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Text classification can help users to effectively handle and exploit useful information hidden in large-
scale documents. However, the sparsity of data and the semantic sensitivity to context often hinder the
classification performance of short texts. In order to overcome the weakness, we propose a unified
framework to expand short texts based on word embedding clustering and convolutional neural network

Thus, we first discover semantic cliques via fast clustering. Then, by using additive composition over
word embeddings from context with variable window width, the representations of multi-scale semantic
units1 in short texts are computed. In embedding spaces, the restricted nearest word embeddings
(NWEs)2 of the semantic units are chosen to constitute expanded matrices, where the semantic cliques
are used as supervision information. Finally, for a short text, the projected matrix3 and expanded
matrices are combined and fed into CNN in parallel. Experimental results on two open benchmarks
validate the effectiveness of the proposed method.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The classification of short texts, such as search snippets, micro-
blogs, product reviews, and short messages, plays important roles in
user intent understanding, question answering and intelligent
information retrieval [1]. Since short texts do not provide enough
contextual information, the data sparsity problem is easily encoun-
tered [2]. Thus, the general methods based on bag-of-words (BoW)
model cannot be directly applied to short texts [1], because the BoW
model ignores the order and semantic relations betweenwords. How
to acquire effective representations of short texts to enhance the
categorization performance has been an active research issue [2,3].

Conventional text classification methods often expand short
texts using latent semantics, learned by latent Dirichlet allocation
(LDA) [4] and its extensions. Phan et al. [3] presented a general
framework to expand short and sparse texts by appending topic
names, discovered using LDA over Wikipedia. Sahami and Heilman
[5] enriched text representation by web search results using the
ve dominant meaning of text.
an be exploited.
e threshold is preset between
s restricted condition.
g up, which encodes Unigram
short text segment as a query. Furthermore, Yan et al. [6] pre-
sented a variant of LDA, dubbed biterm topic model (BTM), espe-
cially for short text modeling to alleviate the data sparsity pro-
blem. However, these methods still consider a text as BoW.
Therefore, they are not effective in capturing fine-grained
semantics for short texts modeling.

More recently, deep learning based methods have drawn much
attentions in the field of natural language processing (NLP), which
mainly evolved into two branches. One is to learn word embed-
dings by training language models [7–10], and another is to per-
form semantic composition to obtain phrase or sentence level
representation [11,12]. Word embeddings, also known as dis-
tributed representations, typically represent words with dense,
low-dimensional and real-valued vectors. Each dimension of the
vectors encodes a different aspect of words. In embedding spaces,
semantically close words are likely to cluster together and form
semantic cliques. Moreover, the embedding spaces exhibit linear
structure that the word embeddings can be meaningfully com-
bined using simple vector addition [9].

In this paper, we aim to obtain the semantic representations of
short texts and overcome the weakness of conventional methods.
Similar to Li et al. [13] that cluster indicators learned by non-
negative spectral clustering are used to provide label information
for structural learning, we develop a novel method to model short
texts using word embeddings clustering and convolutional neural
network (CNN). For concision, we abbreviate our methods to

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.09.096
http://dx.doi.org/10.1016/j.neucom.2015.09.096
http://dx.doi.org/10.1016/j.neucom.2015.09.096
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.09.096&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.09.096&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.09.096&domain=pdf
http://dx.doi.org/10.1016/j.neucom.2015.09.096


0 20 40 60 80
0

20

40

60

80

100
Decision Graph

ρ

δ

world

million

may

old
killed monthssystem

games

saying
capital

member
troops

12

december

human

media

germanper

race

low

2004

iraqi

medical

bandmexico

jamesstocks

am

angeles

−150 −100 −50 0 50 100 150 200
−150

−100

−50

0

50

100

150
Word Embeddings Clustering

X

Y

governmentworldstate
usu.s.unitedstatescountryamericaninternationalcountrieseuropeanbritish
federalamericaadministrationnationsnationeuropeaustraliaeubritaincanadaaustralian
society

$millionbilliondollars
annual

the,.ofandina’sforoniswaswithasitbyfromanhas
arehavebutwerethis
theyhad

which
theiror

itsoneafternewbeenalso
moreabout
upwhen
thereall
out
otherpeoplethan
over
some
timeonly_so
them
beforemaymany
while
nowmade
like

between
justunder

such
then
being
downbackoffwell
stillboth
even

part
thosethese
homelateranothercalledway
muchhereuntilhoweversameknowneachbased

among
timestookcame
fewtooleast
pasthalf
everybigfartodayalthoughagainclosewentpoint
alreadythough
away
others
within

makinglessoncegiven
different
whosehavingseenfullspecialnearlyenoughalmost
together
hard
gavesoonrecentlycourseinstead
saw
americans
currentlybroughtturned
either

present
hehiswhosheherhimoldlifechildrenhistorymanyoungagehimselflivingwomanchildlives

killed
air
deathdiedattackfireattacks
weaponsdead

usedusesystemusingtechnologyinternetcomputer

gamegames

saidtoldforeignofficialsayingstatementspokesmanagencyministryreporters

citysouthnorthareawesteastcentraltowncapitalnearregionsouthern
community
northernwestern
siteareasprovincevillagelocatedbordereastern

memberscouncilmemberseniorindependent

policemilitarysecurityarmyforcesforcetroopssoldiersu.n.unstaffmission

"():;1102/3201530411125186257814131617924192221
marchjunejulyaprilseptemberjanuarydecemberoctobernovemberaugustfebruary

humanfood
newspresstelevisionmedia
station

storybook
radio
publisheddailytvnewspaper
wrote
networkinterviewwritten

germanygerman

%totalper1005040

twothreefourfivesixfinalsevenroundeightmatchracenine200820062007201020002009200420052001200320022011199819962012199919941997

iraqisraelisraelipalestinianiraqiafghanistannato

car
hospitaltestmedical

musicalbumbandsong

mexicoitaly

johngeorgedavidmichaelmarkst.jamesrobertpaul
percentmarket
bankfinancial
stockpricesrosesalesworkers
fellsharesshareindexpriceexchangeinvestors
investment
marketstradingstocksbuy
banks

−’’‘‘iwe’−−n’tyoudowhatdidget?myhowsaysaysgood
goinggo
best
’rethinkmewantnever
little
knowyourgot...better
’ve’maskedlot
real
reallysomethingthings
everlook

jobalwaysbelievewhywanteddone
’ll thought
!
love
ca
lookingthinggettingletpersonamdoing
kind
‘ nothingquestionfeel

yorkwashington
de districtcountysancaliforniatexaslosangelesflorida

Fig. 1. Fast clustering based on density peaks of embeddings.
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Fig. 2. The detection of semantic units.
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CCNN, as Clustering and CNN are employed. Particularly, the fast
clustering algorithm, based on density peaks searching [14], is first
utilized to discover the semantic cliques in embedding spaces, as
shown in Fig. 1. Then, the component-wise additive composition is
performed over word embeddings, from context with variable
length, to compute the representations of semantic units appear-
ing in short texts, as shown in Fig. 2. The semantic units are used
to calculate Euclidean distance with each semantic clique, and
their nearest word embeddings (NWEs) can be found. In our fra-
mework, the NWEs that meet the preset threshold of Euclidean
distance are chosen to constitute the expanded matrices for short
texts enrichment, otherwise simply dropout. In this stage, the
semantic cliques are used as supervision information to detect
precise semantics. Finally, a CNN with one convolutional layer
followed by a K-max pooling layer is trained under the cross
entropy objective, which is optimized with mini-batches of sam-
ples iteratively by back propagation (BP).

The motivation of the proposed method is to introduce
semantic knowledge and expand short texts by related word
embeddings, which is pre-trained over large-scale external corpus.
To preserve the semantics in original short texts, we integrate text
understanding and vectorization into a joint framework. As shown
in Fig. 2, for the input short text “The cat sat on the red mat”, three
semantic units can be detected with different window width.
These multi-scale semantic information is leveraged to expand the
short text, and its context is fully exploited.

The main contributions of this paper are summarized as follows:

(1) The density peaks searching based clustering method is uti-
lized to discover semantic cliques, which are used as super-
vision information to extract fine-tuned semantics.

(2) Multi-scale semantic units are defined and their representa-
tions are calculated by using a one-dimensional convolution-
like operation.

(3) In embedding spaces, the restricted NWEs of semantic units
are discovered to produce expanded matrices. Then, the pro-
jected matrix and the expanded matrices are simply combined
and fed into a CNN to extract high-level features.
Experiments are conducted on Google snippets [3] and TREC
[15] to validate the effectiveness of our method.

The rest of this paper is organized as follows. Section 2 gives a
brief review of related works. Section 3 introduces the theoretical
foundation of our work, including semantic composition and word
embeddings clustering. Section 4 defines the relevant operators and
hierarchies of the framework. Section 5 presents our experimental
results. Finally, concluding remarks are offered in Section 6.
2. Related works

In order to overcome the data sparsity problem in short texts
representations, many popular solutions have been proposed.
Based on external Wikipedia corpus, Phan et al. [3] proposed a
method to discover hidden topics using LDA and expand short
texts. Zhou et al. [16] exploited semantic information from Wiki-
pedia to enhance the question similarity in concept space. Chen
et al. [2] proved that leveraging topics at multiple granularity can
model short texts more precisely.

In recent years, neural networks (NNs) relevant methods have
been used to model languages with promising results, and word
embeddings can be learned meanwhile [17]. Mikolov et al. [9]
introduced the continuous Skip-gram model that is an efficient
method for learning high quality word embeddings from large-scale
unstructured text data. Furthermore, various pre-trained word
embeddings are publicly available, and many composition-based
methods are proposed to induce semantic representations of texts.

To obtain sentence-level representations of texts, NNs related
works can be divided into two types, which are respectively used
for universal tasks and special tasks. For the former, Le and
Mikolov [12] proposed the paragraph vector to learn a fixed-size
feature representation for documents with variable length.
Kalchbrenner et al. [18] introduced the dynamic convolutional
neural network (DCNN) for modeling sentences, which is the most
related work to our study. In that work, dynamic k-max pooling is
utilized to capture global features without relying on parse tree.
Based on convolutional architecture, Kim [19] proposed a simple
improvement that two input channels are used which allow the
employment of dynamic-updated and static word embeddings
simultaneously. These methods can be used to generate semantic
representations of texts for various tasks.

For the latter, Zeng et al. [20] developed a deep convolutional
neural network (DNN) to extract lexical and sentence level features,
which are used for relation classification. Socher et al. [21] proposed
the recursive neural network (RNN) that has proven to be effective
in sentiment prediction. In order to reduce the overfitting problem
of neural network, especially trained on small data set, Hinton et al.
[22] used random dropout to prevent complex co-adaptations.
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Standard recurrent neural networks can take into account all of
the predecessor words for modeling languages [23]. However, it is
difficult to train due to the vanishing gradient problem, which can
be explicitly avoided in Long Short-Term Memory (LSTM) algo-
rithm [24]. Currently, LSTM is widely used in spoken language
understanding and sequence prediction [25–27].

Although the methods discussed above can capture high-order
n-grams and word order information to produce complex features,
the small length of short texts still heavily affects the classification
performance. In this paper, we design a novel method to detect
multi-scale semantic units for expanding short texts.
4 https://www.code.google.com/p/word2vec/
3. Theoretical foundation

3.1. Semantic composition

In vector spaces, words can be described by real-valued vectors,
such as one-hot representations and word embeddings. However,
the fundamental problems appear in one-hot representations of
words include data sparsity and the curse of dimensions, which
make language models and other learning algorithms difficult to
use [7]. Furthermore, the one-hot representations ignore the
dependency among words in context and cannot be used to
measure words similarity.

The recently introduced neural network language models,
especially the continuous Skip-gram model [8] can be efficiently
used to learn high-quality word embeddings, where each com-
ponent of the vectors might have a semantic or grammatical
interpretation. The training objective of continuous Skip-gram
model is to learn words representations that are good at predict-
ing their context. Thus, the co-occurrence information can be
effectively used to describe each word.

Moreover, the word embeddings can capture various syntac-
tical and semantic relationships. For example,

vec Germanyð Þþvec Capitalð Þ � vec Berlinð Þ ð1Þ

vecðAthleteÞþvec Footballð Þ � vec Football_Playerð Þ ð2Þ
where vec( � ) is a special word embedding. The above examples
indicate that the additive composition over word embeddings can
often produce meaningful results. Thus these words that cannot be
observed directly can be composed by using basic mathematical
operations on word embeddings. In Eq. (1), the token ‘Berlin’ can
be viewed that it has a embedding offset vec(Capital) to the token
‘Germany’ in embedding space. The embedding offsets represent
the semantic relations among words. This merits make it possible
to meaningfully combine words by element-wise addition.

The theoretical interpretation of the additive property can be
obtained by reviewing the learning procedure of word embed-
dings [9]. Since it is trained with the objective that predicts the
surrounding words in a context, the word embedding encodes the
implicit distribution of the context. Thus, these words often
appearing in the similar context will obtain approximately equal
vector representations, which cluster together and constitute
semantic cliques in embedding spaces, as shown in Fig. 1. The
values of each word embedding are logarithmically related to the
probabilities output by softmax function of Skip-gram model.
Thus, the sum of two word embeddings is proportional to the
product of the two corresponding context distributions, which
induce the joint probability distribution of the two word contexts.
While the joint probability distribution implies the co-occurrence
of these contexts information, which in reverse can produce the
vector representation of composition result.

Semantic composition in embedding spaces has recently
received much attention [9,28,29]. Composition based methods
can be useful for discovering latent semantics and obtaining the
vector representations of phrases or sentences, as shown in Fig. 2.
The composition results obtained from co-occurrences can be used
to analyze similarities of phrases [9], and as input feature for
classifiers, which help language understanding.

3.2. Word embedding clustering

In embedding spaces, the neighbors of each word are generally
semantically related [9]. Therefore, clustering methods can be
used to discover semantic cliques. However, the number of
semantic cliques is unknown in advance, and the vocabulary size
of word embeddings is usually large. For example, the publicly
available word embeddings pre-trained by Word2Vec4 contain
three million words. In order to handle these problems, we adopt
the fast algorithm based on searching density peaks [14] to per-
form word embeddings clustering.

The clustering algorithm assumes that cluster centers are sur-
rounded by neighbors with lower local density and they are at a
relatively large distance from any points with a higher local den-
sity, which exactly meet the distributed property of word
embeddings. For implementation, two quantities of data point i
are computed, include: local density ρi and distance δi from points
of higher density, which are defined as follows:

ρi ¼
X
j

χðdij�dcÞ ð3Þ

where dij is the distance between data points, dc is a cutoff dis-
tance, and

χð�Þ ¼ 1 if dijodc
0 otherwise

�
ð4Þ

Thus, ρi is equal to the number of points that are closer than dc to
point i. Furthermore, δi is measured by

δi ¼
min

j:ρj 4ρi
ðdijÞ if ρioρmax

max
j

ðdijÞ otherwise

8><
>: ð5Þ

A simple example of word embeddings clustering is illustrated
in Fig. 1. The decision graph shows the two quantities ρ and δ of
each word embedding. According to the definitions above, these
word embeddings with large ρ and δ simultaneously are chosen as
cluster centers, which are labeled using the corresponding words
in the decision graph of Fig. 1.
4. Proposed method

In this section, a unified framework used for short texts mod-
eling and classification is described, as shown in Fig. 3. Our method
aims to introduce external knowledge by taking advantage of the
well pre-trained word embeddings and exploit more contextual
information of short texts to improve classification performance.

For a short text S¼ fw1;w2;…;wNg, the framework takes the
input as a sequence of N tokens, which are contained by a finite
vocabulary D. In the first layer, these tokens are transformed into
real-valued word embeddings by table looking up, and the pro-
jected matrix PMARd�N is obtained, which can be induced using
the matrices product as follows:

PM¼ LT � indexðSÞ ð6Þ
where the lookup table LTARd�v is initialized by pre-trained word
embeddings that encode word-level information, d is the

https://www.code.google.com/p/word2vec/
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dimension of the embedding, v is the size of vocabulary D, and
index ( � ) is the function that transform each word in S into one-
hot representation, which is corresponding to the vocabulary D of
the lookup table LT.

The main functions of the second layer, exhibited in Fig. 3, are to
obtain multi-scale semantic units via supervised strategy and pro-
duce the expanded matrices, as shown in Fig. 4. The expanded
matrices are simply combined with the projected matrix and fed into
convolutional layer, where high-level local features are extracted.
Then, the k-max pooling layer is used to down-sample the output
feature maps of the convolutional layer, and global features are
generated. Subsequently, the pooling results are directly con-
catenated to produce the vector representation of the input short
text. At last, a softmax decision function is employed as classifier.

The given short text is passed through the sequence of layers,
and the sentence-level features are extracted. The detection for
multi-scale semantic units, which are used to expand short texts,
is the main novelty of this work. In the following, the details of the
framework are described.

4.1. Architecture description

4.1.1. Semantic units detection
For a short text S, methods to obtain the feature representation

mainly have two problems: the length of S is variable; the semantic
meaning of S is often determined by a few of key-phrases, however,
these meaningful phrases may appear at any position of S. Thus,
simply combining all words of S may introduce unnecessary
divergence and hurt the effectiveness of the overall semantic
representation. Therefore, the detection for the semantic units are
useful, which capture salient local information, as shown in Fig. 2.

The main idea of the detection for semantic units is to define a
convolution-like operation to perform semantic composition over
word embeddings from context, where multiple windows with
variable width are used. Then sentence-wide semantic units are
discovered and multi-scale contextual information can be exploi-
ted, which is helpful to reduce the impact of ambiguous words.

Particularly, to obtain the representations of semantic units, a
window matrix EwinARd�m with all weights equal to one is used to
convolve with the projected matrix PM. The essence of the opera-
tion is a one-dimensional convolution, which is defined as follows:

seu1; seu2;…; seul�mþ1
� �¼ PM � Ewin ð7Þ
where,

seui ¼
XPMwin;i

�� ��
j ¼ 1

PMwin;i
j ð8Þ

PMwin;i
j is the jth column from the sub-matrix PMwin;i, which is

windowed on projected matrix PM by Ewin with the ith times
sliding.m is the width of the windowmatrix Ewin, and l is the length
of input short text. As shown in Eq. (8), the ith semantic unit seui

ARd is the component-wise summation of the columns in PMwin;i,
which have the same dimension with each word embedding.

Since meaning related words often close to each other and
form semantic cliques in the embedding spaces, each meaningful
semantic unit is assumed that it has one close embedding neigh-
bor at least. In order to recognize precise semantic units, we
compute Euclidean distance between semantic units and semantic
cliques, as shown in Fig. 4. A preset distance threshold is used as
restricted condition to fine-tune the detection for semantic units.
In particular, for a semantic unit, the nearest semantic clique
center is searched firstly, and then the NWEs in semantic clique
can be discovered fast. If the distance between the semantic unit
and the NWEs are smaller than the threshold, the NWEs are
selected to constitute the expanded matrices EMs, otherwise
dropout. Therefore, the semantic cliques are used as supervision
information to extract more precise features.

Corresponding to a window matrix Ewin with certain width m,
the restricted nearest embedding neighbors of semantic units are
selected to constitute one expanded matrix. By increasing the
window matrices with distinct width, multiple expanded matrices
can be computed in parallel, which guarantees the merit of the
proposed architecture that multi-scale contextual information can
be used to expand the input short texts. As described above, the
width m of each window matrix is a critical factor that impacts the
extraction of effective information.

4.1.2. Convolution layer
After expansion for short texts, a convolutional layer is used to

extract local features. In our framework, the projected matrix PM
and expanded matrices EMs are fed into the convolutional layer in
parallel. Kernel matrices of weights kAR2�n with certain widths n
are utilized to calculate convolution with the input matrices.

The number of kernel matrices and their width n are hyper-
parameters of the network. As shown in Fig. 3, to obtain the fea-
ture map C, the convolutional operation is defined as taking the
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inner product of the kernel matrices k with pair-wise rows of each
input matrix denoted by X, as Eq. (9).

C¼

c1
c2
⋮

cd=2

0
BBBB@

1
CCCCA¼

k1

k2

⋮
kd=2

0
BBBB@

1
CCCCA �

Xwin
1

Xwin
2

⋮
Xwin

d=2

0
BBBBB@

1
CCCCCA

T

ð9Þ

where,

cji ¼ ki � ðXwin;j
i ÞT ð10Þ

The cji is real-valued and generated by inner-product. Xwin;j
i is the

submatrix windowed by ki for jth times sliding on X. The weights
in ki are part of parameters to be learned in training stage, which
is corresponding to linguistic feature detectors and learns to
recognize a specific class of n-grams.

To make the convolutional layer more robust, the weights of
kernels for PM and EMs are learned respectively, since the word
embeddings in PM contain order information, whereas EMs do
not. In Eq. (9), each kernel matrix is calculated convolution with
pair-wise rows of input matrices. Thus the feature detectors are
not independent to single dimension of word embeddings, and the
folding operation is omitted, which appeared in [18].

4.1.3. K-max pooling
The feature map C, in Eq. (9), encoder local features and its size

depends on the length of input short texts and the number of
expanded matrices. With the aim of capturing most relevant glo-
bal features with fixed-length, and enabling the output features to
adapt for various classifiers, a K-max pooling operation is used to
down-sample the feature maps C, as follows:

C
4
¼maxðkÞðCÞ ð11Þ
The max pooling operator is a non-linear subsampling function

that returns the maximum of a sequence of values [30]. In our
architecture, the K-max pooling operation is applied over each row
of feature map C to return the sub-sequence of K maximum values,
instead of the single maximum value, where K is a hyper-
parameter optimized during training.

At last, the tangent function is chosen to perform non-linear
and element-wise transformation over the down-sampled feature

map C
4

from K-max pooling layer,

f
4
¼ tanhðC

4
Þ ð12Þ

thus, the feature representations of input short texts are obtained.

4.1.4. Output layer
After short texts are put through the sequence of layers

described above, semantic representations f
4

with fixed-size are
obtained. The last layer of our framework is fully connected with
weights Wz. For a short text xi, a linear transformation is first
performed, as follows:

ϕðxi;WzÞ ¼Wz f
4

ð13Þ
The output of Eq. (13) is a vector with dimension of jC j , where C is
the tags set. Each component of the output vector can be viewed
as a possible score of the corresponding class.

Then, a softmax function is utilized to transform the score
vector into a probability distribution,

pðcj jxi;WzÞ ¼
expðϕjðxi;WzÞÞPj C j

j ¼ 1 expðϕjðxi;WzÞÞ
ð14Þ

At last, the class cj with maximum pðcj jxi;WzÞ is chosen as the
predicted label for xi.
4.2. Network training

The network is trained with the objective that minimizes the
cross-entropy of the predicted distributions and the actual dis-
tributions for all samples. The cross-entropy function is proven to
be able to accelerate the back propagation algorithm and provide
good overall network performance with relatively short stagnation
periods [31], especially for classification task. During training the
neural network, the set of parameters θ¼ fk;Wzg need to be
optimized, where k is the kernel weights from convolutional layer,
and Wz is the connective weights from output layer.

To construct the objective function, the cross-entropy loss func-
tion is considered and an L2 regularization term [22] is introduced to
prevent over-fitting problem over parameters set θ, as follows:

JðθÞ ¼ �1
t

Xt

i ¼ 1

log pðc† jxi;θÞþαJθJ2 ð15Þ

where c† is the correct class of input text xi, α is the factor of reg-
ularization term, and t is the number of training samples.

The network is learned with mini-batches of samples by back-
propagation (BP). In order to deduce the BP updates for the para-
meters set θ, the gradient-based optimization is performed using
the Adagrad update rule [32]. For each iteration, the differentiation
chain rule is used, and the parameter θ is updated as follows:

θ’θþλ
∂JðθÞ
∂θ

ð16Þ

where λ is the learning rate.
5. Experiments

To validate the effectiveness of the proposed method CCNN, we
conduct experiments respectively on two benchmarks: Google
Snippets [3] and TREC [15].

5.1. Experimental setup

5.1.1. Datasets
Google Snippets: This dataset consists of 10,060 training snip-

pets and 2280 test snippets from 8 categories, as shown in Table 1.
On average, each snippet has 18.07 words.

TREC: As demonstrated in Table 2, TREC contains 6 different
question types, including LOC., NUM., ENTY., and so on. The
training dataset consists of 5452 labeled questions, and the test
dataset consists of 500 questions.

5.1.2. Pre-trained word embeddings
To validate the robustness of the proposed architecture, we

respectively initialize the lookup table with three different pre-
trained word embeddings and conducted experiments, which are
publicly available. The summaries of these word embeddings are
listed in Table 3, and some descriptions are provided as follows:

Senna: Semantic/syntactic extraction using a neural network
architecture is abbreviated to Senna, which is a software dis-
tributed by Collobert et al. [11]. Its word embeddings have been
trained over Wikipedia for about 2 months. Senna also can be used
for part-of-speech (POS) tags, name entity recognition (NER),
semantic role labeling (SRL) and syntactic parsing (PSG).

GloVe: Pennington et al. [33] proposed an unsupervised learn-
ing algorithm for obtaining word vector representations, called
GloVe, for Global Vectors, since the global corpus statistics are
captured directly by the model. GloVe is essentially a log-bilinear
method with a weighted least-squares objective, which is trained
over a 6 billion token corpus. The corpus is constructed using



Table 1
Data distribution of Google Snippets.

Labels Training Test

Business 1200 300
Computers 1200 300
Culture-arts-entertainment 1880 330
Education-Science 2360 300
Engineering 220 150
Health 880 300
Politics-Society 1200 300
Sports 1120 300
Total 10,060 2280

Table 2
Data distribution of TREC.

Labels Training Test

DESC. 1162 138
ENTY. 1250 94
ABBR. 86 9
HUM. 1223 65
NUM. 896 113
LOC. 835 81
Total 5452 500

Table 3
Details of publicly available embeddings.

Embeddings Sennaa GloVeb Word2Vec

Training corpus Wikipedia Wikipedia/Gigaword Google News
Dimensionality 50 50 300
Size of vocab. 130,000 400,000 3,000,000

a http://ml.nec-labs.com/senna/
b http://nlp.stanford.edu/projects/glove/

Table 4
The classification accuracy of proposed method against other models (%).

Methods Google Snippets TREC

CCNN
Senna 84.0 95.1
GloVe 85.3 96.8
Word2Vec 85.5 95.9

TF-IDFþSVMs 62.6 94.3
Paragraph VectorþSVMs 61.9 75.8
LSTM 63.0 95.6
DCNN [18] – 93.0
SVMS [34] – 95.0
CNN-multichannel [19] – 93.6
LDAþMaxEnt [3] 82.7 –

Multi-TopicsþMaxEnt [2] 84.17 –
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Wikipedia2014 and Gigaword5, with a vocabulary of the top
400,000 most frequent words and a context window size of 10.

Word2Vec: The Word2Vec tool provides an efficient imple-
mentation of the continuous Bag-of-Words and Skip-gram archi-
tectures for computing vector representations of words. The pre-
trained word embeddings were learned on part of Google News
dataset, which contains 300-dimensional vectors for 3 million
words and phrases. The phrases were obtained using a simple
data-driven approach described in [9].

5.2. Results and discussions

In our framework, the out-of-vocabulary words in short texts
are simply discarded, since they are often low-frequency tokens.
The experimental results and discussions are as follows.

5.2.1. Compared with the state-of-the-art methods
In order to make strong comparisons, 8 popular methods are

introduced as baselines. In experiments, we evaluate three of them
on our benchmarks, including TF-IDF, Paragraph Vector and LSTM.
For the rest of baselines, we directly introduce the publicly pub-
lished experimental results as shown in Table 4. All the results in
Table 4 are obtained under the same distributions of experimental
data, as shown in Tables 1 and 2. In the following, some brief
introductions of these methods are given:

TF-IDFþSVMs: The statistics Term Frequency (TF) and Inverse
Document Frequency (IDF) were calculated as features, and SVMs
classifier was adopted.
Paragraph Vector: A unsupervised algorithm that can be used to
learn fixed-length feature representations for sentences, para-
graphs, or documents [12]. The model considers a paragraph as a
general word token, which acts as a memory that remembers
what is missing from the current context.

LSTM: The method is a variation of the standard LSTM model
[24], which is composed of a single LSTM layer followed by an
average pooling and a logistic regression layer. In this variant, the
activation of cells output gate does not depend on the memory
cells state, which allows us to perform part of the computation
more efficiently.

DCNN: Kalchbrenner et al. [18] proposed the DCNN to model
sentences. In their work, wide convolution is utilized to extract
local features, followed by dynamic k-max pooling operation to
capture global and fixed-size feature vector.

SVMs: Uni-bi-trigrams, wh word, head word, POS, parser,
hypernyms, and 60 hand-coded rules were used as features to
train SVMs [34].

Two-Channel CNN: Two input channels were used to allow the
employment of task-specific and static word embeddings simul-
taneously, which was improved by Kim [19] based on CNN.

LDAþMaxEnt: Phan et al. [3] proposed the method to discover
hidden topics, from external Wikipedia corpus, using LDA to
expand short texts. After feature expansion, MaxEnt classifier is
used to make prediction.

Multi-topicsþMaxEnt: Based on the work of Phan et al. [3],
Chen et al. [2] leverage topics at multiple granularity to model
short texts precisely.

With the same setup of experimental data, the comparisons of
our method against the 8 baselines are demonstrated in Table 4. As
a whole, our proposed method CCNN achieves the best perfor-
mance. For benchmark TREC, our framework initialized using the
three different word embeddings all outperform the introduced
baselines, so the semantic representations in the second layer can
extract useful features. Furthermore, when GloVe word embed-
ding is employed, the highest classification accuracy 96.8% is
obtained, as a result of that GloVe is trained over Wikipedia2014
and Gigaword5 globally. Thus, the GloVe word embedding is more
general compared with the others.

However, when the word embedding induced by Word2Vec is
used, we obtain the best result of 85.5% on the benchmark Google
Snippets. The most important reason is that the Word2Vec
embedding is learned over Google News. So, the benchmark
Google Snippets and Word2Vec embeddings have consistent
semantics. Moreover, the Word2Vec embeddings have higher
dimension and larger vocabulary.

5.2.2. Statistical significant test
In order to demonstrate the significance of our method com-

pared to baselines, we design 5-fold cross-validation experiments

http://ml.nec-labs.com/senna/
http://nlp.stanford.edu/projects/glove/


Fig. 5. Experimental results (mean accuracy 7 standard deviation) with 5-fold cross validation.

Table 5
The p-values of T-test over benchmark Google Snippets (n1.0e-3).

Methods TF-IDF (þSVMs) PV (þSVMs) LSTM

CCNN (Senna) 0.000992 0.000383 0.001597
CCNN (GloVe) 0.001545 0.000395 0.004507
CCNN (Word2Vec) 0.000342 0.000393 0.002078

Table 6
The p-values of T-test over benchmark TREC.

Methods TF-IDF (þSVMs) PV (þSVMs) LSTM

CCNN (Senna) 0.0236 0.0174395n1.0e-5 0.2048
CCNN (GloVe) 0.0002 0.0441784n1.0e-5 0.0008
CCNN (Word2Vec) 0.0011 0.0210382n1.0e-5 0.0133
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on two benchmarks. Different from the experimental setup in
Section 5.2.1, we respectively mix up the original training samples
and test samples of Google Snippets and TREC shown in
Tables 1 and 2. Then, we divide each mixed data set into 5 parts
equally and conduct cross-validation experiments. Similar to
Table 4, we reproduce three of the baselines, which include TF-
IDFþSVMs, Paragraph VectorþSVMs (abbr. to PVþSVMs) and
LSTM. The comparisons are demonstrated in Fig. 5.

For the experimental results in Fig. 5, we conduct T-test [35], and
the p-values are shown in Tables 5 and 6, respectively. From Table 5,
we can observe that all p-values o0:01, which indicate that our
methods outperform baselines over benchmark Google Snippets
obviously. However, the corresponding p-value 40:05 of our method
CCNN (Senna) against LSTM in Table 6, which implies that the two
methods have obtained close performance over benchmark TREC.

Holistically, comparing the results in Fig. 5, as well as p-values
in Tables 5 and 6, it is clear that PVþSVMs approach does poorly
over two benchmarks, and although LSTM achieves almost the
same results as our CCNN does for benchmark TREC, it does not do
well in the dataset of Google snippets. While our CCNN approach
performs consistently well across the two benchmarks. We guess
that an explanation for the consistent good performance of our
CCNN is that we use NWEs derived from semantic cliques for
expanding raw text, as well as extra knowledge introduced by pre-
trained word embeddings.

5.2.3. Effect of hyper-parameters
As shown in Fig. 4, in order to obtain the representations of

semantic units with multi-scale, multiple window matrices with
increasing width are used. For instance, if m window matrices are
employed, their width are ranging from 2 tomþ1, which act as from
2-gram to mþ1-gram. Additionally, the projected matrix can be
viewed as unigram. Thus the proposed architecture can fully explore
the contexture information of short texts to alleviate the negative
effect of their short length in representations. The experimental
results with respect to variable m are demonstrated in Fig. 6. For
benchmark Google snippets, the highest classification accuracy was
achieved when the window width is 2. Meanwhile, we obtained the
best result on TREC when the window width is 3. Then we can
conclude that the small size of windowmay result in the loss of some
critical information that induce the ambiguous phrase composition,
whereas the window with large size may generate noise.

As described in Section 4.1.1, the representations of semantic units
are induced by additive composition. However, compared with their
precise results, the embedding offsets may produce, as shown in Eqs.
(1) and (2). The representations of semantic units and the word
embeddings are vectors with equal dimension. Therefore, we dis-
cover the NWEs of semantic units in the embedding spaces to
decrease the offsets. For each semantic unit, the chosen NWEs should
satisfy the pre-set distance threshold d that limits the Euclidean
distance between them. The experimental results, over benchmark
Google snippets in terms of hyper-parameter d, are shown in Fig. 7.
We can find that when d is too small, only a few of NWEs can be
available. However, when d is too large, many unrelated NWEs are
enrolled. Furthermore, the optimized threshold d is variable when
the initialization of lookup table is different.

From Figs. 6 and 7, we can also find that the performance of our
method varies with the different initialization of lookup table
utilizing the three pre-trained word embeddings. The parameters
of the word embeddings described in Table 3, such as training
techniques, corpus, dimension of word embedding, size of voca-
bulary, and the vocabulary coverage rate of three word embed-
dings on the two datasets demonstrated in Table 7 are the factors
which affect classification accuracy. The impacts of other hyper-
parameters like the number and size of the feature detectors in
convolutional layer, and the variable K in K-max pooling layer are
beyond the scope of this paper.
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Table 7
The vocabulary coverage rate of word embeddings on two benchmarks.

DataSets Google Snippets TREC

jVocab:j 30,616 7065
Senna (%) 62.5 76.2
GloVe (%) 68.1 81.3
Word2Vec (%) 73.3 84.6
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6. Conclusion

In this paper, we proposed a novel semantic hierarchy for short
texts modeling and classification. The pre-trained words embed-
dings are used to initialize the lookup table, which introduce extra
knowledge and enable us to measure words affinity by computing
the Euclidean distance between two vector representations. The
additive composition method is utilized to compute multi-scale
semantic units for short texts expansion. In the embedding spaces,
similar words are grouped together that help learning algorithms
to achieve better performance. Experimental results on open
benchmarks validated the effectiveness of the proposed method.
Future improvements can be obtained by supervised feature
down-sampling, task-specific embeddings learning, and embed-
ding affinity measurement in vector spaces.
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