
Pattern Recognition 46 (2013) 692–702
Contents lists available at SciVerse ScienceDirect
Pattern Recognition
0031-32

http://d

n Corr

E-m
journal homepage: www.elsevier.com/locate/pr
Automated delineation of lung tumors from CT images using a single click
ensemble segmentation approach
Yuhua Gu a, Virendra Kumar a, Lawrence O. Hall b, Dmitry B. Goldgof b,n, Ching-Yen Li b, René Korn c,
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A single click ensemble segmentation (SCES) approach based on an existing ‘‘Click & Grow’’ algorithm is

presented. The SCES approach requires only one operator selected seed point as compared with

multiple operator inputs, which are typically needed. This facilitates processing large numbers of cases.

Evaluation on a set of 129 CT lung tumor images using a similarity index (SI) was done. The average SI is

above 93% using 20 different start seeds, showing stability. The average SI for 2 different readers was

79.53%. We then compared the SCES algorithm with the two readers, the level set algorithm and the

skeleton graph cut algorithm obtaining an average SI of 78.29%, 77.72%, 63.77% and 63.76%,

respectively. We can conclude that the newly developed automatic lung lesion segmentation algorithm

is stable, accurate and automated.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Lung cancer has become one of the most significant diseases in
human history. The World Health Organization estimates the
worldwide death toll from lung cancer will be 10,000,000 by
2030. The 5-year survival rate for advanced Non Small Cell Lung
Cancer (NSCLC) [1] remains disappointingly low. It has been
hypothesized that quantitative image feature analysis can
improve diagnostic/prognostic or predictive accuracy, and there-
fore will have an impact on a significant number of patients [2].
In the current study, standard-of-care clinical computed tomo-
graphy (CT) scans were used for image feature extraction. In order
to reduce variability for feature extraction, the first and essential
step is to accurately delineate the lung tumors. Accurate delinea-
tion of lung tumors is also crucial for optimal radiation oncology.
A common approach to delineate tumor from CT scans involves
ll rights reserved.

: þ1 813 974 5456.
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radiologists or radiation oncologists manually drawing the
boundary of the tumor. In the majority of cases, manual segmen-
tation overestimates the lesion volume to ensure the entire lesion
is identified [3] and the process is highly variable [4,5]. A stable
accurate segmentation is critical, as image features (such as
texture and shape related features) are sensitive to small tumor
boundary changes. Therefore, a highly automatic, accurate and
reproducible lung tumor delineation algorithm would represent a
significant advance.

Accurate extraction of soft tissue lesions from a given modality
such as CT, PET or MRI is a topic of great interest for computer-
aided diagnosis (CAD), computer-aided surgery, radiation treat-
ment planning and medical research. However, segmentation of a
lesion is typically a difficult task due to the large heterogeneity of
cancer lesions (compared to normal tissues), noise that results
from the image acquisition process and the characteristics of
lesions often being very similar to those of the surrounding normal
tissues. Traditional medical image segmentation techniques
include intensity-based or morphological methods [6–9], yet these
methods sometimes fail to provide accurate tumor segmentation.
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A lung tumor analysis (LuTA) tool [10] within the Definiens
Cognition Network Technology [11] was developed by Definiens
AG [12] and Merck & Co., Inc. It is a prototype application that
demonstrates the ability to automatically and semi-automatically
identify and recognize organs and tumors in CT images.
Its efficacy in automatic lung segmentation is described in [10]
and we were able to obtain accurate lung segmentations from
LuTA for all cases discussed here.

LuTA is designed to enable fast and easy annotation of lung
tumors or other user-defined regions of interest. Flexible controls
allow the annotation of structures of the user’s choice. Once a
user has clicked on a region of interest, in a single two-
dimensional (2D) slice, the application builds out the object
three-dimensionally. The results [10] of the first prototype appli-
cation built using the Definiens Cognition Network Technology
for CT based scans provided a proof of concept enabling semi-
automatic volumetric analysis of tumors. However, the current
generation of the LuTA tool still has some drawbacks. First,
although processing time is reduced compared to manual deli-
neation, it still requires substantial operator input. For example,
more than one user selected seed point may be required for
tumor segmentation. Some tumor segmentations will not be
completed in one step, thus additional operations are required
(e.g., the radiologist must scroll over the CT slices and find out
what part of the segmentation is missing). Additionally, lung
tumor boundaries are often found to be incorrect during manual
inspection, and thus require manual editing that takes additional
time and creates additional sources of error. Finally, although
segmentations can be performed in batch mode, which is appro-
priate for large studies, it is impractical if manual editing is
required.

With the motivation of overcoming the above drawbacks of
the ‘‘Click & Grow’’ algorithm, we propose a new delineation
algorithm based on using multiple seed points with region
growing [13]. The new algorithm makes use of the original
algorithm by using an original seed point to define an area,
within which multiple seed points are automatically generated.
An ensemble segmentation can be obtained from the multiple
regions that were grown. Ensemble segmentation has played an
important role in many medical image applications recently
[14–17] and refers to a set of different input segmentations
(multiple runs using the same segmentation technique with
different initializations) that are combined in order to generate
a consensus segmentation. In this paper, we demonstrate that
such an approach reduces interobserver variability with signifi-
cantly fewer operator interactions when compared to the original
algorithm.
2. Related work

More complex methods, such as energy minimization techni-
ques, have been proposed and have been extensively applied in
many studies within the last ten years. Graph cut methods [18–24]
and active contours (snake) [25–29] are two widely used methods
that have been applied in many medical imaging applications. The
graph cut method has been very popular in the area of image
segmentation in recent years; it constructs an image-based graph
and achieves a globally optimal solution of energy minimization
functions. However, the biggest problem of the conventional graph
cut algorithm is its computational cost, the running time and the
memory consumption restricts its feasibility for many applications.
In [24], a skeleton based-graph cut algorithm was introduced to
more quickly classify volume data with high quality, extract
important information about interesting structures, and decrease
user interaction. A comparison with a skeleton based-graph cut
algorithm is done in this paper. The active contours (snake) algo-
rithm works similarly to a stretched elastic band being released. The
initial points are defined around the object to be extracted.
The points then move through an iterative process to a point with
the lowest energy function value. The live wire or intelligent scissor
[30–33] method is motivated by the general paradigm of the active
contour algorithm, it changes the segmentation problem into an
optimal graph search problem via local active contour analysis.
Using dynamic programming the cost function is minimized.
The live wire approach requires a user interactively define the
boundary by moving a mouse along the region of interest, while the
live wire process automatically computes a suggested boundary. Lu
and Higgins [32,33] recently proposed a single-section live wire
based on a 2D section and a single-click live wire applied directly to
3D CT images to segment central-chest lymph nodes. The single-
click live wire approach is similar to the single-section live wire, but
is almost completely automatic. The single-click live wire idea is
similar to the one we proposed here, only requiring one single seed
in the desired location. Their method was applied to handle lymph
node segmentation, which is quite different from lung tumor
segmentation; it may be harder or easier than lung tumor segmen-
tation depending on the lymph node location. Another extensively
used method in recent years is the level set [34–39] algorithm. The
level set method was first proposed by Osher and Sethian [39] in
1988 to track moving interfaces. The main idea behind the approach
is to represent a contour as the zero level set of a higher dimensional
function, called a level set function, and formulate the motion of the
contour as the evolution of the level set function. A number of these
approaches are finding commercial application. For example, the
lesion sizing toolkit [38] is an open-source tool kit for CT lung
lesions with integrated lesion sizing and level set algorithms. The CT
lung lesion sizing tool is first used to detect four 3D features
corresponding to vasculature, the lung wall, lesion boundary edges
and low density background lung parenchyma. Those features are
the key to the segmentation process and they potentially prevent
the segmentation from bleeding into non-lesion regions. Those
features then were combined into a single feature using the feature
aggregator method, the segmentation manager then applies a level-
set region growing algorithm starting from a seed point and
expanding until feature boundaries prohibit boundary advancement.
This lesion sizing algorithm was added to ISP (Interactive Science
Publishing) 2.3 [40], which is a 2D and 3D volume visualization
application based on VolView [41]. ISP 2.3 is publicly available and
was used in the current study to compare our results with the level
set methods.

In recently published works, statistical learning based
approaches [42,43] show us another way to handle segmentation
problem. In Wu’s work [42], a system was created to mainly
detect whether a lung nodule is attached to any of the major lung
anatomies. The segmentation algorithm in their system played a
very important role. It uses a conditional random field (CRF)
model incorporating texture features, gray-level, shape, and edge
cues to improve the segmentation of the nodule boundary.
However, the purpose of their system at this segmentation stage
is not to provide a perfect segmentation, but to apply a fast and
robust method that can create a reasonable segmentation to serve
as an input to a higher-level nodule connectivity classification
system. Similarly, in Tao’s work [43], early detection of ground
glass nodules (GGN) in lung CT images was presented, which is a
multi-level statistical learning-based framework for automatic
detection and segmentation of GGN. The system seems very
promising. However, our work differs from above methods as
we search for tumors.

In many medical image segmentation applications, one of the
major drawbacks for most of the algorithms is that they require
deliberate initialization, which becomes impractical when dealing



Y. Gu et al. / Pattern Recognition 46 (2013) 692–702694
with large numbers of images, this issue has been addressed in
some of the existing works already. In Lu’s work [32,33], a single
click was required for live wire algorithm and Yan’s work [44]
also shows it can find the minimal path for an object from a single
starting point. One of our contributions in the paper is that the
SCES requires only one initialization (one starting point).
3. Methods and materials

3.1. LuTA analysis workflow

The overall goal for the LuTA implementation was to accu-
rately, precisely and efficiently enable the analysis of lesions in
the lung under the guidance of an operator. A standard analysis
workflow was described in detail elsewhere [10]. The workflow is
briefly described in the following:
1.
 A preprocessing step. This was designed to perform a segmenta-
tion of the lung as well as other off-line tasks, such as filtering, to
improve the interactive performance of the analysis.
Fig. 1. Lung fields (left and right) were segmented after preprocessing.
2.
 An optional step with semi-automated correction of the
segmented lung. Since lesions are commonly found to be
attached to the pleural surface, it was critical to enable
efficient correction of the lung boundary in cases where the
boundary between juxtapleural target lesions and the pleura
had not been correctly determined during the automated
preprocessing step.
3.
 A ‘‘Click & Grow’’ step with a user selected seed based
segmentation of the lesions.
4.
 An optional manual refinement step of the semi-automated
lesion segmentation to ensure medical expert agreement with
any results that could influence patient management.
5.
 A reporting step generating volumes and statistics about other
features, such as average density.

In this paper, we focused on how to accurately segment the
lung lesion with minimum human interaction; the new algorithm
is basically a substitution of steps 3 and 4 above and only requires
one manual seed to be entered. The preprocessing and ‘‘Click &
Grow’’ steps within the LuTA workflow are used by our new
algorithm, as described below.

3.1.1. Preprocessing

The preprocessing step performs automated organ segmenta-
tion with the main goal of segmenting the aerated lung with
correct identification of the pleural wall in order to facilitate the
semi-automated segmentation of juxtapleural lesions. In Fig. 1, a
CT image of a representative patient is shown segmented after the
preprocessing step. The tumor is located in the right lung field.

3.1.2. Click & Grow

After the preprocessing step, the lung lesions must be located
in one of the lung fields. In order to segment a target lesion the
image analysts identified the lesion within the segmented lung
and placed a seed point in its interior—typically at the perceived
center of the lesion. Starting from the seed point, an initial seed
object was automatically segmented using LuTa’s region growing
based on similar intensities and proximity to areas with low
intensity (‘‘air’’). This Definiens proprietary region growing pro-
cess approximates the object’s surface tension T using an N3

voxels sized kernel locally by calculating the ratio of the object
volume inside a kernel (Vi) to the total kernel volume (Vk),
T ¼ Vi=Vk. With this approach a high relative kernel volume of
the objects surface voxels corresponds to a high surface tension.
The strength of the surface tension is mainly controlled by the
volume of the grown object in order to impose a smoother surface
for larger objects.

From the grown region, which consists of voxels with similar
density, the intensity weighted center of gravity (IWCOG) was
calculated. To decrease inter and intra-reader variability, the seed
point was shifted closer to the IWCOG. Additionally, an approx-
imation of the lesion radius and volume, as well as histogram
based lower and upper bounds for the intensity were extracted.

These parameters were used to define an octahedron-shaped
candidate region within the lung. The new seed object was then
grown into the candidate region with adaptive surface tension
and intensity constraints.

The intensity constraints restrict the growth into candidate
regions defined by: (1) a pre-computed intensity range of the
Gaussian smoothed CT image, where the intensity range was
estimated from the intensity statistics of the seed region and (2) a
bound on the distance to the seed region which was calculated
using a distance map. The distance map was calculated solely for
the candidate region within the CNL local processing framework,
and provides the minimal distance for each voxel to the seed
region as an intensity value. Using the distance map ensures an
approximate convexity of the seed object when growing into
regions with similar intensities.

3.2. Single click ensemble segmentation

The original ‘‘Click & Grow’’ algorithm is very useful for
delineating the tumor from the lung field in the LuTA application.
If the growing process does not sufficiently capture the target
lesion, the operator can place additional seed points within the
lesion and repeat the growing process outlined above. Upon
completion of the segmentation, the individual image objects
are merged to form a single image object representing the
segmented target lesion. The algorithm also provides the cap-
ability for a user to manually edit the segmentation. However, it
still has the following drawbacks:
1.
 The segmentation is not consistent, different readers may
generate different tumor regions.
2.
 It can require many human interactions (multiple clicks) to
delineate the tumor in the case where the growing process did
not sufficiently capture the target lesion.
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3.
 The tumor boundary is often not satisfactory upon visual
examination; sometimes it obviously includes many areas that
do not belong to the target tumor.

To overcome the drawbacks of the original method, we
propose a new algorithm: the single click ensemble segmentation
(SCES) algorithm, which is an advanced version of the previous
algorithm. The SCES makes use of the original algorithm by
choosing different seed points automatically within a specified
area of the lesion and performing region growing with each
generated seed point. Thus, an ensemble segmentation is
obtained from the multiple regions that were grown, and the
final segmentation is based on a voting strategy. In order to better
describe the algorithm, we provide first several definitions:
1.
Fig
tion
Tumor core: the area most likely belonging to the tumor.

2.
 Manual seed input: the first seed point provided by the user.

3.
 Start seed point: the seed point randomly selected from the

initial tumor region after shrinking.

4.
 Parent seed point: algorithm selected seed point from a

specific location of the tumor core.

5.
 Child seed point: algorithm selected seed point from the

outside of the existing tumor.

The detailed algorithm is described below and the detailed
algorithm work flow is shown in Fig. 2:
(a)
. 2
m

The user provides the manual seed point and calls the ‘‘Click
& Grow’’ algorithm to create the tumor region.
(b)
 The initial tumor region created was shrunk in the x, y and z

direction. (This process is to ensure step c selects a good
start seed point).
(c)
 Find start seed point: randomly select seed from shrunken
tumor region obtained from step b.
(d)
 Find the tumor core process (Fig. 3): take the center of the
tumor region obtained and use it as a new seed point.
Perform region growing using the new seed point, and then
from the new tumor region, record the pixels which are
. Schematic illustration of the flow of the single click ensemble segmenta-

ethod.
assigned to the tumor class. Repeat the above step 10 times;
we will have 10 tumor regions corresponding to 10 different
seed points (tumor center). The intersection of the 10 tumor
regions is defined as the tumor core. The center of the tumor
object is defined as the following: the image object can be
treated as the voxel co-ordinates (x,y,z) of a set Pv, the center
of gravity of the set Pv is Xcenter ¼ 1=#Pv

� �
S x,y,zð Þx, Ycenter

¼ 1=#Pv

� �
S x,y,zð Þy, Zcenter ¼ 1=#Pv

� �
S x,y,zð Þz.
(e)
 Locate 10 Parent seed points from the tumor core in 3D: use
3 planes: xy, yz and xz that pass through the center of the
tumor core to divide the tumor core into 8 regions, the
center of the tumor core in each region is taken as a parent
seed point. The 9th parent seed point is the center of the
whole tumor core, and the 10th one is randomly selected
from the tumor core region.
(f)
 For each parent seed point.
(1) Apply the ‘‘Click & Grow’’ algorithm and obtain the

corresponding tumor region.
(2) Based on the tumor region obtained from the parent

seed point, the next step involves additional tumor
growing as follows: select 3 slices from the existing
tumor region: center slice, center�1 and centerþ1 slice
(Fig. 4). The child seed point (24 in total, 8 child seed
points for each slice) is 3 pixels away from the existing
tumor boundary. For the center slice, the child seed
point is placed at a distance of 451 successively, starting
from 01 to the x-axis. Similarly, the child seed points of
center �1 and centerþ1 slices were placed in a similar
fashion. Their starting point is at 151 and 301, respec-
tively. Independently apply the ‘‘Click & Grow’’ algo-
rithm to each child point.
The ‘‘Click & Grow’’ algorithm might not always return a
tumor region or in the case of invalid seed points the
‘‘Click & Grow’’ algorithm does not return a tumor
volume. Even if grown successfully, the region is kept
only after several conditions are satisfied. The conditions
we added for the rule-set are based on the intensity
mean, standard deviation, shape and connection status
with the main tumor region produced by the parent
seed point.
The new rule-sets are listed as follows:

If mean (new region)o(mean (main tumor
region)�3 n SD (main tumor region))
Then Remove new region
Else If ConRborder40.2 Then keep new region
Else If 0.019oConRborder o¼0.2 and round-
ness (new region)40.4
Then keep new region
Else remove new region.

where ConRborder is the ratio of the area of the new
region shared with the main tumor region to its total
area. The roundness feature used here is mainly to
remove the vessel area that happens to grow. All para-
meter values set here were from empirical tests.

(3) Merge tumor regions: simply assigns the tumor regions
created from 1 parent seed point and 24 child seed
points to the same class. We now have a complete tumor
segmentation.
(g)
 Finally, we get an ensemble segmentation consisting of 10
(since we have 10 parent seed points that came from the
tumor core) different/similar tumor segmentations. We use
a voting strategy to determine the final tumor region.
A voxel is assigned to the tumor class if in its 3�3�3
neighborhood window half or more of the voxels were
labeled tumor voxels in at least half of the segmentations.



Fig. 3. Illustration of the workflow to find the tumor core process.

Fig. 4. Expand tumor region: locate 24 secondary seed points: child seed point selection from the existing tumor region.
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3.3. Lesion dataset
The patient dataset (129 patients) from the H. Lee Moffitt
Cancer Center and Research Institute in Tampa, FL, was used to
evaluate the new segmentation algorithm. The dataset contains
stage I–II NSCLC patients. The standard-of-care clinical CT scans
are high resolution with contrast enhancement. The slice thick-
nesses for the CT scans vary among 3 mm, 4 mm, 5 mm and
6 mm. However, 5 mm is the most common. The tumor types
include both adeno- and squamous cell carcinoma. They were
chosen because they cover the major types of lung tumor and
were of reasonable resolution.

3.4. Metrics

The similarity index formula:

SIA,B ¼ VA \ VBð Þ= VA [ VBð Þ ð1Þ

was used to evaluate the tumor segmentation, in which, VA and VB

are two delineated tumor volumes (e.g., manual or automatic),
respectively. The segmentation in the proposed single click
ensemble segmentation algorithm was tested on lung tumors
from the Moffitt dataset, which contained 129 patients in total.
We first selected 15 cases out of 129 from the dataset, since most
of these 15 cases required many human interactions (including
multiple clicks and manual editing). Two expert readers used the
‘‘Click & Grow’’ method in addition to manual editing operations
to delineate the lung tumor in those 15 cases. The segmentation
results from the two readers were marked as R1 and R2,
respectively. Reader 2 provided the manual seed input for the
SCES algorithm whose result was labeled SCES. We also show
results from the level set (LS) algorithm provided by ISP 2.3 [40]
and skeleton graph cut (SGC) [24] by 3D Med [45]. The ISP
provides a wizard to perform one-click segmentations of lesions.
In this approach, the user identifies the region containing the
lesion with a box, places the seed within the lesion and selects the
lesion type (solid or part-solid). The software then segments the
lesion. All the operations for the level set algorithm were
performed by one of the readers. These include the selection of
the seed point, the surrounding box for the tumor and the lesion
type. The skeleton graph cut algorithm requires three initializa-
tions for most of the cases. In the segmentation process, we select
seed points by painting the lesion and healthy parenchyma in the
CT volume using a 3D brush. Each lesion region needs at least one
seed and the healthy region needs at least two seeds.

We also tested the stability of the new algorithm for 129 cases
from the Moffitt Cancer Center by providing 20 different start seed
points (the 20 points were randomly generated inside the shrunken
tumor region by the computer (detailed algorithm: step c)) for each
case and then the similarity index for each case was calculated as in
Eq. (2):

SIi ¼
1

20

X20

m ¼ 1

1

19

X20

nam,n ¼ 1

SIim ,in

 !
ð2Þ

where iA ½1129�is the case index, SIim ,in is the similarity index from
Eq. (1) and measures the similarity between the two segmentation
results from different start seed points for the same case i.
4. Results

In Table 1, we show a comparison of the tumor segmentation
results from people and algorithms; The average SI value over 15



Table 1
Pixel by pixel segmentation comparison (R1¼reader1, R2¼reader2, SCES¼single click ensemble segmentation, LS¼ level set, SGC¼skeleton graph cut, p-value from

student t-test for each comparison was calculated based on R1 vs. R2). The fraction indicates the portion of pixels in agreement.

Case SI value %

(R1 vs. R2)
SI value %

(R1 vs. SCES)
SI value %

(R2 vs. SCES)
SI Value %

(R1 vs. LS)
SI Value %

(R2 vs. LS)
SI Value %

(SCES vs. LS)
SI Value %

(SCES vs. SGC)
SI Value %

(SGC vs. R1)
SI Value %

(SGC vs. R2)
SI Value %

(SGC vs. LS)

P1 93.14 77.95 77.67 65.5 62.73 54.19 80.41 70.08 69.75 52.16

P2 83.43 81.86 85.83 71.91 77.07 77.60 73.99 63.72 73.66 70.45

P3 64.23 82.13 72.37 60.19 64.36 65.64 62.59 55.27 63.62 62.71

P4 63.77 63.52 75.11 62.26 66.49 58.72 26.63 35.9 32.28 40.37

P5 77.57 67.00 73.40 65.61 63.48 62.22 45.77 51.75 52.17 44.84

P6 75.79 78.06 81.37 64.56 54.34 55.37 57.54 69.26 58.19 62.28

P7 94.90 97.13 93.61 81.48 79.18 82.36 79.36 77.94 78.01 77.66

P8 84.11 69.70 71.51 63.86 53.73 54.01 68.6 72.11 61.29 59.13

P9 78.65 80.49 72.57 55.53 54.18 48.11 39.06 44.59 43.06 40.58

P10 90.20 81.36 84.27 60.59 66.66 69.25 79.91 70.48 75.13 65.94

P11 78.23 76.34 71.23 54.71 55.55 59.97 66.47 53.77 53.93 55.52

P12 73.52 88.85 68.93 67.04 65.51 62.24 63.95 67.27 70.11 75.32

P13 76.30 84.48 88.04 78.96 80.84 84.10 80.22 73.58 77.79 76.58

P14 82.30 78.41 81.67 56.12 52.99 60.69 75.68 74.81 73.15 62.05

P15 76.80 67.02 68.25 75.18 69.89 62.04 56.19 71.88 63.9 71.63

Average 79.53 78.29 77.72 65.57 64.47 63.77 63.76 63.49 63.07 61.15
p-value – 0.7062 0.5592 0.0002 0.0002 0.0002 0.0028 0.0004 0.0004 o0.000001

Fig. 5. Number of interactions required for each method (R1¼reader1, R2¼reader2, SCES¼single click ensemble segmentation, LS¼ level set algorithm, SGC¼skeleton

graph cut algorithm).

Table 2
Pixel by pixel segmentation comparison (SCES1¼single click ensemble segmenta-

tion (manual seed input provided by 1st reader), SCES2¼single click ensemble

segmentation (manual seed input provided by 2nd reader), LS1¼ level set (1st

reader), LS2¼ level set (2nd reader), SGC1¼skeleton graph cut (1st reader),

SGC2¼skeleton graph cut (2nd reader)). The fraction indicates the portion of

pixels in agreement.

Case SI value %

(SCES1 vs. SCES2)
SI value %

(LS1 vs. LS2)
SI value %

(SGC1 vs. SGC2)

P1 89.72 83.48 88.67

P2 92.48 80.46 52.34

P3 84.71 96.74 62.62

P4 81.04 85.26 53.83

P5 85.20 88.39 63.72

P6 80.18 71.53 67.97

P7 86.31 98.36 83.45

P8 92.22 97.54 91.12

P9 81.59 51.36 23.13

P10 89.36 97.75 86.39

P11 94.92 75.19 50.33

P12 82.57 88.95 89.85

P13 85.59 82.51 94.1

P14 83.50 71.82 83.97

P15 88.27 93.91 65.58

Average 86.51 84.21 70.47
SD 4.51 12.94 20.15
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cases for R1 vs. R2 is 79.53%, R1 vs. SCES is 78.29%, R2 vs. SCES is
77.72%, R1 vs. LS is 65.57%, R2 vs. LS is 64.47%, SCES vs. LS

is 63.77%, SCES vs. SGC is 63.76%, SGC vs. R1 is 63.49%, SGC vs.
R2 is 63.07% and SGC vs. LS is 61.15%. The number of human
interactions for R1, R2, SCES, SGC and LS are shown in Fig. 5. The
average number of interactions from reader 1 was 6, from reader
2 was 3.87, SGC was 3.4, and SCES was always 1, which is the
initial manual seed input, and for LS was 5.33. The level
set algorithm in ISP requires the user to identify the box that
contains the targeted lesion before doing the segmentation, which
we counted as 4 operations to create the box, plus the initial seed
point within the tumor region, we then get 5 user interactions for
each case. However, for case P11, we did not get a segmentation
result after the first trial, therefore we did the same procedure
again with a different box and seed point. In total we counted 10
operations for this case. On the other hand, for one operator the LS

approach only had to be re-done one time. The skeleton graph cut
algorithm requires at least 3 initializations, however for cases P9
and P11, 2 seeds were required for the lesion object and 4 seeds
for the healthy region. The SCES approach has the advantage in
that it only required one simple input, as compared to multiple
operator inputs used in other methods.

In Table 1, we calculated the P values of the student t-test for
each comparison (with R1 vs. R2 as a reference). The P values for
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R1 vs. SCES and R2 vs. SCES are 0.7062 and 0.5592, other
comparison’s P-values are very small and we can conclude that
there are significant differences between the associated methods
and the manual segmentations. For the SCES algorithm, the
differences from manual segmentation are not statistically
significant.

We further examined the stability of the level set algorithm
and skeleton graph cut algorithm by providing initializations
from two readers, to determine how much agreement there is
when using the two algorithms twice. We only compared them on
15 cases for which multiple reader results exist. There was an
average SI of 84.21% with 12.94% standard deviation for the level
set algorithm and an average SI of 70.47% with 20.15% standard
deviation for the skeleton graph cut. Our approach was more
stable with an SI of 86.51% and 4.51% standard deviation (Table 2).
Fig. 6. Similarity Index of SCES algorithm for 129 cases (20 different start seed

points) from the Moffitt Cancer Center.

Fig. 7. Representative segmentation results (P13, slices 79–85) (a) Re
Based on the average and standard deviation values, our approach
seems better than level set, but the difference was not statistically
significant (Wilcoxon signed-rank test shows we cannot reject the
null hypothesis). However, there is a statistically significant
difference between our approach and the skeleton graph cut
according to the Wilcoxon signed-rank test at confidence level
0.01, which indicates our approach is more stable than the
skeleton graph cut algorithm.

Fig. 6 shows the stability of the proposed algorithm when
providing 20 different start seed points. The purpose of this
experiment was to test the sensitivity of the segmentation
algorithm. The average SI for 129 cases is above 93% and it
reflects that the segmentation is very stable, no matter where
the start seed points are located in the tumor region.

Five segmentation results: Reader 1, Reader 2, single click
ensemble segmentation, level set and skeleton graph cut are
shown in Figs. 7–9. The results of SCES seem to follow the tumor
boundary and visually look better than the result from the readers
and level set algorithm, the skeleton graph cut algorithm result
looks very compact, however many vessel region have been
segmented together with tumor region.
5. Discussion

The new algorithm has been tested on a large patient dataset.
Fig. 5 highlights perhaps the biggest advantage of the SCES

algorithm, it only requires one human interaction, that is the
manual seed input. The new algorithm saves a lot of human
interaction while agreeing well with the results from a human
expert. We compared the new segmentation result with the
results from two expert readers. It is of note that the results from
ader 1 (b) Reader 2 (c) SCES (d) Level Set (e) Skeleton Graph Cut.



Fig. 8. Representative segmentation results (P10, slices 46–50) (a) Reader 1 (b) Reader 2 (c) SCES (d) Level Set (e) Skeleton Graph Cut.
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two readers agreed on 79.53% of the voxels. The average number
of interactions involved for each reader was 6 and 3.87, respec-
tively as shown in Fig. 5. The SI results between SCES and R1, SCES

and R2 are 78.29% and 77.72%, which implies that the new result
is close to reader’s 79.53%, SCES and the Level set method are not
very close, the agreement is only 63.77%, the agreement between
SCES and SGC is 63.76%. From the visual result of Figs. 7 and 8, we
can also conclude that the result of SCES algorithm seems to
follow the tumor boundary on CT images, as well as the results of
level set and graph cut. However, Fig. 9 shows us a different
scenario. Starting from slice 47 in Fig. 9, the level set algorithm
did not follow the boundary of the tumor and many tumor
regions got cut off, which resulted in a bad segmentation. The
skeleton graph cut algorithm seems to be performing well on this
case, but the major issue for SGC again is getting too much vessel
tissue. Our algorithm also started failing at slice 54, but it seems it
performed better than the level set algorithm. Our new algorithm
did not explore the search space entirely (child seed point) in the
Z-direction due to computational time limitations. As a result the
top/bottom of a ‘‘big’’ tumor region will not be detected by the
algorithm (in Fig. 9, only the top of the tumor region was not
correctly detected). We only performed the search on 3 slices in
the new algorithm. Region growing helps find the additional
tumor region in the Z-direction, but the growing in Z-direction
stopped when it reached the criteria, which will result in
incomplete tumor segmentation for some big tumor cases.
For the stability test result shown in Fig. 6, there are a few
cases that have a similarity index lower than 60%. Further
investigation found that most of them have a part-solid tumor
[46] (Fig. 10) with low density and their lesion boundary is not
well defined. For those cases, SCES (and LS) was not stable,
additional work needs to be done, one possible method ‘‘Shrink
& Wrap’’ may be used instead of the ‘‘Click & Grow’’ method,
which requires a pre-defined boundary surrounding the tumor
area. Another solution is utilizing more than one modality while
doing the segmentation (PET-CT based). Such a method has been
reported which can reduce interobserver variability and increase
delineation accuracy [47]. We also found many cases had 100%
agreement in Fig. 6, which indicates that they always found the
same tumor core with a different start seed point, this usually
took place for Solid tumor cases. Since the parent seed point
and child seed points for SCES were kept unchanged when the
tumor core was the same, this eventually resulted in same tumor
segmentations.

Future enhancements will focus on part-solid tumor types,
which result in unstable tumor boundaries when given different
start seed points. The problem of incomplete tumor segmentation
with big tumors is also a remaining challenge.

The lung tumor segmentation problem in our study can mainly
be divided into two parts: lung segmentation and lung lesion
segmentation. These are two separate algorithms but the 2nd part
relies on the quality of the lung segmentation. In our experiments,



Fig. 9. Representative segmentation results (P14, slices 44–54) (a) Reader 1 (b) Reader 2 (c) SCES (d) Level Set (e) Skeleton Graph Cut.

Fig. 10. Single click ensemble segmentation result with a different start seed point (a and b) on part-solid tumors.
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we sometimes found the lung segmentation failed. In other
words, the tumor in which we are interested may be excluded
by the lung segmentation process. However one of the important
assumptions of our lung tumor segmentation is that the lung
tumor must be inside of the lung field. Our newly designed
algorithm cannot intelligently correct for any tumor that was
excluded from the lung field. If such a case occurs, an optional
step with semi-automated correction of the segmented lung must
be done before using our lung lesion segmentation algorithm.
6. Conclusions

We proposed a stable, accurate and automatic single click
ensemble segmentation algorithm in this paper. The important
component of this work is to reduce the human interactions while
lesion delineation remains accurate and consistent as a result of
ensemble segmentation. Though the computation time was
increased for each case since multiple ‘‘Click & Grow’’ algorithms
were applied, we saved a lot of manpower (average (6þ3.87)/
2¼4.94 clicks from two readers for the 15 cases). With the
automated batch mode method built into the Definiens’ software
platform, the lung lesion segmentation workload has been tre-
mendously reduced (in other words, we can save a significant
amount of valuable time for readers/oncologist/radiologists in the
segmentation of lung tumors), the only thing requiring human
interaction is the choice of the manual seed input. The aim of the
algorithm is to provide a delineation tool that can be used by
many readers to obtain the same segmentation results. The tumor
segmentation should not differ much with different manual seeds
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provided by different readers. The single click ensemble segmen-
tation algorithm we proposed here is a nice upgrade. As the new
algorithm evolves to better address some issues we discussed
above, it will become an even more powerful tool that can be
further tested in clinical environment and it will be also very
useful in future multi-center clinical trials.
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