE). CUTE80 dataset [30] has 288 word
instances cropped from 80 high-resolution images taken
in natural scenes. The dataset has many examples of
curved text.

• Total-Text. Total-Text [31] has 300 test images. The word
instances are arbitrary shape text, including flipped text.
2,204 word instances are obtained after filtering words
with non-alphanumeric characters.

The benchmarks consist of regular texts and irregular text.
There are 4,662 regular text instances from SVT, IIIT5K and
IC13 datasets, and 5,214 irregular text instances from IC15,
SVT-P, CUTE, and Total-text datasets. The total number of
text instances is 9,876.



B. Implementation Details

In this paper, we utilize Synth90k [32] and SynthText
[33] as training data and evaluate the standard benchmarks.
Synth90k dataset (denoted as SK) contains approximately 8.9
million synthetic word images and SynthText dataset (denoted
as ST) has 6.9 million training data, including 1.4 million
non-alphanumeric instances. For SynthText, 5.5 million word
instances (denoted as ST a) will be obtained by filtering
words with non-alphanumeric characters, while 1.4 million
non-alphanumeric word instances will be denoted as ST e.
The proposed model is trained using only synthetic data, with-
out fine-tuning. The model only recognizes the alphanumeric
characters including 26 letters, 10 digits, a symbol for non-
alphanumeric characters, and a symbol standing for ‘EOS’.

The model is trained from scratch and optimized by Adam
optimizer with a learning rate of 5e-4. Iteration stops after
10 epochs. All the input images are resized to 32× 100. The
experiments are conducted with two NVIDIA Tesla K40 GPUs
and the batch size is 1024.

TABLE III
THE RESULTS OF DATA AUGMENTATION.

Method Regular Irregular Total
Base(BO+37) 90.20 72.61 80.91
Base-stn(BO+37) 90.78 75.76 82.85
Base(TO+38) 92.32 74.41 82.87
Base-stn(TO+38) 93.07 76.89 84.53
Data-base(BO+37) 90.35 72.75 81.06
Data-base-stn(BO+37) 91.30 75.93 83.18
Data-base(TO+37) 92.94 75.07 83.51
Data-base-stn(TO+37) 93.35 77.94 85.22
Data-base(TO+38) 92.53 75.49 83.54
Data-base-stn(TO+38) 93.22 78.02 85.20

Improvement Regular Irregular Total
S-shape(BO+37) +0.15 +0.13 +0.15
S-shape-stn(BO+37) +0.52 +0.17 +0.33
S-shape(TO+38) +0.21 +1.07 +0.67
S-shape-stn(TO+38) +0.15 +1.13 +0.67
Data(TO37-BO37) +2.59 +2.32 +2.45
Data-stn(TO37-BO37) +2.06 +2.01 +2.04
Char(TO38-TO37) -0.41 +0.42 +0.03
Char-stn(TO38-TO37) -0.13 +0.08 -0.02

C. Ablation Study

1) Data Augmentation: Here we attempt to display the
effects of the different training datasets, S-shape distortion,
and the outputs (including a symbol for non-alphanumeric
characters). As shown in Table III, BO means using SK +
ST a datasets, while TO means using SK+ST (SK + ST a
+ ST e) datasets. 37 indicates an output without considering
non-alphanumeric characters, while 38 indicates an output
including a symbol for non-alphanumeric characters. Base-*
model is trained by images without S-shape distortion, but the
inputs of Data-Base-* are S-shape distorted. All the models
with *-stn are trained without the rectification network.

TABLE IV
THE RESULTS OF DIFFERENT IBN MODULES.

Method Regular Irregular Total
Base 92.32 74.41 82.87
Base-stn 93.07 76.89 84.53
Base-ibn-a 92.40+0.08 74.90+0.48 83.16+0.29

Base-ibn-b 92.15−0.17 73.80−0.61 82.84−0.41

Basestn-ibn-a 92.96−0.11 77.67+0.78 84.89+0.36

Basestn-ibn-b 92.60−0.47 76.37−0.52 84.03−0.50

DataBase 92.53 75.49 83.54
DataBase-stn 93.22 78.02 85.20
DataBase-ibn-a 92.65+0.11 76.39+0.90 84.06+0.52

DataBase-ibn-b 92.60+0.07 75.72+0.23 83.69+0.15

DataBasestn-ibn-a 93.16−0.06 77.50−0.52 84.89−0.31

DataBasestn-ibn-b 93.48+0.25 77.87−0.16 85.24+0.04

TABLE V
THE RESULTS OF DIFFERENT NUMBER OF IBN LAYERS.

Method Regular Irregular Total
BN 92.53 75.49 83.54
IBN a, 2 92.66+0.13 76.04+0.55 83.89+0.35

IBN a, 1-2 93.03+0.50 75.87+0.38 83.97+0.43

IBN a, 2-3 92.90+0.37 75.85+0.36 83.90+0.36

IBN a, 2-4 92.92+0.39 76.97+1.48 84.50+0.96

IBN a, 1-4 92.65+0.12 76.39+0.90 84.06+0.52

The top half of Table III demonstrates the results of the
regular text and irregular text recognition, and the bottom half
shows the performance improvement. Obviously, the S-shape
distortion and ST e dataset greatly promote performance.
Outputting non-alphanumeric symbol has a relatively small
impact on the performance of overall data. The output of 38
classes will damage the text recognition of regular datasets and
promote the text recognition of irregular datasets. According
to the above analysis, we take the Base(TO+38) model as the
base model in the following.

2) IBN Module: We discuss the effects of different versions
of the IBN module and the number of IBN module layers
on text recognizer. We utilize ResNet45 [21] as the backbone
which consists of 5 residual modules with batch normalization.
According to [9], the batch normalization layers are replaced
by IBN in the shallow layers.

When we compare the effects of two IBN modules (IBN a
module and IBN b module), the first 4 residual blocks with
batch normalization layer are replaced by IBN modules. As
illustrated in Table IV, we use the model with only batch
normalization as the baseline (denoted by Base, Base-stn,
DataBase, and DataBase-stn). All the models are trained by
SK and ST datasets. Without S-shape distortion, the IBN a
module can always help improve performance, while the
IBN b module degrades the performance. With S-shape dis-
tortion, IBN a module can help improve the performance of
the DataBase-ibn-a model but make Databasestn-ibn-a model
slightly worse. As for the IBN b module, it can help the
DataBase*-ibn-b model to improve the performance on overall
data.

In addition, we also compare the impact of the number of



TABLE VI
COMPARISON OF OTHER TEXT RECOGNITION METHODS. * MEANS USING 1,811 IMAGES.

Method Data Regular Irregular
TotalIC13 SVT IIIT5K IC15 SVT-P CUTE Total-text

None None 50 None 50 1k None None 50 None None
CRNN [4] SK 89.6 82.7 97.5 81.2 97.8 95.0 - - - - - -
GCRNN [34] SK - 81.5 96.3 80.8 98.0 95.6 - - - - - -
R2AM [15] SK 90.0 80.7 96.3 78.4 96.8 94.4 - - - - - -
Liao et.al [35] ST 91.4 82.1 98.5 92.0 99.8 98.9 - - - 78.1 -
Aster [6] ST+SK 91.8 93.6 99.2 93.4 99.6 98.8 76.1∗ 78.5 - 79.5 - -
2D CTC [36] ST+SK 93.9 90.6 97.2 94.7 99.8 98.9 75.2∗ 79.2 - 81.3 63.0 -
RCN [16] ST+SK 93.2 88.6 97.7 94.0 99.6 98.9 77.1 80.6 95.0 88.5 - -
MORAN [7] ST+SK 92.4 88.3 96.6 91.2 97.9 96.2 68.8 76.1 94.3 77.4 - -
Lyu et.al [17] ST+SK 92.7 90.1 97.2 94.0 99.8 99.1 76.3 82.3 - 86.8 - -
IBN-STR(base) ST+SK 93.8 90.0 97.3 93.3 99.5 98.7 77.8 83.6 95.0 84.4 73.3 84.5
IBN-STR(stn) ST+SK 94.7 91.0 98.0 94.0 99.8 98.6 79.1 85.1 94.6 85.4 74.8 85.6

IBN layers. As shown in Table V, BN is the configurations
for the DataBase model. Different IBN a module layers all
promote performance.

According to the above analysis, the proposed IBN module
can improve text recognition. And overall IBN a module
is better than IBN b module in performance improvement.
Performance improvement in irregular text is more than that
in regular text. In addition, IBN a module does not increase
computational cost.

D. Comparisons with the State-of-the-arts

The proposed IBN-STR model is trained by ST + SK
datasets, and the outputs are 38 classes, including a non-
alphanumeric symbol recognition. The input images will be
S-shape distorted and fed into the IBN-STR model. In the
final model IBN-STR, the IBN a modules are utilized in
Block 2 to Block 4 of Table I. We compare the performance
of our model and other state-of-the-arts in Table VI. IBN-
STR(base) is trained without the rectification network, and
IBN-STR(stn) is trained with the rectification network. Com-
pared with rectification-based methods Aster [6] and MORAN
[7], our method performs better on IC13, IIIT5K, IC15, SVT-
P and CUTE datasets. In addition, on Total-text with complex
text instances, the performance of our model is significantly
improved, which is 10.3%-11.8% higher than the previous
model.

V. CONCLUSION

In this paper, we consider the data aspect and feature
representation aspect to improve the generalization of the
model. S-shape distortion is utilized to enrich the diversity of
training data and the effect of data augmentation on text recog-
nition is analyzed. In addition, the combination of instance
normalization and batch normalization improves the model’s
capacity and generalization ability. The IBN-STR model is
proposed to achieve text recognition and can compete with the
state-of-the-arts. Experimental results show the effectiveness
of the proposed method. Although the proposed method can
perform well on the regular text and irregular text recognition,
our method cannot handle vertical or flipped text instances.
Future research will focus on a flexible text recognizer that
can process text from various perspectives.
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