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Abstract

Background and purpose: Risk prediction of overall survival (OS) is crucial for 

gastric cancer (GC) patients to assess the treatment programs and may guide 

personalized medicine. A novel deep learning (DL) model was proposed to predict the 

risk for OS based on computed tomography (CT) images.

Materials and methods: We retrospectively collected 640 patients from three 

independent centers, which were divided into a training cohort (center 1 and center 2, 

n=518) and an external validation cohort (center 3, n=122). We developed a DL 

model based on the architecture of residual convolutional neural network. We 

augmented the size of training dataset by image transformations to avoid overfitting. 

We also developed radiomics and clinical models for comparison. The performance of 

the three models were comprehensively assessed.

Results: Totally 518 patients were prepared by data augmentation and fed into DL 

model. The trained DL model significantly classified patients into high-risk and 

low-risk groups in training cohort (P-value<0.001, concordance index (C-index): 

0.82, hazard ratio (HR): 9.79) and external validation cohort (P-value<0.001, 

C-index:0.78, HR: 11.76). Radiomics model was developed with selected 24 features 

and clinical model was developed with three significant clinical variables 

(P-value<0.05). The comparison illustrated DL model had the best performance for 

risk prediction of OS according to the C-index (training: DL vs Clinical vs 

Radiomics=0.82 vs 0.73 vs 0.66; external validation: 0.78 vs 0.71 vs 0.72). 

Conclusion: The DL model is a powerful model for risk assessment, and potentially 

serves as an individualized recommender for decision-making in GC patients.

Keywords: Gastric cancer; Deep learning; Overall survival; Individualized treatment; 

Computed tomography
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Introduction

Gastric cancer (GC) is one of the most common gastrointestinal malignancies 

worldwide. Although its incidence has decreased, GC still serves as the third leading 

cause of cancer-associated deaths, particularly in Eastern Asia [1]. Currently, patients 

with advanced GC are recommended to receive surgical resection, adjuvant 

chemotherapy and radiotherapy for improvement of the treatment in line with the US 

National Comprehensive Cancer Network guidelines [2]. However, previous studies 

revealed that the rates of 5-year survival are still poor, and surgical morbidity is high 

[3], which have led to wide investigation for survival analysis.    

The state-of-the-science tumor-node-metastasis (TNM) staging system (8th 

edition) of GC promulgated by The American Joint Committee on Cancer (AJCC) is 

widely used as the gold standard for prognostic evaluation and survival risk 

stratification [4]. However, the authors indicated that the manual is not an exact 

science, which is the ongoing work and will be updated to reflect the state-of-the-art 

changing [4]. Particularly, for personalized medicine, The AJCC Personalized 

Medicine Core (PMC) committee has been increasingly conscious of the necessity for 

more individualized predictions than those presented by ordinal cancer staging 

systems based on risk models constructed by machine learning approach [5]. Overall 

survival (OS) was required by The AJCC PMC as the outcome being predicted for the 

risk models.

Recently, related works have focused on non-invasive methods of imaging, 

especially for computed tomography (CT), which is the routinely used modality for 

staging and risk assessment [6]. Radiomics, an emerging field, is an accepted method 

to analyze the medical images by extracting amounts of quantitative features [7]. 

Previous study found that radiomic features extracted from CT images had prognostic 

value for overall survival in patients with lung cancer [8]. Zhang et al. developed a 

radiomic nomogram to predict early recurrence in GC patients following curative 
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resection [9]. Some studies have demonstrated that radiomics method was a 

meaningful tool associated with tumor prognosis in patients with nasopharyngeal 

cancer and gastric cancer [10, 11]. Nevertheless, standard procedures of radiomics 

method need accurate delineation for segmentation and retest the stability for features, 

which may cause variability and inconsistent reproducibility [12]. Thus, it is relatively 

convenient and labor-saving to develop a tool for survival analysis, which can lower 

the delineation standard and tailor training process to train the model by feeding 

segmented CT images into the network and extracting the features by itself [13]. 

Currently, studies on medical image analysis are undergoing a transformation 

from engineering of feature extraction to self-learning. In particular, deep learning 

(DL), a state-of-the-art methodology, has attracted much attention and achieved huge 

breakthroughs in a wide range of computer vision task and clinical applications [14]. 

Bello et al. demonstrated DL method can be applied to develop a motion model to 

efficiently predict survival [15]. DL method has been also used for the screening the 

GC patient focusing on endoscopic image-based analysis [16]. However, the 

implement of DL method for the risk prediction of OS in GC patients based on CT 

images remains unclear.

In this study, we developed a DL model for risk prediction of OS based on the 

widely recognized residual convolutional neural network (CNN) [17]. We also 

constructed a potential individualized recommender system to provide 

recommendations for decision-making. 

Materials and Methods

Figure 1 shows an overview of this study via the DL model in combination with the 

TNM staging system for the individualized treatment.  

Patients

Ethical approval was respectively received for the Institutional Review Board of each 

center, and informed consent from patients was waived. This was a retrospective 
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multicenter study. A total of 640 consecutive patients who were pathologically 

diagnosed with GC from June 2010 to April 2019 were enrolled from three 

independent centers. We divided eligible patients into a training cohort (n=518, from 

center 1 and center 2) and an external validation cohort (n=122 from center 3), which 

is shown in supplementary Figure A1. Supplementary Table A1 and Part 2 show the 

parameters for CT images and the details of follow-up for OS. Characteristics in the 

training and external validation cohorts are shown in the Table A2.

Image segmentation 

We used the software ITK-SNAP for segmentation [18]. For each patient, we selected 

a slice of CT image with largest tumor region and nearest upper and lower slices in 

portal venous phase by two experienced radiologists and outlined them with three 

rough rectangle boxes. In order to avoid coarse label for each patch, the region of 

interest was acquired at first. Afterwards, the input image for the deep learning model 

was the region of interest. For constructing the radiomics model, we manually 

delineated precisely the tumor region of the slice with largest tumor region again. The 

diagram of segmentation is shown in Figure 2. 

Model construction

We constructed a DL model based on 18-layers residual CNN with the input of 

segmented CT images (size: 224*224) [17]. The model consisted of 8 residual blocks, 

which have the “short cut” for transmitting gradient efficiently and accelerating the 

convergence of the network (Figure 2). We tailored the dense and dropout layers at 

the top of the model. We also defined the specialized loss function (Supplementary 

Formula A1) to train the model for risk prediction. Some techniques including data 

augmentation and fine-tuning were used to train the model and avoid overfitting. 

More details regarding the training procedure can be found in the Supplementary Part 

4. For comparison, we also constructed the radiomics model (Figure 2B) based on 

hand-crafted features and clinical models for comparison. The output of each model，

named risk score for each GC patient, represented the hazard degree for occurrence of 



7

the endpoint of interest.

Assessment of prognostic performance for DL model

To investigate the potential association between the proposed DL model and OS, we 

depicted Kaplan-Meier (KM) curves. For each patient, the cutoff of median risk score 

was obtained in the training cohort. Patients with the scores lower than the cutoff 

were classified into the low-risk group, while others were classified into the high-risk 

group. 

Furthermore, we performed stratification analysis to validate the performance of 

the DL model in different subgroups (T stage, N stage, TNM stage, and adjuvant 

chemotherapy). We employed visualization techniques to present the self-learned 

feature maps inside the DL model [19]. We developed a risk score grading tool based 

on a widely used nomogram [20]. To show the network benefit, the clinically 

accepted tool of decision curve analysis (DCA) was applied to verify the prognostic 

value of the DL model [20]. We calculated the Harrell’s concordance index (C-index) 

and hazard ratio (HR) to evaluate the performance of the three models. Finally, we 

proposed an individualized recommender system for potential clinical application.

Statistical analysis

We performed the statistical analysis with R software (http://www.R-project.org). The 

features and clinical variables were compared using the Mann-Whitney U test. KM 

curves were compared by Log-Rank test. Moreover, the G-rho rank test was used for 

calculation of the HR [21]. We also compared the C-index of the DL model with other 

models by a non-parametric test. The result was considered statistically significant 

when the P-value (from two-sided tests) was less than 0.05.

Results

Schoenfeld residuals test demonstrated that each clinical variable was eligible to use 

Cox regression for univariable and multivariable analysis (Figure A2). T stage, N 

http://www.R-project.org
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stage, and adjuvant chemotherapy were significant (P-value<0.05, Table A3) for 

construction of clinical model. In training cohort, median survival time was 28 

months. In external validation cohort, the median survival time was 56 months.

The DL model with residual blocks and the identity mapping was constructed to 

show the learning capability of risk prediction. A total of 12432 images were 

generated by data augmentation and fed into DL model. Finally, the risk score was 

output for each patient. Further details regarding the development of the radiomics 

model are shown in Supplementary Part 7.

The DL model could classify all patients into two different risk subgroups (the 

low-risk and high-risk) in the training cohort (P-value<0.001, C-index: 0.82, 95% 

confidence interval (CI) 0.80-0.84, HR: 9.79, 95%CI 7.15-13.41) and external 

validation cohort (P-value<0.001, C-index: 0.78, 95%CI 0.72-0.83, HR: 11.76, 

95%CI 4.23-32.71). KM curves for DL model are shown in Figure 3. Clinical data 

analysis of different risk groups in the both cohorts are shown in Table 1. In the 

training cohort, median survival time was 14 months in the high-risk group, and 45 

months in low-risk group. In the external validation cohort, the median survival time 

in the high-risk group was 45 months, and 66 months in low-risk group. The 

stratification analysis revealed that the DL model also had good performance for risk 

prediction in different subgroups pertaining to N stages (Figures A3), T stages 

(Figures A4), TNM stages (Figure A5), and adjuvant chemotherapy (Figure A6). 

DL model could learn discriminative features for GC patients in different risk 

groups with different survival time. Examples for two patients were shown in the 

Figure 4, one from the high-risk group and one from the low-risk group in line with 

the risk scores predicted by the three models. The feature maps extracted from 

shallow to deep layers of the DL model were visualized. Highly responsive areas 

colored red of a region of interest (ROI) were found the different in two risk groups. 

With the number of layers of the network increasing, the DL model can focus on the 

highlights in the ROI with small sized feature maps by convolution and pooling. The 
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high-risk groups with corresponding risk scores (DL vs Clinical vs Radiomics: 0.98 

vs 0.6 vs 0.62) and low-risk groups with corresponding risk scores (DL vs Clinical vs 

Radiomics: 0.1 vs 0.28 vs 0.49) were obtained by the three models.

Clinical data analysis in Table A2 shows that the HR for adjuvant chemotherapy 

was 0.62 (95% CI: 0.46-0.82), which revealed the adjuvant chemotherapy was a good 

prognostic factor for GC patients. DL model also showed consistent risk prediction by 

further stratification. According to the analysis of multiple factors of N stage and 

adjuvant chemotherapy, the further results (Figure A7) shows that GC patients were 

also divided into high and low cumulative hazard subgroups by the DL model. We 

also found that the DL model can performed well according to the T stage and 

adjuvant chemotherapy (Figure A8). In each subgroup, the findings showed that GC 

patients in low-risk groups with lower cumulative hazard grouped by DL model had 

better OS than the high-risk.

To evaluate the performance of the three models, the comparison for KM curves 

is shown in Figure 3. The cut-off obtained in the training cohort was 0.668, 0.502 and 

0.504 for the deep learning model, clinical model and radiomics model respectively. 

We depicted the distribution of risk scores for patients predicted by three models 

(Figure 4A). In the distribution shape of the risk score for the DL model in the 

training cohort, all patients were divided into two subgroups, wherein patients in 

high-risk group were centralized. Moreover, in Figure 4B and 4C, the DL model 

shows the best capability for prediction with the highest C-index in the training cohort 

(DL vs Clinical vs Radiomics: 0.82 vs 0.73 vs 0.66), wherein the comparison of 

C-index was significant (P-value<0.01). Meanwhile, C-index of the DL model also 

outperformed the others in the external validation cohort (DL vs Clinical vs 

Radiomics: 0.78 vs 0.71 vs 0.72) with a significant difference between the DL model 

and the clinical model (P-value<0.05). 

As is shown in Figure 4C, the DL model had the highest HR both in training 

cohort: (9.79 vs 3.84 vs 2.48) and external validation cohort (11.76 vs 3.57 vs 5.86), 
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which indicated the high-risk groups predicted by DL model had higher hazard of 

death than the high-risk groups predicted by other models. Furthermore, in 

comparisons of the time-dependent receiver operating characteristic (ROC) curves 

(1-year, 2-year and 3-year) for three models, we found that the performance of the DL 

model equally outperformed the other models in both cohorts (Figure A9).

The nomogram, calibrations and DCA curves of DL model were depicted in 

Figure 5, which shows good performance for risk prediction. The DCA indicated that 

the DL model provided a greater net benefit than other models for the patients. 

Therefore, we constructed the individualized grading rule of nomogram to divide GC 

patients into low-risk and high-risk subgroups. After all GC patients were divided into 

two groups by the individualized grading rule, we constructed a deep learning-aided 

recommender by calculating the difference (  - Drisk) to measure the degree of 𝐷𝛽(𝑥)

risk in the subgroups (Supplementary Figure A10).

In order to show the generalizability of the model, we constructed deep learning 

(DL) model again, where we combined center 1 and 3 as the training cohort (n = 459) 

and used center 2 as external validation cohort (n = 181). As shown in the follow 

figure, the DL model significantly classified patients into high-risk and low-risk 

groups in training cohort (Supplementary Figure A11, P-value<0.001, concordance 

index (C-index): 0.77, 95% confidence interval (CI):0.74-0.79, hazard ratio (HR): 

5.54 , 95%CI: 4.07-7.54) and external validation cohort (P-value<0.001, C-index: 

0.76, 95%CI 0.71-0.80, HR: 6.91, 95%CI 4.06-11.78).

Discussion

In this study, we investigated the performance of a DL model using CT images, with 

the aim of improving the prediction of OS for GC patients. The DL model showed 

encouraging outcomes with regard to its capability to stratify GC patients into two 

groups with discrepant prognosis in the training and external validation cohorts 

compared with other models. We found that high-risk groups had poor OS, whereas 
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low-risk groups better. To further visualize and interpret the dynamic change inside 

the DL model, feature maps were vividly visualized and represented. For the standard 

treatment of adjuvant chemotherapy, covariate analysis for the DL model shows 

potential guidelines for GC patients.

We proposed a DL model based on residual network, which was demonstrated 

that it was suitable to predict the risk for GC patients. We implemented several 

methods to train the model (Supplementary Part 4). He et al. have demonstrated that 

residual block and the identity mapping can improve the learning capability, and 

address the degradation problem [17]. Our outcomes revealed that residual network, 

in some cases, could also address the degradation problem for CT images analysis, 

and data augmentation was useful for enlarging the training data to cope with the 

problem of overfitting. Meanwhile, the techniques of dropout and fine-tuning were 

also efficient to improve the robustness for the DL model based on limited CT 

images.

Although the golden standard for treatment of GC patients is AJCC TNM 

staging system,[4] the AJCC has realized that risk model for OS is necessary for more 

individualized probabilistic prognostication [5]. In particular, for personalized 

treatment, previous studies have implicated that the TNM staging system have some 

drawbacks [22]. For instance, although the patients belonged to confirmed subgroup 

(T stage=T2, N stage =N0, TNM stage =IB), we can’t obtain the further information 

about degree of risk for each patient or the different risk groups they belonged to, 

which may lead to suboptimal recommendations for individualized treatment. 

Conversely, the DL model can classify the patients into different risk groups and the 

recommender provides recommendation for individualized treatment combined with 

TNM staging system. According to the stratification analysis with multiple factors of 

the N stage, T stage, and adjuvant chemotherapy, the findings revealed that the DL 

model is a powerful predictor for risk prediction, which have the potential to serve as 

a model-based reference index for an updating TNM staging system to improve 
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clinical decision making. 

Currently, the popular method of radiomics plays an important role in prognostic 

analysis [23]. However, elaborate delineation by radiologists of the ROI hinders 

deployment of segmentation in clinical practice. In practice, the work of segmentation 

for our proposed model is easy and time-saving to complete, since we do not require 

the tumor to be precisely delineated. Hence, the DL model is considered relatively as 

an easy-to-use and labor-saving tool for clinical application. In addition, compared 

with hand-crafted radiomics features, the feature maps were learned automatically 

from the shallow to deep convolutional layers by the DL model, including simple 

low-level features to complex high-level features. Hence, our study presents a 

promising approach.

In addition, Cox Proportional Hazard (CPH) Model are widely used for survival 

analysis [24]. However, the assumption of CPH model that logarithmic HR is linearly 

correlated with each risk factor is restrictive. While universally-applicable methods, 

such as DL method, can construct robust model without any assumption. Katzman et 

al. illustrated that DL model (DeepSurv) showed good performance and can 

provide personalized recommendations based on simulated and real survival data 

[25]. Yousefi et al. reported that DL model showed good performance to learn 

information from diseases for survival analysis with public molecular data [26]. Kim 

et al. applied the DeepSurv for survival analysis in oral squamous cell carcinoma 

(SCC) patients, and the model outperformed the random survival forest (RSF) and the 

CPH models [27]. Matsuo et al. investigated 40 clinical features and indicated that DL 

model can be a potential tool for survival prediction in women with cervical cancer, 

which showed superior performance than CPH model [28]. Sun et al. proposed a 

multimodal DL model by integrating Multi-dimensional Data (clinical and gene) for 

the prognosis prediction of breast cancer, and achieved a better performance than 

other existing methods with single-dimensional data [29]. Nie et al. constructed a 3D 

DL model for feature extraction with multi-modality brain images of glioma patients, 
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and experimentally found that the DL method could learned discriminative features 

from multi-modality images for accurate prediction of the OS time [30]. Previous 

study exploited a multi-channel 3D CNN model to extract self-learned features from 

multi-modal brain images [31]. They found multi-channel deep survival network is 

powerful for prediction of OS time. Yao et al. proposed a deep correlational survival 

model to handle multi-modality data effectively, and the result demonstrated that the 

learned interactions can affect survival outcomes [32]. We also demonstrated that DL 

model outperformed the model constructed based on hand-crafted features and the 

clinical model based on clinical risk factors. 

Despite the encouraging performance of the DL model, there are several 

limitations. Our model was developed based on the patients of Asian race, and further 

validation across other races should be studied. Although the segmentation was 

time-saving for the point of the comparison, the work has defects. The further work 

should be done for comparison to show the advantage of deep learning method for 

survival model. Meanwhile, the DL model was demonstrated here with only a limited 

dataset, and a larger dataset should be collected to validate a more robust 

performance. Additionally, the model was constructed only based on preoperative CT 

images, which may show more significant findings in combinations with pathological 

image and other types. We only employed three slices in each patient to construct 

model. Although three-dimensional delineation is time-consuming, the further work 

should be explored. Above all, although the work of interpretation and visualization 

was shown, the more acceptable and friendly approach for interpretability should be 

investigated. 

In conclusion, the DL model can provide CT-based prognostic risk scores related 

to the OS of GC patients, and the findings demonstrated higher prognostic value than 

clinical and radiomics models. Most notably, our individualized recommender based 

on the DL model was validated through diverse verification, wherein it showed 

powerful prognostic ability. Therefore, the recommender is a potential tool to assist 
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clinicians with therapeutic decision-making and individualized treatment.
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Figure legends

Figure 1 The overview of the study design.

Figure 2 Architectures of deep learning (DL) model based on residual convolutional 

neural network and radiomics model based on hand-crafted features.

Figure 3 Comparison of Kaplan-Meier (KM) curves for models. (A), (D): deep 

learning (DL) model; (B), (E): clinical model; (C), (F): radiomics model. Each 

vertical tick on the bottom of the KM curves represents a patient who was censored at 

that time.

Figure 4 Model analysis with measurable indicators. (A) Risk score distribution for 

the origin output of three models; (B) Comparison of the C-index between deep 

learning (DL) models and other models by P-value. The Student’s t-test by R package 

(“survcomp”, version:1.34.0) used for the comparison of the concordance indices; (C) 

Comparison of model performance by concordance index (C-index) and hazard ratio 

(HR). (D) Model interpretation and visualization for the potential association between 

feature maps with pathological staging information. † The HR was calculated by 

comparing the high-risk group with low-risk group. ‡ The clinical model was 

constructed based on AJCC 8th staging system in combination with the risk factors of 

adjuvant chemotherapy.

Figure 5 Clinical application and further validation for deep learning (DL) model. (A) 

Individualized grading rules for risk score based on nomogram. (B) Calibration curves 

of the DL nomogram in the training cohort. (C) Comparison of decision curve 

analysis for the DL model.
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Highlights

1. Deep learning model is a potential tool for risk prediction. 
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2. Both radiomics model and deep learning model had prognostic values.

3. The deep learning model can classify the patients into low- and high-risk groups.

4. Individualized recommender is a potential tool to assist clinicians.

Table 1. Characteristics analysis by deep learning model

Training cohort
External validation

cohortCharacteristic
Low risk High risk

P-value‡

Low risk High risk
P-value‡

Age (years)† 57(56±10) 59(56±11) 0.14 59(59±10) 58(58±12) 0.77
Gender 0.86 0.74
Male 189(73) 188(73) 32(70) 52(68)
Female 70(27) 71(27) 14(30) 24(32)
Tumor localization 0.49 <0.01
Proximal 46(18) 54(21) 13(28) 33(43)
Middle 68(26) 66(25) 5(11) 13(17)
Distal 145(56) 139(54) 28(61) 30(40)
Tumor size 0.02 <0.01
< 5cm 173(67) 116(45) 28(61) 23(30)
≧5cm 86(33) 143(55) 18(39) 51(67)
NA 0(0) 2(3)
Lymphovascular 
invasion

0.01 0.28

Negative 82(32) 49(19) 20(43) 31(41)
Positive 177(68) 210(81) 26(57) 45(59)
Differentiation 0.05 0.13
Well + moderate 127(49) 89(34) 17(37) 25(33)
Poor + undifferentiated 132(51) 170(66) 29(63) 51(67)
T stage <0.01 <0.01
T1a-T1b 22(8) 1(0) 3(6) 2(2.50)
T2 48(19) 12(5) 7(15) 2(2.50)
T3 113(44) 88(34) 32(70) 57(75)
T4a 76(29) 158(61) 4(9) 15(20)
N stage <0.01 <0.01
N0 108(42) 35(14) 10(22) 14(19)
N1 58(22) 29(11) 15(33) 10(13)
N2 39(15) 67(26) 9(19) 20(26)
N3a-N3b 54(22) 128(49) 12(26) 32(42)
TNM stage <0.01 <0.01
Ⅰ 40(15) 6(2) 7(15) 2(3)
Ⅱ 82(32) 29(11) 19(41) 23(30)
Ⅲ 137(53) 224(87) 20(44) 51(67)
Adjuvant chemotherapy <0.01 0.63
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No 47(18) 61(24) 25(54) 37(49)
Yes 212(82) 198(76) 21(46) 39(51)
Follow-up (Month)† 45(43±14) 14(17±11) 66(67±21) 45(45±27)

Values in parentheses are percentages (%)
† Values are median(mean+std)
‡ Continuous variables were tested by Mann-Whitney U test and discrete variables were tested by 
Pearson's Chi-squared test.












