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a b s t r a c t

Multivariate Gaussian distribution is a popular assumption in many pattern recognition tasks. The
quadratic discriminant function (QDF) is an effective classification approach based on this assumption.
An improved algorithm, called modified QDF (or MQDF in short) has achieved great success and is widely
recognized as the state-of-the-art method in character recognition. However, because both of the two
approaches estimate the mean and covariance by the maximum-likelihood estimation (MLE), they often
lead to the loss of the classification accuracy when the number of the training samples is small. To attack
this problem, in this paper, we engage the graphical lasso method to estimate the covariance and propose
a new classification method called the graphical lasso quadratic discriminant function (GLQDF). By
exploiting a coordinate descent procedure for the lasso, GLQDF can estimate the covariance matrix (and
its inverse) more precisely. Experimental results demonstrate that the proposed method can perform
better than the competitive methods on two artificial and nine real datasets (including both benchmark
digit and Chinese character data).

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Statistical techniques are widely used for classification in
various pattern recognition problems [14]. Statistical classifiers
include linear discriminant function (LDF), quadratic discriminant
function (QDF), Parzen window classifier, nearest-neighbor
(1-NN), k-NN rules and margin classifiers [13,12]. QDF is derived
under the assumption of multivariate Gaussian distribution for
each class. Despite its simplicity, QDF and its variants have
achieved great success in many fields. In a performance evaluation
study of classifiers in handwritten character recognition, QDF and
its variants were shown to be superior in the resistance to
noncharacters even though they were not trained with nonchar-
acter data. The parameters involved in QDF, e.g., the mean and the
covariance, are often obtained via the principle of the maximum-
likelihood estimation (MLE) [10]. MLE has a number of attractive
features. First, it usually has good convergence properties as the
number of training samples increases. Furthermore, it can often be
simpler than alternative methods, such as Bayesian techniques.
However, when the number of training samples is small (especially
when compared to dimensionality), the estimated covariance based

on MLE could be often ill-posed, making the covariance matrix
singular; this further leads its inverse matrix to not be computed
reliably.

To solve this problem, there have been a number of approaches
in the literature. Modified quadratic discriminant function (MQDF)
[15] is proposed to replace the minor eigenvalues of covariance
matrix of each class with a constant parameter. This small change
proves very effective and has made MQDF a state-of-the-art
classifier in character recognition. However, the substitution of
minor eigenvalues with a constant inevitably loses some class
information. Meanwhile, the cutoff threshold of minor eigenvalues
and the constant selection are critical for the final performance.
Liu et al. [19] proposed a discriminative learning algorithm called
discriminative learning QDF (DLQDF). It optimizes the parameters
of MQDF with the aim to improve the classification accuracy based
on the criterion of minimum classification error (MCE). Similar
to MQDF, DLQDF has the same problem in parameter selection.
Alternatively, the regularized discriminant analysis (RDA) [6]
improves the performance of QDF by covariance matrix interpola-
tion. Hoffbeck and Landgrebe further extended RDA by optimizing
the interpolation coefficients [11]. Empirical results showed that
these two algorithms can usually improve the classification perfor-
mance of QDF. However, the improvements are also dependent on
two critical parameters β and γ. In short, all of the above-mentioned
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methods need empirical settings of parameters to achieve the best
results, which are however both time-consuming and task-dependent
in real applications.

Different from the above approaches, in this paper, we present
a novel method, called the graphical lasso quadratic discriminant
function (GLQDF). By engaging the graphical lasso, the covariance
estimation of the ordinal QDF can be successfully conducted even
when the number of training samples is very small. Moreover, we
can estimate the inverse of the covariance directly and hence avoid
singular problems involved in QDF. One appealing feature is that
the whole process is parameter-insensitive. This presents one big
advantage over the other methods.

The rest of the paper is organized as follows. In the next
section, we make an overview of QDF and MQDF. In Section 3, we
introduce our novel GLQDF in detail. In Section 4, we conduct a
series of experiments to verify our method. Finally, we set out
concluding remarks in Section 5.

2. Review of QDF and MQDF

In this section, we review the QDF and the MQDF and also
present some basic notations used throughout the paper.

2.1. Quadratic discriminant function

In this section we briefly review the algorithm of QDF. Let
x¼ ðx1;…; xdÞT represent a feature of a pattern, the posteriori
probability can be computed by the Bayes rule:

PðωijxÞ ¼
PðωiÞpðxjωiÞ

pðxÞ ; i¼ 1;…;M ð1Þ

where PðωiÞ is the prior probability of class ωi, pðxjωiÞ is the class
probability density function (pdf) and p(x) is the mixture density
function. Since p(x) is independent of class label, the nominator of
Eq. (1) can be used as the discriminant function for classification:

gðxjωiÞ ¼ pðωiÞpðxjωiÞ: ð2Þ
Assume the pdf of each class is multivariate Gaussian:

pðxÞ ¼ 1

ð2πÞd=2jΣj1=2
exp �1

2
ðx�uÞtΣ�1ðx�uÞ

� �
; ð3Þ

where x is a d-component vector, μ is the mean vector, and Σ is
the d� d covariance matrix. The quadratic discriminant function is
derived from Eq. (3) as follows:

gðxjωiÞ ¼ ðx�μiÞtΣ �1
i ðx�μiÞþ log jΣ ij: ð4Þ

The QDF is actually a distance metric in the sense that the class of
minimum distance is assigned to the input pattern.

By K–L transform, the covariance matrix can be diagonalized as

Σ ¼ΦΛΦT ð5Þ
where Λ¼ diag½λ1;…; λd� with λi; i¼ 1;…; d, being the eigenvalues
(in decreasing order) of Λ, and Φ¼ ½ϕ1;…;ϕd� with ϕi; i¼ 1;…; d,
being the ordered eigenvectors.

Thus the QDF can be rewritten in the form of eigenvectors and
eigenvalues:

gðxjωiÞ ¼ ½ΦT
i ðx�μiÞ�TΛ�1

i ΦT
i ðx�μiÞþ log jΛij

¼ ∑
d

j ¼ 1

ððx�μiÞtφijÞ2
λij

þ ∑
d

j ¼ 1
log λij: ð6Þ

This function will lead to the optimal classifier, provided that
(1) the actual distribution is normal, (2) the prior probabilities of
all categories are equal and (3) the parameters μ and Σ can be
reliably provided. However, since the parameters are usually
unknown, the sample mean vector μ̂ and sample covariance

matrix Σ̂ are used

ĝðxjωiÞ ¼ ½Φ̂T
i ðx� μ̂ iÞ�T Λ̂

�1
i Φ̂

T
i ðx� μ̂ iÞþ log jΛ̂ ij

¼ ∑
d

j ¼ 1

ððx� μ̂ iÞtφ̂ ijÞ2

λ̂ ij

þ ∑
d

j ¼ 1
log λ̂ ij; ð7Þ

here λij is the i-th eigenvalue of Σ̂ i and φ̂ i is the eigenvector. It is
well-known that small eigenvalues in Eq. (7) are usually inaccu-
rate; this hence causes the reduction of recognition accuracy.
Moreover, the computational cost of Eq. (7) is Oðd3Þ for d-dimen-
sional vectors, which may be computationally difficult when the
dimension is high.

2.2. Modified quadratic discriminant function

MQDF is a modified version of the ordinary QDF. QDF suffers
from the quadratic number of parameters, which cannot be
estimated reliably when the number of samples per class is
smaller than the feature dimensionality. MQDF reduces the com-
plexity of QDF by replacing the small eigenvalues of covariance
matrix of each class with a constant. Consequently, the small
eigenvectors will disappear in the discriminant function. This
reduces both the space and the computational complexity. More
importantly, this small change proves to improve the classification
performance significantly. Denote the input sample by a d-dimen-
sional feature vector x¼ ðx1; x2; x3;…; xdÞT . For classification, each
class ci is assumed to have a Gaussian density pðxjciÞ ¼Nðui;siÞ,
where μi and si are the class mean and covariance matrix,
respectively. Assuming equal a priori class probabilities, the dis-
criminant function is given by the log-likelihood

�2 log pðxjωiÞ ¼ ðx�μiÞTΣ �1
i ðx�μiÞþ log jΣ ijþCI ð8Þ

where CI is a class-independent term, and is usually omitted. We take
the minus log-likelihood to make the discriminant function a distance
measure. The covariance matrix Σi can be diagonalized as Λi, where
Λi ¼ diag½λi1;…; λik;…; λid� has the eigenvalues of λik (in descending
order) as diagonal elements, φik is an ortho-normal matrix compris-
ing as columns the eigenvectors of λik. Replacing the minor eigenva-
lues with a constant, i.e., replacing Λi with diag ½λi1;…; λik; δi;…; δi� (k
is the number of principal eigenvectors to be retained), the discrimi-
nant function of Eq. (7) becomes what we call MQDF:

gðxjωiÞ ¼ ∑
k

j ¼ 1

ððx�μiÞtφijÞ2
λij

þ ∑
k

j ¼ 1
log λij

þ 1
δi

Jx�μi J
2� ∑

k

j ¼ 1
jðx�μiÞTφijj2

 !
þðd�kÞlog δi ð9Þ

where i; j¼ 1;…; k are the principal eigenvectors of the covariance
matrix of class ωi.

By defining

riðxÞ ¼ Jx�μi J
2� ∑

k

j ¼ 1
jðx�μiÞTϕijj2 ð10Þ

where ri(x) is the residual of subspace projection, Eq. (9) can be
rewritten as

gðxjωiÞ ¼ ∑
k

j ¼ 1

ððx�μiÞtφijÞ2
λij

þ ∑
k

j ¼ 1
log λijþ

1
δi
riðxÞþðd�kÞlog δi

ð11Þ

The parameters of MQDF are estimated as follows. The mean
vector and covariance matrix of a class are estimated from the
sample data of this class. The class-dependent δi is calculated by
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the average of minor eigenvalues

δi ¼
trðΣ iÞ�∑k

j ¼ 1λij
d�k

¼ 1
d�k

∑
d

j ¼ kþ1
λij ð12Þ

where trðΣ iÞ denotes the trace of covariance matrix.
In classification, the input pattern is classified to the class of

minimum quadratic distance and multiple candidate classes are
ordered in the ascending order of distances.

There are at least three appealing features about MQDF. Firstly, it
overcomes the bias of minor eigen-values (which are underestimated
on small sample size) such that the classification performance can be
improved. Second, for computing MQDF, only the principal eigenvec-
tors and the eigenvalues are to be stored so that the memory space is
reduced. Third, the computation effort is largely saved because the
projections to minor axes are not computed [19].

3. Graphical lasso quadratic discriminant function

In this section, we focus on introducing the graphical lasso
quadratic discriminant function. We will present the problem for-
mulation, the related work, and the involved optimization method.

3.1. Problem formulation

The key problem in the QDF is the estimation of covariance
matrix and mean. QDF applies maximum-likelihood to estimate
the covariance which usually has a lower bias when there are
enough training samples. However, when the number of training
samples is small, the estimation results will have a large bias and
thus decrease the classification accuracy. To solve this problem, we
apply log-likelihood instead of the maximum-likelihood to esti-
mate the covariance matrix.

Suppose we are given n samples independently drawn from an
m-dimensional Gaussian distribution: yð1Þ;…; yðnÞ �Nðμ;ΣpÞ,
where the covariance matrix Σ is to be estimated. Let S denote
the second moment matrix about the mean:

S≔
1
n

∑
n

k ¼ 1
ðyðkÞ �μÞðyðkÞ �μÞT : ð13Þ

Let Θ¼Σ �1, the problem of graphical lasso is to maximize the
penalized log-likelihood

Σ̂
�1 ¼ arg max

Θg0
log detΘ�trðSΘÞ�ρJΘJ1; ð14Þ

here tr denotes the trace and JΘJ1 is the L1 norm – the sum of the
absolute values of the elements of Σ�1 [2]. The scalar parameter ρ
controls the size of the penalty. In the case where Smac; sc;0, the

classical maximum likelihood estimate is recovered for ρ¼ 0.
However, when the number of samples n is small compared to
the number of variables p, the second moment matrix may not be
invertible. In such cases, for ρ40, the estimator performs some
regularization so that the estimate Σ̂ is always invertible, no
matter how small the ratio of samples to variables is.

3.2. Related work

In recent years, a number of researchers have proposed the
estimation of Gaussian models through the use of L1 (lasso)
regularization, which increases the sparsity of the inverse covar-
iance. Meinshausen and Bühlmann [20] took a simple approach to
this problem. They estimated a sparse model by fitting a lasso
model to each variable while using the others as predictors. Other
researchers have proposed algorithms for the exact maximization
of the L1�penalized log-likelihood. For example, Yuan and Lin
[23], Banerjee et al. [2], and Dahl et al. [4] adapted interior point
optimization methods for the solution to this problem, Bigot and
Biscay [3] used a matrix regression model for high-dimensional
covariance matrix estimation by a group lasso penalty. All these
papers revealed that the simpler approach of Meinshausen and
Bühlmann [20] can be viewed as an approximation to the exact
problem. Banerjee et al. [2] exploited the blockwise coordinate
descent approach to solve the lasso problem. Friedman et al. [8]
invented the graphical lasso and applied fast coordinate descent
algorithms to solve the lasso problem. Graphical lasso is faster
than previous methods and also provides a conceptual link
between the exact problem and the approximation suggested by
Meinshausen and Bühlmann [20].

3.3. Graphical lasso solution

Let W be the estimation of Σ . We can solve the problem by
optimizing over each row and corresponding column of W in a
block coordinate descent approach. Partitioning W and S

W ¼
W11 w12

wT
12 w22

 !
; S¼

S11 s12
sT12 s22

 !
; ð15Þ

the solution for w12 satisfies

w12 ¼ arg min
y

fyTW �1
11 y : Jy�s12 J1rρg ð16Þ

This is a box-constrained quadratic program (QP), which can be
solved using an iterative interior-point procedure. At each itera-
tion, the target column is the last by permuting the rows and
columns. By solving Eq. (16) for each column, we obtain a column
of the solution. This procedure is repeated until convergence. If
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Fig. 1. Estimation error on synthetic data. (a) 2-dimensional estimation and (b) 10-dimensional estimation.
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this procedure is initialized with a positive definite matrix, the
iterates from this procedure remain positive definite and inverti-
ble, even if p4N.

Using convex duality, the solution of problem (16) is equivalent
to solving the dual problem

min
β

1
2
:W1=2

11 β�b 2þρ:β:1
�� �

;

�
ð17Þ

where b¼W �1=2
11 s12; if β solves Eq. (17), then w12 ¼W11β solves Eq.

(16). Expression (17) resembles a lasso (L1regularized) least squares
problem. If W11 ¼ S11, the solutions β̂ are easily seen to equal the
lasso estimates for the p-th variable on the others. WhenW11aS11 in
general, we can use the fast coordinate descent algorithm [7], which
makes solution of the lasso problem very attractive.

To solve problem (17), we use W11 and s12, where W11 is the
current estimate of the upper block of W. This algorithm updates
w and cycles through all of the variables until convergence.

The detailed algorithm is listed in Algorithm 1.

Algorithm 1. Graphical lasso algorithm.

1: Start with W ¼ SþρI. The diagonal of W remains unchanged
in what follows.

2: for j¼ 1;2;…; p; 1;2;…; p;…
3: input: W11 and s12

4: solve the lasso problem (17)
5: give a p�1 vector solution β̂
6: fill in the corresponding row and column of W using

w12 ¼W11β̂
7: continue until convergence
8: end for

3.4. Graphical lasso quadratic discriminant function algorithm

As a short summary of the above-mentioned QDF and the
graphical lasso algorithm, the GLQDF algorithm can be divided into
two steps. The first step is the estimate of class covariance and its
inverse under the penalized log-likelihood criteria, which is
realized by the graphical lasso algorithm. The input parameters
of the graphical lasso algorithm include the empirical covariance
of class and the penalized factor ρ. The output of the algorithm is
the estimated covariance and its corresponding inverse matrix. In
the second step, the parameters Σ�1 and jΣj are then input into
Eq. (4) to achieve the final discriminant function.

By engaging the graphical lasso, the covariance estimation of
the ordinal QDF can be successfully conducted even when the
number of training samples is very small. Moreover, we can
estimate the inverse of the covariance directly and hence avoid
singular problem involved in QDF. One appealing feature is that
the whole process is parameter-insensitive. This presents one big
advantage over the other methods.
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Fig. 2. Recognition rate comparison among different methods. (a) Wine, (b) car, (c) Ecoli, and (d) Sat, Optdigits and HW306.

Table 2
USPS and MNIST datasets for experiments.

Datasets # of classes Image size # of training # of test

USPS 10 16�16 7291 2007
MNIST 10 20�20 60 000 10 000

Table 1
Description of the used UCI datasets.

Datasets # of classes # of dimension # of training # of test

Ecoli 8 7 303 33
Wine 3 13 161 17
Car 4 6 1682 186
Optdigits 10 64 3823 1797
Sat 6 36 4435 2000
HW306 153 512 91 365 9141
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4. Experimental results

We conduct extensive experiments to verify the effectiveness
of the proposed algorithm for covariance estimation and classifi-
cation. All the algorithms are implemented and run using Matlab
on a PC with 3.0 GHz CPU and 2 GB RAM.

4.1. Results on synthetic data

In this section, we perform experiments on synthetic data to
measure how accurate the proposed graphical lasso covariance
estimate will be. We compared the estimated covariance obtained
by graphical lasso and the EM algorithm, which is used in QDF. In
more detail, we first generate samples following a specific Gaus-
sian distribution. We then use EM and graphical lasso to estimate
the covariance. Finally we examine the estimation error between
the ground truth covariance and the estimated covariance. The
estimation error is computed by the below equation:

D¼ sqrt ∑
m

i ¼ 1
∑
m

j ¼ 1
jCij�C′

ijj
 !

: ð18Þ

We generate both two-dimensional data and ten-dimensional
data, the number of samples are from 50 to 10 000. The results are
listed in Fig. 1.

From the results, we can see that the graphical lasso estimates
the covariance more precisely than the EM estimator both on
2-dimensional data and 10-dimensional data. The superiority is
more distinctive when the number of samples is smaller than the
data dimensionality. This can be seen in the left part of Fig. 1(b).

4.2. Results on UCI

To examine the classification performance of GLQDF, we con-
duct a series of experiments on six datasets from UCI repository
[1], summarized in Table 1. These datasets have been used in many
other studies [5,16,21]. We implemented the MQDF [15,22] and
the popular nearest class mean (NCM) [9], and used them as the
comparison methods with the proposed GLQDF.

For simplicity, we apply linear discriminant analysis (LDA) to
reduce the dimensionality to the class number by 1 in the
experiments. After the dimensionality reduction, the MQDF, NCM
and GLQDF classifiers are then adopted to evaluate the perfor-
mance. The reported test accuracies are acquired using 10-fold
cross validation (CV) for the first three UCI datasets and the
average results and their standard deviations are reported in

Fig. 2(a)–(c). For Sat-log, Optdigits and HW306, the accuracies
are calculated on their specified test sets and the results are
reported in Fig. 2(d). It is clear that the GLQDF achieves better
recognition rate in every dataset than MQDF and NCM. This clearly
demonstrates the advantages of the proposed GLQDF.

Fig. 3. USPS and MNIST samples. (a) USPS samples and (b) MNIST samples.
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Fig. 5. Recognition rate comparison on USPS and MNIST using gradient features.
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4.3. Results on handwritten digit datasets

In this section, we report the experimental results of the
proposed algorithm on two handwritten digit datasets, the United
States Postal Services (USPS) dataset and MNIST. The basic infor-
mation is listed in Table 2. Fig. 3 illustrates some image samples
from these two datasets.

We compare the recognition rate of different classifiers on both
the pixel-level feature and the gradient feature. The pixel-level
feature number of the two datasets is 256 and 400, respectively.
The gradient feature is extracted by the algorithm in [17]. We
specify 8 directions of gradient and choose grid structure of 4�4
for USPS and 5�5 for MNIST. Thus, the gradient feature dimen-
sionality of USPS and MNIST is 128 and 200, respectively. We
reduce the dimensionality to c�1 by LDA in both the USPS and the

MNIST and feed to the MQDF, NCM and GLQDF for training and
test. We obtain the hyper-parameter of MQDF, which is a multi-
plier used for the selection of constant δi, by cross validation. We
select the principle axes as 8. The final results on pixel feature are
listed in Fig. 4 and the result on gradient feature is listed in Fig. 5.

From the results, using both the pixel features or gradient
features, the recognition rate of GLQDF is better than the MQDF
and NCM. This proves again the effectiveness of the lasso criterion
based covariance estimation.

4.4. Results on handwritten Chinese character data

We exploited the CASIA dataset for comparison. The CASIA
dataset, collected by the Institute of Automation, Chinese Academy
of Sciences, contains 3755 Chinese characters of the level-1 set of
the standard GB2312-80, 300 samples per class. We choose 250
samples per class for training and the remaining 50 samples per
class for test. Fig. 6 describes some image samples from the
dataset. We selected the first 200 classes from CASIA data for
our experiment. Each binary image of CASIA data was firstly
normalized to gray-scale image of 64�64 pixels by the bi-
moment normalization method [18]. Then the 8-direction gradient
direction features were extracted. The resulting 512-dimensional
feature vector was projected into a low dimensional subspace
learned by the global LDA. All of the projected vectors were then
fed to the MQDF, NCM and GLQDF classifier. The hyper-parameter
of MQDF was learned by cross validation and its principle axes
were set to 20 in different lower subspaces.

To compare the performance among MQDF, NCM and GLQDF,
we projected the original features into different lower subspace
and recorded the recognition rate of the corresponding classifier.
The results are listed in Fig. 7. From the results, we can see that
GLQDF achieves competitive performance than the MQDF, even
when the number of lower subspace is equal to 150. However,
since our GLQDF merely needs to tune one parameter (ρ) which
proves not sensitive, it appears more stable than MQDF. Further-
more, compared to NCM, GLQDF demonstrates much better
performance. This shows again the advantages of GLQDF.

4.5. Parameter insensitiveness analysis

In this section, we investigate how the parameter ρ of GLQDF
influences the recognition performance in USPS and MNIST
datasets by only using the pixel-level features. By varying ρ from
1 to 1000 gradually, we obtain the corresponding recognition rate
and show the results in Fig. 8. As we can see, the performance
curves are basically flat. This verifies that the final recognition rate
is not much sensitive to the scalar factor ρ.
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Fig. 6. Samples of CASIA.
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5. Conclusion

In this paper, we engage the graphical lasso method to estimate
the covariance and propose a new quadratic method called the
graphical lasso quadratic discriminant function (GLQDF). By
exploiting a coordinate descent procedure for the lasso, GLQDF
can estimate the covariance matrix more precisely. We can even
compute the inverse of the covariance. This solves the singular
problem in covariance estimation, especially when the number of
samples is smaller than the dimensionality. Extensive experiments
demonstrate that the proposed method can perform better than
the competitive methods on two artificial and nine real datasets.
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