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a b s t r a c t

In this study, a fast and robust reconstruction method based on the separable approximation and the

adaptive regularization is presented for fluorescence molecular tomography. The subproblems can be

established and solved efficiently through separable approximation, and the convergence process can

be also accelerated by adaptive regularization. As is well known, the regularization parameter has an

important impact on the results, and finding the optimal or near-optimal regularization parameter

automatically is an challenging task. To solve this problem, the regularization parameter in the

proposed method is updated heuristically instead of being determined manually or empirically. This

adaptive regularization strategy of the proposed method can perform accurate reconstruction almost

without worrying about the choice of the regularization parameter. By contrast, improper choice of the

regularization parameter may cause larger location errors for the three contrasting methods. The

proposed method is proved robust and insensitive to parameters, which can improve the reconstruc-

tion accuracy. Moreover, the proposed method was about 1–2 orders of magnitude faster than the

contrasting methods commonly used in fluorescence tomography reconstruction. Furthermore, reliable

performance on different initial unknown values and different noise levels was also investigated.

Finally, the potential of the proposed method in a practical application was further validated by the

physical experiment with a mouse model.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, optical molecular imaging has attracted increas-
ing attention due to its ability of non-invasive visualization of
molecular and cellular processes [1–3]. As an important optical
molecular imaging modality, fluorescence molecular tomography
(FMT) is known for its cost-effectiveness and exquisite sensitivity
[4–7]. FMT attempts to reconstruct the 3D spatial distribution of the
fluorescent probes inside of small animals based on the photon
propagation model, the anatomical structure information, the asso-
ciated tissue optical properties, and the excitation power and
position. Lots of efforts have been made to develop photon migra-
tion models [8,9], imaging systems [10–12] and reconstruction
strategies [5,13,32,33]. For instance, in [32], data compression has
been proved efficient in implementing fast reconstruction in FMT.

As we all know, only the light distribution on the surface is
measurable, which makes the number of measurements is much
ll rights reserved.
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less than the number of unknowns. Therefore, the reconstruction
of FMT is usually ill-posed [5]. Therefore, various regularization
methods have been applied to make the solution stable and
insensitive to noise. For example, the L2-norm constraint has
been added to the original problem to improve the stability of
optical tomography [14]. However, L2-norm regularization often
makes the solution over-smoothed and results in a loss of
localized features during reconstruction [16]. Hence, the L2-
norm regularization strategy has difficulty obtaining a sparse
solution in tomographic reconstruction.

Over the past few years, sparse regularization has been devel-
oped in the field of compressed sensing (CS) for signal and image
processing. On the basis of the theory of CS, a sparse or compressive
signal can be recovered from far fewer samples or measurements
[15]. Coincidently, in the practical application of FMT, the fluores-
cent sources which indicate the locations of tumor cells are usually
small and sparse during early detection. Consequently, it is suitable
to apply the CS theory to the FMT problem for recovering the
fluorescent yield distribution. Inspired by the CS theory, several
algorithms incorporated with L1-norm regularization have been
proposed for solving optical tomography problems [4,16–18,34].
For example, in [17], an iterated-shrinkage-based (IS) algorithm for
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the FMT reconstruction was proposed. It is reported to be effective
in reducing the computational burden of the FMT reconstruction.
However, it is a first order method and only has a linear convergence
rate [19]. Therefore, a large number of iterations are required to
obtain satisfactory results. A fast iterated shrinkage method (FIS)
[20], as the accelerated version of the IS method, was proposed to
reduce the number of iterations required for reconstruction. Similar
to the iteration-shrinkage-based methods, Bregman iteration
algorithms are efficient in solving L1-norm reconstruction problem
[34]. It also can be seen as one of the state-of-the-art methods to
solve optical tomographic problems. However, the regularization
parameter of the IS, FIS and Bregman methods keeps unchanged and
needs to be manually optimized. For FMT reconstruction, the
regularization parameter has a significant impact on results: a large
regularization parameter can cause large reconstruction errors,
while a small one slows down the convergence process and may
also cause location errors [17,21]. Therefore, an adaptive and robust
strategy to choose the optimal or near-optimal regularization
parameter is needed.

In this contribution, we propose a fast and robust reconstruc-
tion method based on the separable approximation and adaptive
regularization to solve the FMT problem. Due to the separable
approximation and the adaptive regularization strategy, the
proposed method has a much higher convergence rate than the
contrasting methods. The regularization parameter of the pro-
posed method is updated adaptively instead of being manually
optimized or estimated in advance empirically. Numerical experi-
ments in Section 3.1 have demonstrated that improper choice of
regularization parameter may reduce the reconstruction accuracy
for the three contrasting methods, while the proposed method
will almost not be affected and still able to achieve accurate
reconstruction. The proposed method has been proved robust and
insensitive to parameters. Numerical experiments also demon-
strated that the proposed method was about 1–2 orders of
magnitude faster than the contrasting methods.

The paper is organized as follows. In Section 2, the diffuse
approximation model and the proposed algorithm are presented.
Section 3 shows validations for the proposed algorithm using a
mouse-mimicking heterogeneous phantom. In Section 4, an
in vivo experiment is used to further validate our method. Finally,
we discuss and conclude this paper.
2. Methods

2.1. Photon propagation model

The diffusion equation is usually used for depicting the near
infrared photon propagation in the biological tissue. For steady-
state FMT with the point excitation sources, the following coupled
diffusion equations have been extensively used to depict photon
propagation

rðDxðrÞrFxðrÞÞ�maxðrÞFxðrÞ ¼�Ysdðr�rlÞ

rðDmðrÞrFmðrÞÞ�mamðrÞFmðrÞ ¼�FxðrÞZmaf ðrÞ
ðrAOÞ

(
ð1Þ

where subscripts x and m denote the excitation and emission
wavelengths respectively. Fx,m denotes the photon flux density.
max,am is the absorption coefficient and Dx,m is the diffusion
coefficient in biological tissues. Zmaf ðrÞ denotes the fluorescent
yield distribution to be reconstructed. rl represents the different
locations of the point sources with an amplitude of Ys. To solve
these equations, the Robin-type boundary conditions are added
on the boundary @O of the domain O[22]

2Dx,m@Fx,m=@ n
!
þqFx,m ¼ 0 ð2Þ
where n
!

represents the outward normal vector to the surface. q

is a constant depending on the optical reflective index mismatch
at the boundary.

The finite element method has been applied in solving the
diffusion equations. We discretize the domain with tetrahedrons
and take the basic functions as the test functions. Then, the matrix
form equations are obtained as

½Kx�fFxg ¼ fSxg ð3Þ

½Km�fFmg ¼ ½G�fXg ð4Þ

where Kx is the system matrix during excitation, while Km and G

are matrices in emission. Sx represents the excitation source
distribution after discretization. For each excitation point source
at rl, Fx can be obtained by solving Eq. (3). X denotes the
fluorescent yield distribution to be reconstructed.Considering that
Km is symmetrical positive matrix, Eq. (4) can be changed into

fFm,lg ¼ ½K
�1
m,l�½Gl�fXg ¼ ½Dl�fXg ð5Þ

By removing the immeasurable entries in Fm,l and the corre-
sponding rows in Dl, we have

fFmeas
m,l g ¼ ½Al�fXg ð6Þ

For simplification, let F denotes Fmeas
m,l and A denotes Al. Then

the linear relationship between the emitted fluorescence mea-
surements F on the surface and the unknown fluorescent yield
distribution X can be established as follows:

AX ¼F ð7Þ

More details can be found in [5].
2.2. The proposed algorithm

As mentioned earlier, the tumors are often small and sparse
during early detection, so the fluorescent sources that indicate the
distribution of tumors are sparse as well. This can be considered
as a type of a priori information. The L1-norm regularization has
been increasingly used in optical tomography for its ability to
promote the sparsity of the solution. The L1-norm regularization
is incorporated in the FMT problem to increase the sparsity
constraint, and Eq. (7) is transformed into an optimization
problem

min
X

EðXÞ ¼ FðXÞþlJXJ1 ð8Þ

where l is the regularization parameter and FðXÞ ¼ JAX�FJ2
2. FðXÞ

can be expanded and reformulated as follows:

FðXÞ � FðXk
ÞþðX�Xk

Þ
TrFðXk

Þþ
1

2
ðX�Xk

Þ
Tr

2FðXk
ÞðX�Xk

Þ ð9Þ

Eq. (9) can be viewed as a quadratic separable approximation
to FðXÞ about Xk. When akI is used to mimic the Hessian r2FðXÞ,
and the constant term FðXk

Þ is omitted, the following subproblem
can be set up and solved at each iteration [24]

Xkþ1
¼ argmin

X
ðX�Xk

Þ
TrFðXk

Þþ
ak

2
JX�XkJ2

2þlJXJ1 ð10Þ

I is the unit matrix. An equivalent form [23] of Eq. (10) is

Xkþ1
¼ argmin

X

1

2
JX�ZkJ2

2þ
l
ak

JXJ1 ð11Þ

where

Zk
¼ Xk
�

1

ak
rFðXk

Þ ð12Þ
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More details of the above form transformation can be found
in [24].

Due to the separable form of the regularization term
l=ðakÞJXJ1, the subproblem of Eq. (11) can be written as

xkþ1
i ¼ argmin

x

ðx�zk
i Þ

2

2
þ

l
ak

9x9, i¼ 1,2,. . . ð13Þ

For each specific x, the minimization in Eq. (13) has a unique
solution which can be obtained by

argmin
x

ðx�zk
i Þ

2

2
þ

l
ak

9x9¼ soft zk
i ,

l
ak

� �
ð14Þ

where softðw,aÞ ¼ signðwÞmaxf9w9�a,0g is the well-known soft-
threshold function [25]. The simple diagonal Hessian approxima-
tion akI plays an important role for its ability to affect the
accuracy and convergence rate of the problem. Here, the
Barzilai–Borwein (BB) spectral approach [26] is introduced to
determine ak. It is required that akSk

¼ Rk in the least-square
sense, hence

ak ¼ argmin
a

JaSk
�RkJ2

2 ¼
ðSk
Þ
T Rk

ðSk
Þ
T Sk

ð13Þ

where Sk
¼ Xk
�Xk�1 and Rk

¼rFðXk
Þ�rFðXk�1

Þ.
The regularization parameter l is usually a constant in state-

of-the-art algorithms [17,34]. However, the convergence rate of
the algorithm becomes low when l is small, while there are larger
reconstruction errors if l becomes bigger [17,21]. Accordingly, we
expect to find a way to guarantee both the accuracy and time-
efficiency. If we start the iteration with a large value of l, then
decrease l in steps toward its desired value, it may lead to a rapid
global convergence. It is based on the consideration that when the
solution is far from the true value, l is set to a large value to
accelerate the convergence process, and when the solution is
closer to the true value, l is set to a small value to obtain an
accurate solution.

JAT YkJ1 indicates that the current error is employed to specify
the sequence of values for l. Here, Ykþ1

¼F�AXkþ1. The regular-
ization parameter l is defined as the maximum value of lf inal and
zJAT YkJ1. At the beginning of the iteration, JAT YkJ1 represents
the level of reconstruction errors which has a large value. With
the increase in the number of iterations, JAT YkJ1 becomes
smaller since the reconstruction errors are reduced. Conse-
quently, relying on the changes in JAT YkJ1, an adaptive strategy
to specify the sequence of values of l is achieved. Additionally, in
Algorithm 2, when the changing rate of the number of non-zero
items of unknowns in the two adjacent iterations is less than 0.01,
the algorithm is terminated.

Algorithm 1. Main algorithm of the proposed algorithm.
Algorithm 2. Solving the subproblems.

3. Numerical experiments

In this part, we employ the heterogeneous simulation experi-
ments to demonstrate the performance of our algorithm.
Fig. 1(a) shows a 3D view of the heterogeneous cylindrical
phantom that we utilized. It was 20 mm in diameter and
20 mm in height. Fig. 1(b) shows the slice of the phantom in a
z¼0 plane. We used four different kinds of materials to denote
the muscle (M), lungs (L), heart (H) and bone (B) respectively.
Two fluorescent sources (S) to be reconstructed were placed in
one lung while one fluorescent source was placed in the other
lung. The optical properties we used are listed in Table 1 [27].
As is seen in Fig. 1(b), the black dots denote the different
excitation light sources. The isotropic point sources were placed
at one mean free path of photon transport beneath the surface in
the z¼0 plane. The emitted fluorescence can be only measured in
a 1601 field of view on the opposite side of the cylindrical
phantom for each excitation location. The FEM method was
employed to solve the forward model and the measurements on
the boundary was obtained [28]. For the forward problem, the
mesh consisted of 187,417 tetrahedral elements and 34,294
nodes. This heterogeneous phantom was discretized into 3430
nodes and 17,623 tetrahedral elements.

In this paper, to better evaluate the proposed method, we
compared it to the IS, FIS and Bregman methods. Note that the
second reconstruction strategy in these two contrast methods
was adopted for it needed less reconstruction time than the first
one. For the proposed method, we set lf inal ¼ 2e�5. For the
contrasting methods, the regularization parameter was also set
at 2e�5. For all methods, the maximum iteration number was set
at 20,000, which was enough for most cases. In addition, the zero
vector was used as the initial value. All three reconstruction
algorithms were coded in Matlab and performed on a personal
computer with 3.20 GHz Intels CoreTM i5-650 Processor and
4 GB RAM.



Fig. 1. Mouse-mimicking heterogeneous cylindrical phantom. (a) 3D view of the phantom with heterogeneous organs and fluorescent sources in it. (b) A slice image of the

phantom in a z¼0 plane. The excitation light source locations are represented by black dots. The emitted fluorescence can be only measured in a 1601 field of view on the

opposite side of the cylindrical phantom for each excitation location.

Table 2
Comparisons with different regularization parameters.

Sources Location error (mm)

lambda_final 1e�4 1e�5 1e�6 1e�7 1e�8 1e�9 1e�10

S1 Proposed 0.28 0.28 0.28 0.28 0.28 0.28 0.28

IS/FIS/Bregman 0.28 0.28 0.28 0.28 0.28 0.28 0.28

S2 Proposed 1.14 1.14 1.14 1.14 1.14 1.14 1.14

IS/FIS/Bregman 1.14 1.14 1.69 1.69 1.69 1.69 1.69

S3 Proposed 0.54 0.54 0.54 0.54 0.54 0.54 0.54

IS/FIS/Bregman 0.54 0.54 0.54 0.54 1.21 1.21 1.21

Table 1
Optical properties of the numerical phantoma.

max mam m0sx m0sm

Muscle 0.0052 0.0068 1.08 1.03

Lungs 0.0133 0.0203 1.97 1.95

Heart 0.0083 0.0104 1.01 0.99

Bone 0.0024 0.0035 1.75 1.61

a The unit for optical properties is mm�1.
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3.1. Reconstruction robustness to parameters

In this subsection, we validated the robustness of the proposed
method to the regularization parameter. Comparisons with dif-
ferent lambda_final can be seen in Table 2. The IS, FIS and
Bregman methods all belong to state-of-the-art methods with
L1-norm regularization and their regularization parameters keep
unchanged throughout the reconstruction process. For the three
contrasting methods, the regularization parameter is lf inal. They
obtained similar reconstruction results with the same regulariza-
tion parameters. With a decrease of lf inal (from 1e�4 to 1e�10),
the reconstruction accuracy was not reduced. By contrast, the
three contrasting methods could perform reconstruction accu-
rately if the regularization parameter was selected appropriately.
However, they may cause larger location errors when the reg-
ularization parameter was not estimated properly. When the
regularization parameter was set less than 1e�6, the location
error of the second source increased from 1.14 mm to 1.69 mm by
48.2%. If the regularization parameter was estimated less than
1e�8, the location error of the third source increased from
0.54 mm to 1.21 mm by 124.1%.

Based on the analysis above, we almost do not need to worry
about proper choice of the regularization parameter in the proposed
method. By contrast, improper choice of the regularization parameter
may cause larger location errors for the IS, FIS and Bregman methods.

3.2. Convergence rate comparison

As seen in Fig. 2, all three methods obtained good reconstruction
results. However, the proposed method only needed 150 iterations
to obtain the desired reconstruction results, while the FIS method
needed about 300 iterations, and the IS method needed more than
4000 iterations. We found that the IS method had a low convergence
rate and needed a large number of iterations to obtain satisfactory
results. Compared to the FIS method, which is the accelerated
version of the IS method, the proposed method only needed half
the number of iterations. Fig. 3 lists the iteration number compar-
isons of all three methods for four different grids. It demonstrates
that the proposed algorithm has the lowest iteration number in all
cases. For this point of view, the proposed method has obvious
advantages in the convergence rate.

As previously described, the convergence rate of the algorithm
becomes low when the regularization parameter l is small, while it
causes larger errors when l becomes bigger. To obtain accurate
reconstruction results, the regularization parameter of the two
contrasting methods is set to a small value and is kept constant.
Instead, the proposed method adopts an adaptive strategy to
guarantee both the accuracy and efficiency by starting the iteration
with a large l, then decreasing it in steps toward a desired value.
This is the key reason why the convergence rate of the proposed
method is much higher than the two contrasting methods.

3.3. Efficiency studies for reconstruction

To better demonstrate the time-efficiency of the proposed
method, we adopted four grids of different sizes to solve the FMT
problem. To compare the reconstruction time of all the methods, we
set the starting point at the time when Eq. (7) AX ¼F was just
obtained. Each value was the average of ten independent runs. As
seen in Table 3, the efficiency of the proposed method was about
1–2 orders of magnitude faster than the three contrasting methods.



Fig. 2. Reconstruction comparisons with different iteration numbers. The iteration number from the left to the right column is 150, 300, and 4000 respectively.

The reconstruction results from the top to the bottom row are from the IS method, the FIS method, and the proposed method respectively. The small circles in the lung

regions in each cross section denote the real positions of the fluorescent sources.

Fig. 3. Comparisons for the number of iterations needed for reconstruction.

Z. Xue et al. / Optics Communications 285 (2012) 5570–55785574
Take the 3rd grid as an example, where the reconstruction time of
the IS, FIS, Bregman method and proposed method were 69.94 s,
8.72 s, 9.32 s and 1.21 s respectively. It is founded that the efficiency
predominance becomes larger with an increase in grid size.

3.4. Reconstruction robustness to initial unknowns

The reliability of the proposed algorithm was validated with
different initial guesses for unknowns X. The initial guesses were
selected as 0, 1, 10, 100 respectively. As seen in Fig. 4, the
fluorescent source distribution was reconstructed credibly, and the
reconstruction results were hardly affected by the initial unknowns
in all cases. To further demonstrate the reliability and tolerance of
the proposed algorithm to different initial unknowns, we investi-
gated the evolution values of JAX�FJ=JATFJ with an increase in the
iteration number. As seen in Fig. 5, note that no matter how large
the initial unknowns were, the evolution values of JAX�FJ=JATFJ

nearly merged into one curve within about twenty iterations.



Fig. 4. Reconstruction results with different initial unknowns. The initials are 0, 1,

10, 100 respectively.

Table 3
Time efficiency comparisons of the reconstruction. The grid size means the

number of points� the number of elements.

No. of grid 1 2 3 4

Grid size 1232�6337 2235�11,468 3430�17,623 4604�23,866

IS (s) 2.64 12.21 69.94 155.73

FIS (s) 1.24 3.53 8.72 18.08

Bregman (s) 1.42 3.87 9.32 20.35

Proposed (s) 0.25 0.75 1.21 2.53

Fig. 5. The evolution curves as a function of iteration steps with different initial

unknowns.
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This indicated that the proposed algorithm was globally optimized
and the results cannot be influenced by initial unknowns.

3.5. Reconstruction robustness to measurement of noise

To evaluate the stability and robustness of the reconstruction
algorithm, we also considered the effects from noise. Additive
Gaussian noise with different levels (5%, 10%, 30%, 50%) was
added to the measured surface data. As seen in Fig. 6, even
corrupted by 50% additive Gaussian noise, the proposed method
was able to recover the fluorescent sources accurately. In addi-
tion, the reconstruction time required for all noise levels was
nearly the same. In other words, the proposed method is stable
and robust to the interference of noise.
4. In vivo experiment

In this section, to further validate the proposed method, we
employed an in vivo experiment on an adult BALB/C nude mouse.
The experiment was performed on the dual-modality optical/
micro-CT system [12,30]. The optical detector was a scientific CCD
camera (VersArray, Princeton Instruments, Trenton, New Jersey)
with the temperature cooled to �110 1C. A bandpass filter with
the center wavelength of 700 nm and the bandwidth of 10 nm
was used to allow light transmission at the emission wavelength.
The filter was made by float glass and quartz. Its optical density
value at the excitation wavelength was larger than 5. The
excitation light source was a 671 nm continuous wave laser with
the output power of 22 mW and a laser spot diameter of 1 mm,
which was small enough to simulate a point source case. The
linewidth of the laser was less than 0.1 nm and the power
stability was less than 5%@8 h. The fluorescent and background
images can be seen in Fig. 7.

The main process of this in vivo experiment can be summar-
ized as follows. We first injected the contrast agent Fenestra LC
into the mouse with a tail vein injection, and then anesthetized
the mouse using an intraperitoneal injection. Next, a bead filled
with cy5.5 solution with a concentration of 2000 nM was
implanted stereotactically into the body of the mouse in the
vicinity of its liver. About forty minutes after the contrast agent
injection, we placed the mouse on the rotating stage. First, 3D
anatomical data was acquired using the micro-CT system and
then the surface measurements of fluorescent signals were
obtained. The fluorescence emitted from the surface of the mouse
first passed through the bandpass filter, and was finally captured
by the optical detector. In this experiment, we collected only one
projection of the surface measurement data to perform recon-
struction. The optical properties for different organs were calcu-
lated according to the literature [29] as listed in Table 4.

We used the finite element method to solve the inverse
problem and did meshing on the segmented micro-CT data of
the mouse. Due to the fact that different organs have different
optical properties, we assigned a different number to a different
organ in the meshing. Here, we did segmentation on six kinds of
organs: muscle, lungs, heart, bone, liver, and kidneys. The mesh
had 3053 nodes and 14,942 tetrahedral elements. After register-
ing the fluorescence images and the volume data of the micro-CT,
the surface energy mapping was carried out by using a 3D surface
flux reconstruction algorithm [31], as is seen in Fig. 8. It took
about 0.09 s to complete the reconstruction process using the
proposed method. As seen in Fig. 9, two viewing angles (hor-
izontal and vertical) have been employed to show the deviation of
the actual source center. The actual source center was (20.35 mm,
21.22 mm, and 17.31 mm) while the reconstructed source center
was (18.21 mm, 21.38 mm, and 17.68 mm), with a location error
of 2.18 mm. This result is acceptable since the errors may have
been caused by the diffusion equation model, the geometrical
approximation, the optical properties inaccuracy, the surface
energy mapping, and so on.
5. Conclusion

In this paper, we proposed a fast and robust method for the
in vivo FMT reconstruction. The proposed method adopted the



Fig. 6. Reconstruction results with fluorescence imaging measurements corrupted by different Gaussian noise levels using the proposed method. From (a) to (f), the

spheres indicate the real locations of the fluorescent sources while the surfaces of the fluorescent sources are iso-surfaces for 30% of the maximum value. (a) Original

locations of the fluorescent sources. (b) Reconstruction results without Gaussian noise. (c) 5% Gaussian noise. (d) 10% Gaussian noise. (e) 30% Gaussian noise. (f) 50%

Gaussian noise. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Fluorescent and background images. (a) The fluorescent image. (b) The background image with white light. (c) The overlay of the fluorescent image and the

background image.

Table 4
Optical properties of the mouse modelb.

Material Muscle Lungs Heart Bone Liver Kidneys

max 84.9 191.8 57.4 59.4 343.7 64.4
m0sx 427.3 2172.0 962.0 2490.0 677.0 2248.0
mam 56.3 126.6 38.3 39.3 228.3 43.0
m0sm 379.2 2124.0 905.0 2340.0 648.0 2109.0

b The unit for optical properties is m�1.
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separable approximation to establish the subproblems which
could be solved efficiently, and then used the adaptive regular-
ization strategy to accelerate the convergence rate and maintain
the reconstruction accuracy simultaneously. Both the numerical
experiments and the physical experiment demonstrated the high
efficiency of the proposed method, which was very suitable for
the practical application of FMT.
The regularization parameter of the proposed method is
updated heuristically, instead of being determined manually or
empirically. The adaptive regularization strategy of the proposed
method can perform accurate reconstruction almost without
worrying about the choice of the regularization parameter. By
contrast, improper choice of the regularization parameter may
cause larger location errors for the IS, FIS and Bregman methods.
The proposed method is proved robust and insensitive to para-
meters, which can improve the reconstruction accuracy.

We also performed the reconstructions with different initial
unknown values and different noise levels. It is validated that the
proposed method is globally optimized and can obtain satisfac-
tory results in all test cases. Moreover, compared to the iteration-
shrinkage-based methods, the proposed method had a higher
convergence rate and needed a much lower iteration number.
Consequently, the time-efficiency of the proposed method was
about 1–2 orders of magnitude faster than the contrasting
methods.



Fig. 8. In vivo experimental data in a 3D view of the organs and surface energy mapping. (a) 3D view of the segmented micro-CT data of the mouse with a source

implanted beneath the liver. (b) The surface view of the reconstruction mesh with the measurement distribution mapping on it.

Fig. 9. The reconstruction results for the in vivo experiment. The cross section of the reconstruction results is compared to the corresponding CT slice. The cross of pink

solid lines denotes the actual source center. The longitudinal section of the reconstruction results is compared to the corresponding CT slice. The cross of green solid lines

denotes the actual source center. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Although the diffusion approximation model for the FMT recon-
struction is very popularly used, a more accurate model to describe
the photon propagation in biological tissues is needed to enhance
the quality of the 3D image reconstruction. The imaging system and
the experimental procedures also need improvement. For example,
if not properly tackled, the 3D surface energy mapping may cause
large location errors. Furthermore, some organs have been ignored
in the heterogeneous model for simplicity, as well as the optical
properties inaccuracy, which will lead to reconstruction errors.

In conclusion, a fast and robust method based on the separable
approximation and the adaptive regularization for the FMT
reconstruction has been presented. Both the numerical experi-
ments and the in vivo experiment have validated the high
efficiency and robustness of the proposed method. In future work,
in vivo experiments with probe-marked models and more precise
forward models will be developed.
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