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Abstract—Both anatomical and functional brain network
studies have drawn great attention recently. Previous studies
have suggested the significant impacts of brain network to-
pology on cognitive function. However, the relationship be-
tween non-task-related resting-state functional brain net-
work topology and overall efficiency of sensorimotor pro-
cessing has not been well identified. In the present study, we
investigated the relationship between non-task-related rest-
ing-state functional brain network topology and reaction time
(RT) in a Go/Nogo task using an electroencephalogram
(EEG). After estimating the functional connectivity between
each pair of electrodes, graph analysis was applied to char-
acterize the network topology. Two fundamental measures,
clustering coefficient (functional segregation) and character-
istic path length (functional integration), as well as “small-
world-ness” (the ratio between the clustering coefficient and
characteristic path length) were calculated in five frequency
bands. Then, the correlations between the network measures
and RT were evaluated in each band separately. The present
results showed that increased overall functional connectivity
in alpha and gamma frequency bands was correlated with a
longer RT. Furthermore, shorter RT was correlated with a
shorter characteristic path length in the gamma band. This
result suggested that human RTs were likely to be related to
the efficiency of the brain integrating information across dis-
tributed brain regions. The results also showed that a longer
RT was related to an increased gamma clustering coefficient
and decreased small-world-ness. These results provided fur-
ther evidence of the association between the resting-state
functional brain network and cognitive function. © 2011
IBRO. Published by Elsevier Ltd. All rights reserved.
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Most studies investigating cognitive functions and their
neural correlation were aimed at localizing brain regions
that are responsible for the tasks (Dolan, 2008). Recently,
the viewpoint of cognitive function has been inclined to the
dynamic interconnections between distributed brain re-
gions (Bressler and Menon, 2010). It has been suggested
that the pattern of the network topology might be of great
importance for human brain function (Reijneveld et al.,
2007; Bassett and Bullmore, 2009; Bullmore and Sporns,
2009; Li et al., 2009; van den Heuvel et al., 2009).

Our brain is not inactive even during the non-task—
related resting-state (Raichle et al., 2001; Greicius et al.,
2003; Raichle and Snyder, 2007). The brain activity during
the resting-state may reflect the brain’s potential processing
abilities (Ramos-Loyo et al., 2004) and is correlated with
individual differences in the cognitive process (Kounios et al.,
2008). A resting functional magnetic resonance imaging
(fMRI) study has shown that human intellectual performance
was dependent on the efficiency of our brain integrating
information across distributed brain regions (van den Heuvel
et al., 2009). However, the association between non-task—
related resting-state functional brain network topology and
the efficiency of information processing has not been well
identified.

Network topology could be studied using the graph
theory. By estimating the functional connectivity between
pairs of brain regions or electrodes, we can obtain the
graph representation of the functional brain network (Stam
and Van Dijk, 2002; Bullmore and Sporns, 2009; Stam et
al., 2009). Various measures such as the clustering coef-
ficient and characteristic path length can be used to char-
acterize the network (Bullmore and Sporns, 2009; Rubinov
and Sporns, 2010). The clustering coefficient is a measure
of functional segregation, whereas the characteristic path
length is the functional integration (Rubinov and Sporns,
2010). A type of network, named small-world (Watts and
Strogatz, 1998), which could be quantitatively measured
by small-world-ness (Humphries and Gurney, 2008), has
been suggested to be optimal for information processing
(Lago-Fernandez et al., 2000; Latora and Marchiori, 2001).
Moreover, the existence of small-world topology in func-
tional brain networks has been recently confirmed by a few
studies (Watts and Strogatz, 1998; Stam, 2004; He et al.,
2007; Bullmore and Sporns, 2009).

In the present study, we investigated the relationship
between the electroencephalogram (EEG) non-task-re-
lated resting-state brain network topology and reaction
time (RT) in a Go/Nogo task. The RT has been suggested
to reflect the overall efficacy of sensorimotor processing
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Fig. 1. Experimental paradigm. (A) A resting-state of 5 min (B) Go/
Nogo task design. Subjects were instructed to observe the cross
fixation for 2000—-3000 ms before a red or green square appeared for
100 ms after the cross. The subject was instructed to respond as
quickly as possible, only upon seeing the green square. The square
appeared for 100 ms followed by another cross fixation of 600 ms.
Before the next trial began, the screen was blank for 1400-1800 ms.
For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.

(Reinhart et al., 2011). We hypothesized that a shorter RT
was related to higher efficiency of the brain integrating
information (i.e. shorter characteristic path length).

EXPERIMENTAL PROCEDURES
Participants

Twelve healthy, right-handed college students (four females and
eight males, age range: 19-21 years) with normal or corrected-
to-normal vision were recruited. None of the subjects used any
medication nor did they or their relatives suffer from psychiatric or
neurological disease. All subjects gave their informed and written
consent before participation.

Procedure

Before recording the EEG, the subject was seated in a semi-sitting
position in a quiet room and was asked to stay relaxed and refrain
from extensive head motion. Continuous EEG was recorded dur-
ing the following conditions. First, the subject was asked to keep
his/her eyes closed for 5 min (Fig. 1A). Then, after a break of 1
min, the subject performed a Go/Nogo task (Fig. 1B). The Go/
Nogo task was adopted to maintain a high level of attention in the
subjects throughout the experiment (Nikulin et al., 2008). In the
present study, we were going to explore the relationship between
non-task—related resting-state EEG and RT, which was provided
by the task. Hence, any further EEG analysis mentioned in the
present article was focused on the resting-state data.

At the beginning of each trial the subjects were asked to fixate
on a warning cue, which is a central cross. After a random delay
of 2000—-3000 ms, the imperative cue appeared for 100 ms, being
a Go cue (green square) or Nogo cue (red square). The subject
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was asked to press a button on the SRbox (Psychology Software
Tools Inc., Pittsburgh, PA, USA) as quickly as possible when only
seeing the Go cue. Following the Go/Nogo cue, the cross was
further presented for 600 ms. The screen was blank for 1400-1800
ms before the beginning of the next trial. The Go and Nogo cues
were presented in random order with equal probability. Each subject
completed four blocks, each of which consisted of 60 trials.

EEG recording

EEG data were recorded using EGI’s 64-channel HydroCel Geo-
desic Sensor Net (Electrical Geodesics, Inc., Eugene, OR, USA)
with a reference to the vertex (Cz) electrode. All impedances were
kept less than 50 k(). The data were sampled at a frequency of 1
kHz. The following processing steps were completed by using
EEGLAB (http://sccn.ucsd.edu/eeglab/index.html) (Delorme and
Makeig, 2004). The raw data were first subjected to a band-pass
filter between 0.5 and 100 Hz. To filter out the line noise, a 50-Hz
notch filter was then applied. The data were then down-sampled to
500 Hz. For each subject, the first five artifact-free (with all sam-
ples’ amplitudes not exceeding =80 wV) epochs of 4096 samples
(8.192 s) were selected (Stam et al., 2009). One subject was
excluded from further analysis due to extensive artifacts. All ep-
ochs were then converted to a current source density (CSD)
yielding reference-free data using the methods proposed by Kay-
ser and his coworkers (Kayser and Tenke, 2006). Epochs were
band-pass filtered into the following frequency bands: delta (0.5—4
Hz), theta (4—8 Hz), alpha (8—13 Hz), beta (13-30 Hz), and
gamma (30—45 Hz). Further analyses were performed on those
bands separately.

Behavior data analysis

For each subject, the Go-cue-related mean RT was calculated.
Any RT lower than 100 ms and greater than 500 ms was not included
in the calculation (Gonzalez Andino et al., 2005). After the removal of
those samples, the RT distributions of each subject were plotted as
boxplots as shown in Fig. 2. The mean RT of each subject was
calculated by averaging the RTs while excluding the outliers.

Phase lag index

Phase lag index (PLI), which measures consistency of the phase
differences (phase synchronization) between the two signals, is
reflective of the functional connectivity between pairs of electrodes
(Stam et al., 2007, 2009). It was shown to be less affected by
volume conduction than traditional measures such as coherence
and was sensitive to non-linear data (Stam et al., 2007, 2009). A
higher PLI value would indicate stronger functional connectivity,
which is usually interpreted as shorter distance between two
electrodes (Stam et al., 2009). The PLI is defined as follows (Stam
et al., 2007)
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Fig. 2. The RT distribution for each subject. Box plots show the median, interquartile range and extremes. Ellipses and asterisks indicate outliers and

extreme outliers separately.
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Fig. 3. Mean PLI and its correlation with the RT. (A) Mean PLI of each frequency band. Error bars are =SDs. (B) The correlation of the mean PLI
in the alpha band and RT. (C) The correlation of the mean PLI in the gamma band and RT.

PLI = |{sign[A¢(t) ]|

where A¢(t) is the instantaneous phase difference between two
electrodes at time point i, sign[A¢(t)] is 1 when Ag(t) is positive
and sign[A¢(t)]is —1 when Ag(t) is negative; (®) denotes average
over time (see Stam et al., 2007 for more information).

The PLI between all possible pairs of EEG channels (except
the two on the cheek) were calculated, resulting in a 62x62 matrix
of PLI values for each epoch, frequency band, and subject. Then,
for each frequency band, the average PLI matrix was calculated
by averaging across epochs per subject.

Graph analysis

In the present study, treating the electrodes as vertices and PLI
between them as edges, the EEG data can be topologically rep-
resented by an undirected weighted graph. Two fundamental
measures are the clustering coefficient, which is calculated as the
fraction of the vertex’s neighbors that are also the neighbors of
each other, and the characteristic path length, which is the aver-
age shortest path length between all pairs of vertices (Watts and
Strogatz, 1998).

The clustering coefficient was defined as follows (Onnela et
al., 2005; Rubinov and Sporns, 2010):

Ej,hEN (WiJWithJ,h) v

cv = 12
N iENEjeNWiJ(E/eNWiJ - 1)

where Nis the number of electrodes (here, N=62) and w is the PLI
value between vertices i and j.

The characteristic path length was defined as follows (Rubi-
nov and Sporns, 2010):

" 1 E/e/\/#id;,
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where N is the number of electrodes (here, N=62), w is the PLI
value between vertices i and j, and dj is the shortest path length
between vertices i and j.

Both the clustering coefficient and characteristic path length
are dependent on weights and network size (Stam et al., 2009).
50 surrogate networks were generated by randomly reshuffling

the edge weights while keeping the symmetry of the matrix.
Then, the normalized clustering coefficient and characteristic
path length were calculated as Chmaizes = C*ACY ogate) @nd
Liomaiizes = L"{L&rogate)s Where (@) denotes the average over ensem-
bles of the measures of the 50 surrogate networks (Stam et al., 2009).
The “small-world-ness” was then calculated as in Humphries and Gur-
ney (2008). The calculation of the graph measures mentioned previ-
ously was performed using the MATLAB toolbox developed by Rubinov
and Sporns (Rubinov and Sporns, 2010).

Correlation analysis

The correlation between all network measures and RT were eval-
uated using the non-parametric Spearman rank correlation coef-
ficient to avoid the normality assumptions.

RESULTS
Behavioral performance

The subjects performed the task with an accuracy range
from 94.2% to 100% (mean: 98%). The box plots in Fig. 2
showed the distribution of each subject’'s RTs between 100
and 500 ms. The mean RT across the subjects was 306.69
ms (SD: 32.15 ms).

Functional connectivity and RT

Mean PLI of each frequency band is shown in Fig. 3A.
Correlation analysis revealed significant positive correla-
tions between mean PLI in alpha and gamma bands and
RT (Fig. 3B, C). To identify which links were more corre-
lated with RT in the alpha and gamma bands, the correla-
tion coefficient between RT and the PLI of each possible
electrode pair was calculated. The topological locations of
the links showed a significant correlation (P<<0.01, uncor-
rected) with the RT, which are shown in Fig. 4. The net-
work measures, normalized clustering coefficient, normal-
ized characteristic path length as well as small-world-ness
were found to be related to the RT in the gamma band (Fig.
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Fig. 4. Spatial topography of links that showed a significant correlation with the RT in the alpha and gamma bands. Lines are color-based on the
correlation coefficient between each link and RT. For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.

5). An increased normalized clustering coefficient was cor-
related with a longer RT in the gamma band (Fig. 5A). A
significant positive correlation between the normalized
characteristic path length and RT was observed (Fig. 5B).
Furthermore, the gamma band small-world-ness was
found to be negatively correlated with RT (Fig. 5C). How-
ever, the results showed no significant correlation between
RT and the alpha normalized clustering coefficient, char-
acteristic path length, or small-world-ness.

DISCUSSION

The current study found that various eye-closed non-task—
related resting-state functional connectivity network mea-
sures were correlated with the RT in a Go/Nogo task.
Specifically, the correlation between the mean PLI and RT
was observed in alpha and gamma bands. Moreover, the
network topology measures were also found to be corre-
lated with RT in gamma but not in any other band. These
results might suggest that the non-task—related resting-
state EEG measures might be reflective of the efficiency of
sensorimotor processing in healthy subjects in the Go/
Nogo task.

On one hand, in the current study, the overall alpha
synchronization was found to be positively correlated with
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RT (Fig. 3). Alpha has been suggested to be an important
timing mechanism for the cognitive process and is related
to the speed of information processing (Klimesch et al.,
1996). The local and long-range alpha synchronizations
have been associated with various cognitive functions
(Gonzalez Andino et al., 2005; Hanslmayr et al., 2007a, b;
Doesburg et al., 2009). In detail, it was found that in-
creased pre-stimulus alpha power was related to a slower
response in healthy subjects (Gonzalez Andino et al.,,
2005). This pre-stimulus local alpha synchronization was
interpreted to be a reflection of inhibitory processing (Gon-
zalez Andino et al., 2005). The event-related alpha syn-
chronization was suggested to be a functional correlate of
inhibition in a motor task (Klimesch et al., 2007). The
inhibitory mechanism of alpha synchronization might ex-
plain the positive correlation between the mean PLI and
RT in our study. Of note, Doesburg and colleagues found
that successful visuo-spatial attention was related to long-
range alpha synchronization between the low-level visual
and high-level visual cortices (Doesburg et al., 2009). On
the other hand, Hanslmayr et al. showed that visual per-
ception was negatively correlated with alpha synchroniza-
tion (Hanslmayr et al., 2007b). Another study conducted by
Hanslmayr and coworkers also showed that lower alpha
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Fig. 5. Correlations between gamma network topology measures and RT. Mean RTs were significantly correlated with the gamma band (A)
normalized clustering coefficient, (B) normalized characteristic path length, and (C) small-world-ness.
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synchronization was related to better perception perfor-
mance (Hanslmayr et al., 2007a). These studies might
have further indicated that the role of alpha synchroniza-
tion may depend on the type of tasks (Doesburg et al.,
2009). Most of those studies mentioned previously focused
on research of the relationship between pre-stimulus os-
cillations and cognitive performance. Thus, it was difficult
to make straightforward comparisons with previous studies
discussed previously because of the different tasks and
analytical procedures. While the oscillations during the
pre-stimulus period are a reflection of the subject’s level of
performance and attention effects on neural activities
(Hanslmayr et al., 2007a), the resting-state alpha synchro-
nization was more likely to reflect the potential processing
abilities of the brain and can be predictive of cognitive
performance (Ramos-Loyo et al., 2004; van den Heuvel et
al., 2009). Recent studies have shown that the resting-
state alpha frequency and power were related to the RT
(Jin et al., 2006). According to our results, we speculated
that the overall decreased alpha synchronization was likely
to facilitate the sensorimotor processing and thus resulted
in a shorter RT. In parallel, we also have to note that the
electrodes showing significant correlation with RT were
mainly in the prefrontal, frontal, sensorimotor, parietal-
occipital, and occipital regions (Fig. 4A). These regions
were mainly involved in the default mode network (DMN),
dorsal attention network, and visual processing network
(Mantini et al., 2007). In a simultaneous EEG and fMRI
study, Mantini and coworkers found strong correlation be-
tween the alpha fluctuation and those networks (Mantini et
al., 2007). The frontal regions have been suggested to play
an important role in top-down modulation procedures such
as visuo-spatial attention, working memory, and visual
feature processing (Sauseng et al., 2005; Buschman and
Miller, 2007; Siegel et al., 2008; Zanto et al., 2010, 2011).
The alpha synchronization in fronto-parietal networks was
related to the neural correlates of consciousness (Palva
and Palva, 2007). Thus, we could further speculate that the
state of the subject’s consciousness during the resting-
state might be directly related to the RT. Alpha oscillation
had also been linked to motor function. Pfurtscheller and
colleagues found that the central area alpha would desyn-
chronize before the onset of imagining hand movement
(Pfurtscheller et al., 1997). In our study, stronger alpha syn-
chronization between electrode pairs, including the ones over
the sensorimotor area (Fig. 4), was related to a longer RT.
Taken together, these results might indicate that alpha de-
synchronization would facilitate motor execution.

On the other hand, the current study revealed the
correlation between non-task—related resting-state gamma
measures and task-related RT. A significant positive cor-
relation between the gamma mean PLI and RT was ob-
served (Fig. 3C). The connections that showed significant
correlation with RT were mainly frontal-central and frontal-
parietal pairs (Fig. 4B). The pre-frontal was one of the
regions composing the resting-state network related to
self-referential mental activity (Mantini et al., 2007). Strong
correlation between the network and the gamma power
was also observed by Mantini and coworkers (Mantini et

al., 2007). Furthermore, gamma activity has been widely
associated with higher cognitive functions, such as top-
down attention processing, memory, and learning (Singer,
1993; Tiitinen et al., 1993; Sarnthein et al., 1998; Debener
et al., 2003; Kaiser and Lutzenberger, 2003; Tallon-
Baudry, 2004; Gonzalez Andino et al., 2005). By adopting
a visual perception task, Hanslmayr and colleges demon-
strated that pre-stimulus gamma synchronization was re-
lated to better visual perception (Hanslmayr et al., 2007a).
Gonzalez and coworkers also found that increased gamma
power was related to a shorter human RT (Gonzalez An-
dino et al., 2005). The results of those studies seemed to
lead to the conclusion that increased gamma synchroniza-
tion should lead to a shorter RT, whereas the opposite was
reported here. One possible reason for the discrepancy
would be that the task adopted in this paper was different
from that in those studies. Another important interpretation
would be that we analyzed the non-task—related resting-
state EEG instead of the pre-stimulus period recordings.
The pre-stimulus gamma activity has been suggested to
reflect the current attention and expectation of the upcom-
ing relevant behavioral stimulus that would affect behav-
ioral performance (Hanslmayr et al., 2007a). However, the
resting-state gamma would be more reflective of the po-
tential processing ability. The result suggested that the
resting-state gamma synchronization would also facilitate
sensorimotor processing during the Go/Nogo task.

In the present paper, the network measures were
found to be correlated with RT in the gamma band,
whereas no such relationship was found in other bands. In
more detail, both the normalized clustering coefficient and
characteristic path length were found to be positively cor-
related with the RT (Fig. 5A, B). Recent studies have
shown that the human functional brain network is orga-
nized in a highly efficient small-world manner, and its
network topology might be of great importance to human
brain function (Sporns et al., 2004; Reijneveld et al., 2007;
Bassett and Bullmore, 2009; Bullmore and Sporns, 2009;
Li et al., 2009; van den Heuvel et al., 2009). The normal-
ized clustering coefficient measures the efficiency of local
information transformation, whereas the normalized char-
acteristic path length measures the global efficiency of
information transformation (Bullmore and Sporns, 2009).
The greater clustering coefficient implies greater local in-
formation processing, whereas a smaller characteristic
path length implies greater global efficiency information
processing. Our results indicated that increased efficiency of
the brain integrating information locally would result in slower
sensorimotor processing. On the contrary, increased global
brain information integration efficiency would facilitate the
sensorimotor processing in the task and thus result in a faster
response. It was interesting to note that a recent fMRI
resting-state study found that the decreased normalized
path length would lead to a higher intelligence quotient
(van den Heuvel et al., 2009). Our results revealed that for
the resting-state brain network, higher small-world-ness
was likely to facilitate sensorimotor processing. However, it
was worth noting that the gamma small-world-ness ranged
between 0.956 and 0.995, which implied that the network
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might not be a small-world one (Humphries and Gurney,
2008). This was mainly because a great number of weak
connections were taken into consideration when the
weighted network analysis was adopted in the current study.

Recently, a few studies have demonstrated that EEG
activity shows great difference between eye-closed and
eye-open resting-states (Barry et al., 2007, 2009; Chen et
al., 2008; McAvoy et al., 2008). Thus, our current findings
could not be generalized to the eye-open condition. To this
point, a direct examination of the relationship between
eye-open EEG activity and the behavioral outcomes would
be of great interest in a future study. Last but not least, it
was worth noting that neurological and psychiatric disor-
ders, such as Parkinson’s disease, show excessive syn-
chronization of neuronal activity and longer reaction time
(Williams et al., 2005; Hammond et al., 2007). Patients
with Alzheimer’s disease showed decreased overall syn-
chronization (Stam et al., 2009), but had a longer choice
reaction time (Gordon and Carson, 1990). Thus, reconcil-
ing the current results with neurological or psychiatric dis-
order studies should be done with caution.

CONCLUSION

In conclusion, the present study indicates that non-task—
related resting-state functional connectivity and network
topology are related to RT in Go/Nogo task. Increased
mean PLI in alpha and gamma bands is related to a longer
RT. It was also found that a shorter normalized gamma
characteristic path length was related to a shorter RT.
Furthermore, a shorter RT was related to a decreased
normalized gamma clustering coefficient and increased
small-world-ness.
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