
ORIGINAL RESEARCH

Novel Radiomic Signature as a Prognostic
Biomarker for Locally Advanced

Rectal Cancer

Yankai Meng, MD,1 Yuchen Zhang, MS,2,3 Di Dong, PhD,3,4 Chunming Li, PhD,2

Xiao Liang, MS,1 Chongda Zhang, MS,1 Lijuan Wan, MS,1 Xinming Zhao, MD,1

Kai Xu, MD,5 Chunwu Zhou, MD,1* Jie Tian, PhD,3* and Hongmei Zhang, MD1*

Background: Locally advanced rectal cancer (LARC) patient stratification by clinicoradiologic factors may yield variable
results. Therefore, more efficient prognostic biomarkers are needed for improved risk stratification of LARC patients,
personalized treatment, and prognostication.
Purpose/Hypothesis: To compare the ability of a radiomic signature to predict disease-free survival (DFS) with that of a
clinicoradiologic risk model in individual patients with LARC.
Study Type: Retrospective study.
Population: In all, 108 consecutive patients (allocated to a training and validation set with a 1:1 ratio) with LARC treated
with neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision (TME).
Field Strength/Sequence: Axial 3D LAVA multienhanced MR sequence at 3T.
Assessment: ITK-SNAP software was used for manual segmentation of 3D pre-nCRT MR images. All manual tumor seg-
mentations were performed by a gastrointestinal tract radiologist, and validated by a senior radiologist. The clinicora-
diologic risk factors with potential prognostic outcomes were identified in univariate analysis based on the Cox
regression model for the whole set. The results showed that ypT, ypN, EMVI, and MRF were potential clinicoradiologic
risk factors. Interestingly, only ypN and MRF were identified as independent predictors in multivariate analysis based on
the Cox regression model.
Statistical Tests: A radiomic signature based on 485 3D features was generated using the least absolute shrinkage and
selection operator (LASSO) Cox regression model. The association of the radiomic signature with DFS was investigated by
Kaplan–Meier survival curves. Survival curves were compared by the log-rank test. Three models were built and assessed
for their predictive values, using the Harrell concordance index and integrated time-dependent area under the curve.
Results: The novel radiomic signature stratified patients into low- and high-risk groups for DFS in the training set (haz-
ard ratio [HR] 5 6.83; P < 0.001), and was successfully validated in the validation set (HR 5 2.92; P < 0.001). The model
combining the radiomic signature and clinicoradiologic findings had the best performance (C index 5 0.788, 95% confi-
dence interval [CI] 0.72–0.86; integrated time-dependent area under the curve of 0.837 at 3 years).
Data Conclusion: The novel radiomic signature could be used to predict DFS in patients with LARC. Furthermore, com-
bining this radiomic signature with clinicoradiologic features significantly improved the ability to estimate DFS
(P 5 0.001, 0.005 in training set and in validation set, respectively), and may help guide individualized treatment in such
patients.
Level of Evidence: 3
Technical Efficacy: Stage 5
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Neoadjuvant chemoradiotherapy (nCRT) followed by

total mesorectal excision (TME) is currently consid-

ered the standard combined modality treatment for patients

with locally advanced rectal cancer (LARC).1 This therapeu-

tic strategy improves local control of the disease, but does

not notably increase overall survival (OS) or disease-free sur-

vival (DFS).1–4 The reported 3- and 5-year cumulative inci-

dence rates of distant metastasis after nCRT are 22% and

25%, respectively.5,6 Meanwhile, distant metastasis is the

main cause of treatment failure in patients with LARC who

undergo nCRT. In individuals at high risk for an adverse

outcome after nCRT, additional systemic therapy may

reduce the risk of distant relapse, conferring a survival bene-

fit. Therefore, identifying adverse prognostic features that

affect survival and preoperative risk stratification could help

select individualized management strategies and improve the

prognosis of patients with LARC.

Currently, clinicoradiologic prognostic factors are used

to identify patients with rectal cancer who would benefit from

nCRT, based on risk stratification. Preoperative higher-

resolution magnetic resonance imaging (MRI) assessment of

mesorectal fascia (MRF) involvement is considered a strong

independent predictor of poor outcome in patients with

LARC who undergo nCRT followed by curative TME.7,8

Extramural venous invasion (EMVI) detected on MRI preop-

eratively is also an index of poor prognosis in patients with

rectal cancer.9–11 Post-nCRT EMVI positivity also indicates

reduced survival.12 The depth of invasion of a malignant

tumor beyond the outer border of the muscularis propria

(pT3) is considered an important prognostic factor in rectal

carcinoma,13–16 with a pT3 depth above 5 mm representing

an adverse prognostic factor for DFS (hazard ratio [HR] 2.13,

95% confidence interval [CI] 1.16–3.89).15 Studies have also

shown that the pathologic T category (ypT) and N stage

(ypN) after nCRT are relevant independent prognostic factors

for survival.17–19 However, patient stratification by these clini-

coradiologic factors leads to overt differences in outcomes

among studies, suggesting heterogeneity in survival outcomes.

Therefore, more efficient prognostic biomarkers are needed

for improved risk stratification of LARC patients, personal-

ized treatment, and prognostication.

Radiomics characterizes tumor phenotypes by extract-

ing multiple quantitative features from radiologic images,

and provides a comprehensive view of the entire intratumor

heterogeneity. Studies have shown that radiomics has poten-

tial for predicting survival outcomes.20 In addition, several

studies have integrated radiologic and clinicopathologic fea-

tures with radiomic signatures, and it is currently considered

that a signature composed of multiple biomarkers is supe-

rior to a single biomarker counterpart for prognostic pur-

poses.21 However, studies evaluating radiomic signatures for

DFS prediction in patients with LARC are scarce.

The aim of this study was to compare a radiomic sig-

nature and a clinicoradiologic risk model for their abilities

in predicting 3-year DFS in patients with LARC.

Materials and Methods

Patients
The analysis workflow is shown in Fig. 1.

This retrospective study was approved by our Institutional

Review Board, with a waiver of informed consent. From October

2010 to December 2013, we enrolled 108 consecutive patients

with locally advanced rectal adenocarcinoma (�T3 and lymph

node positive or negative on initial MRI) originating within 15 cm

of the anal verge, treated with nCRT before TME at our institu-

tion. Pelvic MRI and chest, abdominal, and pelvic computed

tomography (CT) were performed for tumor staging before nCRT.

All tumors were staged by our multidisciplinary team according to

the Union for International Cancer Control/American Joint Com-

mittee on Cancer TNM staging system (7th edition). Patients with

a history of malignancy, previous radiotherapy to the pelvis, a con-

traindication to MRI, and images of insufficient quality for analysis

were excluded. The patients were randomly divided into training

and validation sets (1:1 ratio).

Treatment Protocol and Reference Standard
for Pathology
All patients underwent radiation therapy to the whole pelvis at a

dose of 50 Gy (25 daily fractions of 2 Gy), with an overall treatment

time of 35 days. The chemotherapy consisted of an infusion of oxali-

platin (50 mg/m2) on the first day of each week of radiation therapy

and oral administration of the 5-fluorouracil precursor capecitabine

(1650 mg/m2) twice daily from the first to last day of nCRT. Dose

reduction of oxaliplatin and capecitabine was not planned.

Subsequent treatment in patients who completed nCRT was

decided by a multidisciplinary team. All patients underwent stan-

dard TME surgery performed by experienced surgeons specialized

in colorectal oncology. The surgical approach was based on tumor

location and post-nCRT MRI restaging results. TME was per-

formed within 6–8 weeks of nCRT.

The resected gross specimens were processed and evaluated

by a single pathologist with 15 years of experience in rectal cancer

pathology, blinded to the clinical and MRI findings. The speci-

mens were examined according to the Union for International

Cancer Control/American Joint Committee on Cancer TNM stag-

ing system (7th edition) criteria. The ypT0N0 stage was defined as

the absence of any residual tumor cells in the surgical specimen

(pathologic complete response).

Follow-up
According to our routine protocols, all patients were followed up

for at least 5 years after surgery: 3-month intervals in the first

2 years; every 6 months in the following 2 years; annually thereaf-

ter. The primary study endpoint was DFS, defined as the interval

between the TME surgery and disease progression, including local

tumor recurrence, distant metastasis, and death from any cause, or

the date of the last follow-up visit (censored). Local recurrence was

defined as recurrence in the pelvis, and distant metastasis as
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recurrence at sites different from the pelvis. All local recurrence

and distant metastatic cases were diagnosed by a multidisciplinary

team based on clinical examination, serum carcinoembryonic anti-

gen levels, chest and abdominopelvic CT, and/or abdominopelvic

MRI, endoscopy, and biopsy. Follow-up information was recorded

in the database. A minimum follow-up of 36 months was required

to confirm the 3-year DFS status of the patients. The minimum

postoperative follow-up period was 2 months, for a maximum of

54 (median 30) months.

Image Acquisition and Analysis
MRI was performed on a 3T scanner (SignaHDx, General Electric,

Milwaukee, WI) equipped with a phased array body coil. A routine

clinical imaging protocol was carried out as follows. First, axial 3D

LAVA multienhanced MR images were acquired. A bolus of

gadolinium-based contrast agent (gadopentetate dimeglumine;

Bayer, Leverkeusen, Germany) at 0.1 mmol/kg body weight was

administered at 2 mL/s with a power injector. The patients under-

went bowel preparation with antispasmodic medications before the

MRI examinations.

Axial, sagittal, and oblique coronal (parallel to the long axis

of the rectum) T2-weighted spin-echo sequences were acquired.

Subsequently, a small field of view (16 3 16 cm), high-resolution,

oblique axial (perpendicular to the long axis of the tumor) T2-

weighted image sequence (repetition time [TR]/ echo time [TE]

5160/151 msec; flip angle, 908; echo train length, 19; slice

FIGURE 1: Workflow analysis. A: Examples of tumors in the training and validation sets with MRI (left) and 3D segmentation
(right). B: Multiple radiomic features were extracted from 3D segmented tumor regions in patients with locally advanced rectal
cancer, including density, shape, and textural features. In addition, eight wavelet decompositions were performed on original
images. The most useful prognostic features were selected by the intraclass coefficient and LASSO Cox model (C), and analyzed
by KM curves and modeling (for details see text) (D).
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thickness, 3 mm; matrix, 512 3 512) was performed. An axial

spin-echo, diffusion-weighted echo-planar imaging sequence, with

background body signal suppression, was then acquired at b values

between 0 and 800 s/mm2.

One phase of imaging before contrast agent injection and

nine phases thereafter were carried out (acquisition time per phase,

15 sec; TR, 3 msec; TE, 1.4 msec; flip angle, 158; matrix, 320 3

192; field of view, 40 3 40 mm; slice thickness, 3 mm; no thick-

ness spacing). All sequences were obtained during free breathing.

MRI analysis (T category, N stage, and EMVI and MRF sta-

tus) was randomly performed by a gastrointestinal tract radiologist

with 20 years of experience in interpreting rectal MR images,

blinded to histology and outcomes.

T3 rectal cancer was clinically subclassified based on MR

images from the outer edge of the low signal-intensity longitudinal

muscularis propria to the outermost edge of the tumor (T3a, T3b,

T3c, and T3d reflecting tumors extending <1 mm, 1–5 mm, >6–

15 mm, and >15 mm beyond the muscularis propria, respectively).

This subclassification correlates with survival in patients with rectal

cancer. Patients with T3a and T3b disease stages were classified as

the low-risk subgroup, and those with T3c and T3d disease stages

as the high-risk subgroup.

EMVI was assessed according to radiologic features using a

0–4 scoring system9: EMVI 0, pattern of tumor extension through

the muscle coat not nodular, with no vessels adjacent to areas of

tumor penetration; EMVI 1, minimal extramural stranding/nodu-

lar extension, but not in the vicinity of any vascular structure;

EMVI 2, tumor stranding in the vicinity of extramural vessels (of

normal caliber), with no definite tumor signal within the vessels;

EMVI 3, overt intermediate signal intensity within the vessels,

whose contour and caliber are only slightly expanded; EMVI 4,

overt irregular vessel contour or nodular expansion by a definite

tumor signal. EMVI 0, 1, or 2 was classified as negativity, and

EMVI 3 or 4 as positivity.

MRF positivity was defined as a primary tumor, tumor

deposit, or positive lymph node abutting or extending through or

within 1 mm of the MRF.22

Image Segmentation and Texture Analysis
Segmentation is required before extraction of quantitative radiomic

features. ITK-SNAP software (open source, www.itk-snap.org) was

used only for manual segmentation of 3D pre-nCRT MR images.

All manual tumor segmentations were performed by a gastrointesti-

nal tract radiologist (Y.K.M.) with 15 years of experience in inter-

preting rectal MR images, and validated by a senior radiologist

(H.M.Z.) with 20 years of experience (mainly in colorectal cancer).

The fifth phase (60 sec after contrast agent injection) image from

multienhanced MRI was selected for segmentation, with the region

of interest covering the whole tumor.

In this study, the radiomic features selected could capture

the characteristics of tumor intensity and shape, as well as texture

patterns. Intensity normalization was performed to transform the

original image to standardized inputs and the MR images trans-

formed have similar intensity distribution.23 It can reduce the data

variability and is easy to calculate the quantitative radiomic feature.

In our study, we used two-step process for intensity normalization:

1) bicubic resampling was used to standardize the image scale; and

2) the histogram matching was used to minimize the discrepancy

of intensity distributions among patients’ MR images. The radio-

mic features used in the current study contained 485 3D descrip-

tors, including 440 features described by Aerts et al24 and 45

additional modified phenotypic descriptors. These features were

extracted using MatLab v. R2015b (MathWorks, Natick, MA). All

radiomic features are provided in Supplementary Methods S2.

The intraclass correlation coefficient (ICC) was calculated to

assess the stability of radiomic features from 25 randomly selected

patients, which were segmented twice by the same experienced

radiologist with 15 years of experience (Y.K.M.). Forty-five percent

of the 485 radiomic features derived from the region of interest

with ICC >0.8 were included in the analysis, and used in the

follow-up study (Supplementary Fig. S1). All radiomic features

were normalized by z-score transformation.

Statistical Analysis
Statistical analyses were performed using R software v. 3.3.1

(http://www.R-project.org). The R packages used in this study are

described in Supplementary Methods 1. Differences between the

training and validation sets were assessed by the chi-square and

log-rank tests. Survival curves were compared by the log-rank test.

P < 0.05 was considered statistically significant.

Results

The training and validation sets were balanced for survival

(median DFS of 34.5 months and 22.5 months for the

training and validation sets, respectively; P 5 0.847, log-

rank test) as well as clinical endoplasmic reticulum and

radiologic characteristics (P 5 0.182–0.993). The clinical

characteristics of the training and validation cohorts are

summarized in Table 1.

Construction of the Novel Radiomic Signature
The most useful prognostic features were selected by the least

absolute shrinkage and selection operator (LASSO) Cox

regression model in the training set. This technique is suitable

for regression analysis of high-dimensional data, and patient

features can be selected based on their associations with sur-

vival endpoints and time.25,26 Using a 10-fold crossvalidation,

the LASSO Cox model identified three intensity features and

five textural parameters that were most important for predict-

ing treatment outcome (Supplementary Fig. S2), including

X1_fos_energy, X1_fos_maximum, X6_fos_kurtosis, X6_

GLCM_correlation, X1_GLRLM_LRE, X1_GLRLM_SRL

GLE, X1_GLRLM_LRLGLE, and X7_GLRLM_mean. Non-

zero coefficients of the Cox model for each selected imaging

feature were computed and combined into a radiomic signa-

ture. A radiomic score was then determined for each patient

using a weighted linear combination of selected features.

Radiomic score 5 0.217*X1_fos_energy – 0.005*X1_fos_

maximum 1 0.157*X6_fos_kurtosis – 0.211*X6_GLCM_

correlation 1 0.230* X1_GLRLM_LRE 1 0.259* X1_

GLRLM_SRLGLE 1 0.021* X1_GLRLM_LRLGLE 1 0.182

*X7_GLRLM_mean.
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Performance Validation of the Radiomic Signature
The LASSO Cox model generated in the training set was used to

predict the radiomic risk group of each patient. The optimal cut-

off (20.14) was the median radiomic risk score in the training

set, and also used in the validation set.27 The patients were

classified into low- (score < 20.14) and high- (score� 20.14)

risk groups. Patients’ radiomic score were calculated ranging

from 20.83 to 20.15 for the low-risk group (median 20.44)

and 20.13 to 1.89 for the high-risk group (median 0.16) in the

training set. Patients’ radiomic score were calculated ranging

from 21.05 to 20.15 for the low-risk group (median 20.47)

and 20.13 to 2.38 for the high-risk group (median 0.17) in the

training set. Kaplan–Meier survival curves were generated for

both the training and validation sets. There was a significant cor-

relation between the radiomic signature and DFS in patients

with LARC in the training set (HR 5 6.83, 95% CI 3.65–

12.79, P < 0.001), which was confirmed in the validation set

(HR 5 2.92, 95% CI 1.91–4.47, P < 0.001). The association

of the radiomic signature with DFS is shown by Kaplan–Meier

survival curves in Fig. 2. Survival rates in the radiomic risk

groups were compared by the log-rank test.

The clinicoradiologic risk factors with potential prog-

nostic outcomes were identified in univariate analysis based

on the Cox regression model for the whole set. The results

showed that ypT (HR 5 1.37, 95% CI 1.07–1.74,

P 5 0.009), ypN (HR 5 1.27, 95% CI 1.10–1.46, P <

0.001), EMVI (HR 5 1.33, 95% CI 1.06–1.68, P 5 0.013),

and MRF (HR 5 1.53, 95% CI 1.24–1.90, P < 0.001) were

potential clinicoradiologic risk factors for recurrence and

metastasis in rectal cancer. Multivariate analysis based on the

Cox regression model was then performed using the identified

risk factors and the radiomic signature. Interestingly, ypN

(P 5 0.027), MRF (P 5 0.032), and radiomic signature (P <

0.001) were identified as independent predictors. Using the

nine clinicoradiologic risk factors, stratified analyses were

TABLE 1. Patient and Tumor Characteristics in the
Training and Validation Sets

Training
set
(n 5 54)

Validation
set
(n 5 54)

Gender

Male 29 (53.7%) 42 (77.8%)

Female 25 (46.3%) 12 (22.2%)

Age (years) 53.9 6 11.5 55.7 6 10.5

Stage

IIA 8 (14.8%) 8 (14.8%)

IIIB 20 (37.0%) 33 (61.1%)

IIIC 26 (48.2%) 13 (24.1%)

Clinical T stage

T3 36 (66.7%) 38 (70.4%)

T4 18 (33.3%) 16 (29.6%)

Clinical N stage

N0 8 (14.8%) 10 (18.5%)

N1 24 (44.4%) 17 (31.5%)

N2 22 (40.7%) 27 (50.0%)

Pre-nCRT CEA level (median) (ng/ml)

<4.75 28 (51.9%) 25 (46.3%)

�4.75 26 (48.1%) 29 (53.7%)

Post-nCRT CEA level (median) (ng/ml)

<2.11 29 (53.7%) 24 (44.4%)

�2.11 25 (46.3%) 30 (55.6%)

EMVI

Negativity 31 (57.4%) 34 (63.0%)

Positivity 23 (42.6%) 20 (37.0%)

MRF

Positivity 17 (31.5%) 10 (18.5%)

Negativity 37 (68.5%) 44 (81.5%)

ypTN stage

ypT0N0 8 (14.8%) 9 (16.7%)

non ypT0N0 46 (85.2%) 45 (83.3%)

Local recurrence

3 (5.6%) 3 (5.6%)

TABLE 1: Continued

Training
set
(n 5 54)

Validation
set
(n 5 54)

Distant metastasis

Lung 13 (24.0%) 18 (33.3%)

Live 9 (16.7%) 6 (11.1%)

Lymph node 3 (5.6%) 3 (5.6%)

Othera 2 (3.7%) 0 (0%)

Follow-up time (months)

Median (IQR) 34.5 (11, 45) 22.5 (11, 47)

The data are shown as n (%) unless otherwise indicated. No signif-
icant differences were found between the training and validation
cohorts.
aOne case of subscalp metastasis and one of metastasis to psoas
major.
CEA, carcinoembryonic antigen; EMVI, extramural venous
invasion; IQR, interquartile range; MRF, mesorectal fascia;
nCRT, neoadjuvant chemoradiotherapy; ypTN, the pathologic
classification after nCRT.
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performed for the whole set to evaluate the association of the

radiomic signature with DFS. As shown in Fig. 3 and Supple-

mentary Fig. S3, the radiomic signature was significantly asso-

ciated with DFS in all subgroups. In stratified subgroup

analysis according to ypT0N0, EMVI, and MRF status, the

low-risk group had longer DFS than the high-risk group,

which is significant in terms of individualized treatment. Mul-

tivariate analysis showed that MRF (P 5 0.032), ypN

(P 5 0.027), and radiomic signature (P < 0.001) were inde-

pendent prognostic risk factors.

Assessment of Models for DFS Estimation
Three models were assessed in the training set, ie, the radio-

mic model with the radiomic signature, clinicoradiologic

Cox model with clinical and radiologic parameters (ypN,

MRF), and a combined model. Then the predictive ability

of each model was assessed in the validation set by deter-

mining the Harrell concordance (C) index and integrated

time-dependent area under the curve (iAUC) at 3 years28; C

index values range from 0.5 to 1.0, with 0.7 considered to

be good for outcome discrimination.

The predictive accuracy of the combined model

(C index 5 0.788, 95% CI 0.72–0.86; iAUC of 0.837 at

3 years) was higher than that of the clinicoradiologic

(C index 5 0.644, 95% CI 0.53–0.76; iAUC of 0.467 at

3 years) or radiomic (C index 5 0.767, 95% CI 0.72–0.86;

iAUC of 0.827 at 3 years) model. The iAUC curves and

nomogram for the combined model are presented in Fig. 4.

The performances of all three models are shown in Table 2.

Although most clinicoradiologic parameters were not inde-

pendent prognostic risk factors in this study, they increased

the predictive power of the radiomic model, and positively

contributed to the combined model.

Discussion

Radiomics uses a large number of medical imaging features,

and reveals voxelwise intratumor heterogeneity. In this study

we identified a combined model as an effective biomarker

for individualized evaluation of 3-year DFS before nCRT in

patients with LARC. To the best of our knowledge, Wang

et al29 and Lovinfosse et al30 described the prognostic values

of CT and PET/CT radiomics features in rectal cancer. In

their pioneering study, they developed robust models and

strong independent prognostic factors for survival outcomes

in LARC patients. Our study assessed the prognostic value

of a combined model and explored the predictive value of a

radiomic model based on MRI in patients with LARC who

undergo nCRT. The combined model had superior prognos-

tic performance in terms of predicting DFS compared with

either the radiomic or clinicoradiologic model alone.

In this study the radiomic signature was extracted

from the fifth-phase images (acquired 60 sec after contrast

agent administration) of the multiphase enhancement

sequence, as reported for rectal and breast cancers by Nie

et al31 and Ahmed et al,32 respectively. Unlike the unen-

hancement scan, postcontrast images at 60 seconds provided

improved tissue contrast for tumor segmentation, and con-

tained more information on intratumor heterogeneity for

predicting prognosis voxelwise. The LASSO Cox model

identified eight features, including three intensity and five

textural features. Nie et al31 reported that intensity and vox-

elwise textural features extracted from enhanced images

show promise in terms of their ability to predict response to

treatment. Furthermore, a review by Alobaidli et al33 dis-

cussed the relationships between textural features of tumors

and outcome prediction.

Combining clinicoradiologic risk factors and the radio-

mic model achieved higher prognostic performance than the

radiomic or clinicoradiologic model alone; however, only

prediction accuracy significantly differed between the com-

bined model and clinicoradiologic model. Furthermore, the

combined model was superior to previously reported clini-

coradiologic biomarkers in terms of prognostic accuracy.34,35

Therefore, the combined model appears to be very robust

FIGURE 2: Kaplan–Meier curves for disease-free survival in the training (left) and validation (right) sets stratified by risk group, as
identified by the LASSO Cox model.
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compared to the clinicoradiologic model, and could serve as

an effective noninvasive biomarker for predicting prognosis

before treatment in patients with LARC. Intratumor hetero-

geneity is significantly correlated with oncologic prognosis,

and therefore considered a potential prognostic factor. Thus,

our present findings could be attributed to the fact that

malignant tumors consist of heterogeneous cell populations

with distinct molecular and microenvironmental differences.

In the combined model, prognostic radiomic features could

be extracted by voxelwise imaging, while clinicoradiologic

data characterize the macroscopic features of the tumor.

Thus, the combined model reflects tumor diversity and

overcomes the potential shortcomings of a single-sided

model.

As shown above, the radiomic signature successfully

stratified patients into high- and low-risk groups based on

the median radiomic risk score. The two groups had

significantly different 3-year DFS. Meanwhile, the radiomic

signature was an independent predictive biomarker, allowing

noninvasive risk stratification of patients with LARC, pro-

viding an avenue for identifying patients who may poten-

tially obtain the most benefit from nCRT. MRI is routinely

performed in patients with rectal cancer before nCRT.

Radiomic profiling is therefore a complementary perspective

that could unmask previously hidden imaging characteristics

for prognostic purposes.

There was no statistically significant accuracy differ-

ence in the prediction of 3-year DFS between the combined

and radiomic models, or between the radiomic and clinicor-

adiologic models in either the training or validation cohort

in this study (Table 2). This finding might be explained by

three reasons. First, there are relatively few known clinicora-

diologic predictors of 3-year DFS in patients with LARC,

and multivariate Cox regression analysis identified only two

FIGURE 3: Disease-free survival curves for the low- and high-risk groups classified according to the radiomic signature in various
subgroups (P < 0.01 in different subgroups). The remaining clinicoradiologic risk factors are presented in Supplementary Fig. S3.
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independent predictors (ypN and MRF), as shown above.

Second, relative to the radiomic signature, the two other

factors selected had less powerful predictive performance.3

Third, the actual imaging characteristics extracted from the

training cohort may have been inadequate because of the

relatively small sample size (n 5 54). In an upcoming

FIGURE 4: A: Time-dependent receiver-operating characteristic curves at 3 years in the training (left) and validation (right) sets. B: The
nomogram was developed in the training set, with the radiomic signature (score), N stage, and mesorectal fascia incorporated.

TABLE 2. Performance of the Three Models for Prediction of Outcomes

Training set Validation set

Model C index (95% CI) P-value C index (95% CI) P-value

1 0.804 (0.736–0.873) 0.001a 0.788 (0.718–0.857) 0.005b

2 0.831 (0.772–0.897) 0.999 0.767 (0.718–0.859) 0.992

3 0.661 (0.556–0.767) 0.979 0.644 (0.531–0.757) 0.563

Model 1 is the combined model; model 2 is the radiomic model; model 3 is the clinicoradiologic model.
a,bStatistically significant difference between the combined model and the clinicoradiologic model in the training set and validation
set, respectively.
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follow-up study, more data will be incorporated to assess

further significant clinicoradiologic factors and improve the

predictive ability of the combined model.

We also established an effective prognostic nomogram

to predict survival outcome in LARC following nCRT. A

nomogram is a useful tool for predicting individualized out-

comes, and has been successfully utilized in many malignan-

cies. By deriving total scores, a vertical line could be drawn

downwards from the total point scale to obtain the proba-

bility of 3-year DFS. Thus, the nomogram of the combined

model may act as a tool for selecting high-risk patients in

whom individualized treatment and follow-up can be

planned.

Furthermore, analysis of clinicoradiologic subgroups

identified a significant difference in survival based on the

radiomic signature. Studies have recommended a watch-

and-wait strategy with strict follow-up rather than surgery in

patients with ypT0N0 post-nCRT,36,37 suggesting that MRF

and EMVI status have an impact on survival preoperatively

and may determine clinical management. However, effective

clinicoradiologic markers allowing further outcome stratifi-

cation in patients with low-risk prognostic factors were not

found. Our results showed that the radiomic signature could

successfully predict better survival in patient subgroups with

EMVI negativity, clear MRF, ypT0N0, low carcinoem-

bryonic antigen levels, and low-risk T and N stages pre-

nCRT. In contrast with the conventional management, the

radiomic signature may be used, thanks to its discriminatory

performance, in low-risk patients to guide treatment selec-

tion and clinical follow-up, which would lead to reduced

risk of relapse, improved prognostic accuracy, and optimized

outcome in rectal cancer.

In this study the correlations of ypT and EMVI posi-

tivity with prognosis were not consistent with previous find-

ings.38,39 Such a discrepancy possibly stems from a selection

bias introduced by the enrolment of patients with stage II

or III rectal cancer, known to constitute a heterogeneous

cohort.38 However, multivariate regression analysis showed

that MRF positivity was an independent factor for poor

prognosis, as reported by Taylor et al.7 The predictive accu-

racy of the clinicoradiologic model for DFS in this study

was similar to that of previous clinical prediction mod-

els6,34,35; in addition, the clinicoradiologic model also

enhanced the predictive accuracy of the radiomic model and

contributed to building the combined model.

This study has some limitations to be acknowledged.

First, it was a retrospective design and was performed and

validated in a single hospital; therefore, external validation is

required. Second, the relatively small sample size in both

the training and validation sets may have led to a relatively

low predictive performance. Studies with larger sample sizes

and longer follow-up durations are required in the future.

Third, radiomic features were extracted only from pre-

nCRT MRI enhancement sequences, and other radiomic

features extracted using different imaging modalities to

build predictive survival models should be further investi-

gated. Finally, only the predictive accuracy of the above

models was assessed, in terms of DFS without inclusion of

other prognostic endpoints.

In conclusion, the combined model significantly

improved the ability to estimate 3-year DFS compared with

the radiomic or clinicoradiologic model alone, and could

help guide individualized treatment in patients with LARC.
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