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Abstract 

Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is 
expected to be an effective method for preventing the initiation and progression of cancer. Alt-
hough anatomical and functional imaging techniques such as radiography, computed tomography 
(CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an 
important role for accurate preoperative diagnostics, for the most part these techniques cannot be 
applied intraoperatively. Optical molecular imaging is a promising technique that provides a high 
degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical ap-
plications have proven that optical molecular imaging is a powerful intraoperative tool for guiding 
surgeons performing precision procedures, thus enabling radical resection and improved survival 
rates. However, detection depth limitation exists in optical molecular imaging methods and further 
breakthroughs from optical to multi-modality intraoperative imaging methods are needed to 
develop more extensive and comprehensive intraoperative applications. Here, we review the 
current intraoperative optical molecular imaging technologies, focusing on contrast agents and 
surgical navigation systems, and then discuss the future prospects of multi-modality imaging 
technology for intraoperative imaging-guided cancer surgery. 

Key words: Optical molecular imaging; Intraoperative imaging-guided cancer surgery; 
Near-infrared fluorescence; Multi-modality Imaging; Indocyanine green. 

Introduction 
Presently, nearly 13 million new cancer cases 

and 7.6 million cancer deaths occur worldwide each 
year [1]. From 1971 to 2011, the National Cancer In-
stitute (NCI) spent about $90 billion on research, 
treatment, and prevention of cancer and is approach-
ing a 5-year doubling of its budget [2-4]. The past 
decade has witnessed the rapid growth and techno-
logical advancement of imaging techniques; many of 

which have been applied for preoperative tumor di-
agnosis, most notably: radiography, computed to-
mography (CT), magnetic resonance imaging (MRI), 
positron emission tomography (PET), and single 
photon emission computed tomography (SPECT). 
However, these techniques are for the most part not 
applicable to intraoperative tumor surgery, for which 
palpation and visual inspection remain the predomi-
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nant methods [5].  
Fluorescence molecular imaging (FMI) has been 

established as a powerful tool for guiding precise in-
traoperative positioning [6-9]. This technique can be 
described as a fluorescent labeling method that uses 
an imaging system to help surgeons distinguish be-
tween normal and malignant tissues labeled through 
the injection of a fluorescent detection agent. Over the 
past several years, this technology has improved the 
ability to surgically treat liver metastases [8], breast 
cancer [9-12], ovarian cancer [7], melanoma [13, 14], 
vulvar cancer [15, 16] and cervical cancer [17, 18].  

Defining a way to objectively assess tumor mar-
gins during surgery plays a key role in diagnostic 
precision [19]. Traditionally, surgeons determine the 
tumor resection margin based on their experience and 
submit the specimen for histological evaluation. If the 
margin proves positive upon pathology, additional 
removal will be executed. Cytoreductive surgery fol-
lowed by combination chemotherapy is also consid-
ered an effective treatment. The degree of cytoreduc-
tion predicts the tumor recurrence and survival, even 
if the residual tumor diameter is less than 1 cm after 
therapy [6, 7]. Remarkably, current studies suggest 
that FMI technology can assist surgeons in resecting 
micro-cancer tissues down to the submillimeter size, 
thus improving patient outcome [20-22]. 

With the aid of FMI technology, the prognosis of 
patients will as a result improve. For example, a study 
of breast cancer survivors at risk for breast can-
cer–related lymphedema found that early accurate 
treatment results in a better outcome and even com-
plete resolution of lymphedema-associated complica-
tions [23]. Suzuki et al. used the FMI method with 
orally administered 5-aminolevulinic acid (5-ALA) to 
improve the prognosis of patients with glioma [24]; 
Loja et al. used Alexa-647 labeled pHLIP (pH respon-
sive peptide conjugated with Alexa Fluor (R) 647) to 
detect alterations in extracellular pH found in head 
and neck squamous cell carcinoma (HNSCC) in order 
to assess tumor margins during surgery, thus pro-
moting better detection and prognosis of this cancer 
[25]. 

The most important components of FMI tech-
nology are the imaging contrast and surgical naviga-
tion system. Their further development will provide 
surgeons with intraoperative image guidance and 
information about residual tumors on follow-up. For 
clinical applications, the Food and Drug Administra-
tion (FDA) needs to approve fluorescence imaging 
contrast agents. The fluorescent dye indocyanine 
green (ICG) obtained approval and has been applied 
to sentinel lymph node (SLN) mapping [10, 12, 17, 26] 
and hepatic micrometastases detection [27].  

However, ICG lacks precise targeting properties. 

To enable more selective tumor detection, fluorescent 
dyes can be chemically conjugated with targeting 
moieties such as peptides, antibodies, or sugars, 
which are systemically metabolized and accumulate 
in lesion sites [28]. These fluorescent dyes, which are 
still in a preclinical stage, show potential as markers 
of cancer cells, tumor angiogenesis, and tumor mi-
croenvironments, but there are likely still a long way 
from FDA approval.  

After injection of fluorescent dyes, a surgical 
navigation system is required to indirectly activate 
these dyes by supplying the tissues with near-infrared 
(NIR) light. Video rate images are provided by the 
system for accurate surgical guidance after fast image 
registration processing by a computer [29]. These 
techniques are therefore useful for providing sur-
geons with precise tumor detection in real-time dur-
ing surgery. 

FMI technology has proven to be a promising 
method for intraoperative tumor detection in clinical 
applications, although it is limited to the body’s pe-
riphery. Therefore, other modalities have been intro-
duced into image-guided surgery for more complete 
visualization of tumors. Kircher et al. reported a tri-
ple-modality MRI-photoacoustic-Raman method that 
helped to more accurately delineate the margins of 
brain tumors in living mice both preoperatively and 
intraoperatively [30]. This technique demonstrated 
the feasibility and advantages of multi-modal im-
age-guided methods for precise characterization of 
the tumor margin during surgery. 

To provide a better understanding of FMI tech-
nology, this review will focus on the innovative fields 
of instrumentation in clinical applications of FMI 
technology during cancer surgery. Owing to the cur-
rent limitations of FMI technology, we will also de-
scribe methods for using multi-modalities and the 
potential long-term translational benefit for patients. 

Surgical Navigation Systems 
Intraoperative FMI technology relies on the 

availability of intraoperative imaging system and an 
imaging contrast agent to visualize the carcinoma in 
situ and metastatic lesions during surgery. Based on 
the tissue penetration depth, a high level of sig-
nal-to-background ratio (SBR) is required. The NIR 
range is between 700 and 900 nm, at which light ab-
sorption and scattering are relatively low [31]. In re-
cent years, the concept of using NIR fluorescence 
imaging has now been demonstrated experimentally, 
a crucial step towards its application in intraoperative 
image-guided surgery. 

As NIR light cannot be seen directly with the 
naked eye, many academic and industrial groups 
have been devoted to the development of various 
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imaging systems for intraoperative NIR FMI over the 
past few years [10, 29, 32-43]. Now, most of these 
systems have been applied to clinically and have 
made progress in assisting intraoperative tumor sur-
gery. Besides attaining FDA approval, there are some 
important challenges for optimization of these sys-
tems for clinical use, including: real-time white light 
and fluorescence visualization, optimized NIR 
light-sources for sufficient fluorescence excitation, 
and convenience in clinical translation. 

Several existing intraoperative FMI systems are 
available for clinical studies (Table 1). Existing sys-
tems can be classified into three categories as portable, 
functional and endoscopic and laparoscopic in-
traoperative FMI systems. Most of these systems have 
already been applied to clinical diagnosis and treat-
ment. Furthermore, different types of systems have 
different performance focus. They have played an 
important role in operation convenience, improving 
image assessment and increasing detection depth. 
Now there are three systems have passed FDA ap-
proval. The Hamamatsu’s (www.hamamatsu.com) 
Photodynamic Eye (PDE™), ArtemisTM (www. 
o2view.com) and Novadaq SPY™ system (Novadaq 
Technologies Inc., Toronto, Canada) have already 
been applied in surgeries for breast cancer [9, 44], liver 
metastases [45] and bypassing graft surgery [46-51]. 

Portable intraoperative FMI systems 
These surgical navigation systems are intended 

to assist in surgery and portable systems satisfy im-

portant criteria for convenient operation. An effective 
system for intraoperative imaging needs to be able to 
readily facilitate the operation. PDE™ is a hand-held 
imaging system that emits annular NIR light and de-
tects it through the in vivo uptake of fluorescent 2D 
images. The handheld capability and performance of 
the Fluoptics (www.fluoptics.com) Fluobeam® are 
similar to PDE, and it is now being used in clinical 
trials aiming to demonstrate the ability of FMI during 
and after an operation. PDE and Fluobeam possess 
the advantage of being compact and convenient for 
real-time fluorescence imaging. With the benefit of 
intraoperative visible images, ArtemisTM simultane-
ously shows the color image and the fluorescent 
overlay, which provides excellent utility for nerve 
surgery [52, 53].  

In the field of breast oncology, the SPY system 
has recently been applied to monitor skin perfusion in 
nipple-sparing mastectomies with ICG. This method 
can be seen as a useful adjunctive tool with potential 
to enable direct placement of mastectomy incisions 
and minimize ischemic complications [54]. Recently, 
some other interesting intraoperative imaging sys-
tems have been developed for clinical applications. 
For example, in the goggle system developed by the 
Department of Radiology at Washington University, 
the surgical navigation system is projected on weara-
ble glasses, which frees the surgeon's hands so that an 
operation can be performed perform with more flexi-
bility [43]. 

 

Table 1. Parameter comparison of image-guided systems. 
N
o. 

Imaging 
systems 

Manufacturer Main  
application 

Excita-
tion 
wave-
length 
(nm) 

Field of 
view 
(mm) 

Resolu-
tion 

Display 
Refresh 
(Hz) 

Dy-
nam-
ic 
range 
(bits) 

Working 
distance 
(mm) 

Color 
video 

Light 
source 

Clinical 
Status 

Reference 

1 SPY Novodaq Tech-
nologies, Mis-
sissauga, Cana-
da 

Intraoperative 
Fluorescence 
Imaging 

820 190*127 Not spec-
ified 

30 8 300 No Laser FDA  
approved 

www.novadaq
.com 

2 Artemis O2view, 
Marken, The 
Netherlands 

Stereoscopic 
Fluorescence 
Imaging 

400-1000 22.5*22.5 
at 50mm 
distance 

659*494 5-60 14 ≥50 Yes Laser FDA  
approved 

www.o2view.
com 

3 Photody-
namic Eye 

Hamamatsu 
Photonics,  
Hamamatsu, 
Japan 

Handheld  
Fluorescence 
Imaging 

760 100*67 Not spec-
ified 

Not spec-
ified 

8 200 No LED FDA  
approved 

www.hamama
tsu.com 

4 Fluobeam Fluoptics,  
Grenoble, 
France 

Handheld  
Fluorescence 
Imaging 

690 or 
780 

128*94 640*480 30 12 150 No Laser Clinical trial www.fluoptics
.com 

5 SurgOptix SurgOptix, 
Redwood 
Shores, USA 

Intraoperative 
Fluorescence 
Imaging 

520 115*93 1392*1024 12 16 210 Yes Laser Clinical trial www.surgopti
x.com 

6 FLARE Frangioni  
Laboratory, 
Boston, USA 

Intraoperative 
Fluorescence 
Imaging 

670 or 
760 

150*113 1280*1024  15 12 450 Yes LED Clinical trial www.centerfo
rmolecular-
imaging.org 

7 GXMI 
Navigator 

Institute of  
Automtion, 
Beijing, China 

Intraoperative 
Fluorescence 
Imaging 

760nm 250*250 2456*2048 17 16 >300 Yes LED Clinical trial www.3dmed.
net 
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Figure 1. Portable intraoperative FMI systems: a) The Novadaq SPY™ system, b) ArtemisTM, c) Hamamatsu’s Photodynamic Eye (PDE™), d) Fluoptics’ Fluobeam®. Functional 
intraoperative FMI systems: e) FLARE™ imaging system, f) Multispectral FMI system from Technische Universität München & Helmholtz Zentrum, g) Surgical navigation system 
GXMI Navigator from the Institute of Automation, Chinese Academy of Sciences. 

 

Functional intraoperative FMI systems 
These functional systems have performance 

advantages in image capture and processing. The 
FLARE™ imaging systems created in the Frangioni 
Laboratory (www.frangionilab.org) uses three 
cameras to simultaneously collect images from two 
different NIR channels and one visible channel. 
FLARE and mini FLARE systems are being tested in 
clinical trials, and have been applied to several forms 
of cancer surgery, most notably for intraoperative 
SLN mapping [8, 10, 12, 55, 56]. The multispectral FMI 
system from Technische Universität München & 
Helmholtz Zentrum (http://www.helmholtz-muenc
hen.de) produced in collaboration with SurgOptix 
(SurgOptix Inc., Redwood Shores, CA, USA) has the 
advantage of being able to correct for the attenuation 
of the excitation of light and also can be applied to 
clinical cancer research [7, 15, 17, 57-59]. These two 
imaging systems perform well in multi-spectral 
imaging and improve image quality.  

Another surgical navigation system is the GXMI 
Navigator developed in our Key Laboratory of Molec-
ular Imaging at the Chinese Academy of Sciences 
(http://www.3dmed.net/). This device retains the 
advantage of convenient operation, while also im-
proving the quality of imaging results [60]. Similar to 
the shadowless lamp, the system uses feature points 
to ensure rapid and precise imaging through the fu-
sion of two cameras and has been applied in SLN 
mapping of patients in early stages of breast cancer. 
The systems are all are shown in figure 1. 

Endoscopic and laparoscopic FMI systems 
In recent years, endoscopic and laparoscopic 

systems have been coupled with FMI technology to 
solve the detection depth problem. These endoscopic 
and laparoscopic systems have been successfully ap-
plied in cancer surgery and have assisted in mini-
mally invasive cancer therapy [61]. However, one 
cannot palpate tumors or handle the tumor-riddled 
organs via endoscopic or robotic surgery. It will be 
great help for surgeons to dissect tumors with guid-
ance from high resolutions SBR images. Yokoyama et 
al. used the ICG fluorescence method to aid in endo-
scopic surgery for head and neck cancer. This tech-
nique produced fluorescent images with a significant 
contrast between tumor and normal tissues [62].  

Wide application of FMI technology in endo-
scopic and laparoscopic surgery faces the challenging 
problem of how to adjust the endoscopic optical path 
to simultaneously achieve visible and NIR fluorescent 
images. When there is an established component be-
tween the endoscope and camera, it is difficult in 
many existing endoscopic applications to change the 
regular workflow and integrate the FMI technology.  

Several studies have however demonstrated 
successful integration of fluorescence imaging capa-
bilities into experimental endoscopic and laproscopic 
systems. Oh et al. presented a wide-field mul-
ti-channel fluorescence endoscopic system for early 
detection and treatment of colon cancer with matrix 
metalloproteinases (MMP) conjugated with quantum 
dots [63]. Matsui et al. used a custom NIR fluorescence 
laparoscopy system to identify the extrahepatic bile 
ducts in Yorkshire pigs. The results demonstrated 
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good sensitivity for the identification of extrahepatic 
bile ducts and their functional status [64]. This lapa-
roscopy system was also successfully applied for the 
fluorescence-guided identification of the ureters using 
methylene blue in pig experiments [65].  

Based on these previous achievements, Venu-
gopal et al. built a prism-based dual-channel endo-
scopic imaging system compatible with two light 
sources in color and one in the NIR range with a 
2-CCD camera. This system demonstrated two key 
advantage: 1) the imaging camera was compact 
enough to be operated easily by one hand during 
surgery and 2) the optical channels allowed for accu-
rate registration for real-time image processing [66]. 
Another laparoscopy system similar to the du-
al-channel endoscopic system has also been described. 
Glatz et al. presented a video-rate color and NIR flu-
orescence laparoscopy system for the identification of 
colorectal tumor margins [67]. Taken together these 
advances indicate that endoscopic and laparoscopic 
systems with FMI technology are rapidly approaching 
clinical translation and will be available for use in 
patients in the near future [68]. 

Multi-modal intraoperative surgical navigation 
system 

Intraoperative surgical techniques require de-
velopment of dedicated intraoperative image-guided 
systems. Important progress has been achieved over 
the past few years in both fields; however, multi-
modal imaging methods and systems are still needed 
for clinical translation of these technologies. Current-
ly, several fluorescence-imaging systems are already 
commercially available. However, image-guided in-
traoperative systems supplying three-dimensional 
precision tumor detection are still unavailable [7, 12, 
60]. 

Detection depth is the main limitation of the FMI 
method for some clinical applications. However, if 
this problem were overcome, this method would al-
low for intraoperative tumor margin detection, which 
would be clinically meaningful to both surgeons and 
patients. Questions remain regarding how to solve the 
depth limitation challenge, which is essential in en-
hancing the value of FMI technique and multi-modal 
methods. Ale et al. examined the in vivo performance 
of a camera-based hybrid fluorescence molecular to-
mography (FMT) system for 360 degree imaging 
combined with X-ray computed tomography (XCT). 
This multi-modal method can provide concurrent 
anatomical and functional information. These find-
ings indicate that FMI combined with the XCT 
method can increase the detection depth and may 
provide a substantial advance for current XCT appli-
cations [69].  

Si et al. combined a single-cycle pulsed ultra-
sound modulation with digital optical phase conjuga-
tion. This multi-modal method has adequate optical 
power to focus light within high-scattering media for 
not only fluorescence imaging, but also numerous 
linear and nonlinear spectroscopy measurements. Xie 
et al. designed PET/NIR/MRI triple modality func-
tional nanoparticles to achieve personalized tumor 
treatment. The results demonstrated that a tumor can 
be visualized in vivo in the U87MG xenograft mouse 
model by this triple modality [70]. As the diffuse 
gliomas are not always detected by con-
trast-enhancement MRI, Ewelt et al. introduced a 
method performed in 30 patients using 18F-FET and 
Gadolinium-enhanced MRI for pre-operative diagno-
sis and 5-aminolevulinic derived tumor fluorescence 
for intraoperative image-guided malignant glioma 
dissection. The results showed 70.5% sensitivity and 
92.3% specificity using the multi-modal method, 
which supplied valuable pre-diagnostic imaging in-
formation and assisted in fluorescence-guided tumor 
resection [71].  

In summary, the multi-modal imaging systems 
and technology can compensate the limit of detection 
depth in fluorescence imaging by imaging processing 
method and set the standard for many important ap-
plications in biological research and clinical trials [72]. 

Clinical Applications 
Clinical applications using ICG 

Although many NIR fluorescent molecules have 
been developed for tumor targeting, it will take time 
for their translation into clinical applications. The 
FDA approved molecule ICG can be used in ocular, 
cardiocirculatory, and liver function diagnostics. Re-
cent reports focusing on intraoperative SLN mapping 
and HCC detection have further extended its clinical 
application. 

Tumor metastasis usually occurs through the 
lymphatic system and the SLN is typically the first 
anatomical location of tumor metastasis. Currently, 
most researchers performing SLN mapping use a 
visible blue dye (such as isosulfan blue, patent blue, or 
methylene blue), a radioactive tracer (such as 99mTc or 
sulfur colloid), or a combination of the two. The blue 
dye is widely used for its low price and ease of use. 
However, the light emitted by the dye cannot pass 
through the skin and adipose tissue if the dose is not 
properly controlled. Further, some side effects such as 
tissue necrosis may result from the dye. In fact, the 
rate of successful tumor identification using a single 
dye is not satisfactory [73]. The surgeon may instead 
employ radioactive detection methods in which a ra-
diation counter is used to detect and locate the SLN on 
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the surface of the tissue with the radioactive element 
99mTc. The two methods for intraoperative detection 
and localization are often combined to improve the 
detection rate of SLN [73, 74]. Although this combi-
nation method improves detection results, side effects 
and radioactive hazards still remain problematic.  

FMI using ICG provides new opportunities to 
improve the SLN procedure [75]. The application of 
ICG shows a high SBR, which helps the surgeons lo-
cate the SLN before excision through real-time ob-
servation. As ICG is clinically available, many in-
traoperative imaging systems have focused on SLN 
cases. NIR fluorescence image-guided SLN mapping 
has been extensively used in oropharyngeal [56, 76], 
breast [10, 77-84], melanoma [13, 85-90], lung [91-98], 
esophageal [99], gastric [100-113], cervical [18, 
114-117], colorectal [42, 55, 118-121], endometrial 
[122-124] and vulvar cancer cases [15, 16, 125]. The 
results have demonstrated the feasibility of in-
traoperative SLN mapping using FMI technology.  

As blue dye can be visualized with the naked eye 
and has already been widely used in SLN mapping 
studies, the combined use of blue dye and ICG has 
been assessed. Sugie et al. found that a high rate of 
SLN detection was achieved using the ICG fluores-
cence method [9]. Since the optical penetration depth 
(<10 mm) limits the visualization of deep tissues, 
Verbeek et al. used blue dye, ICG and radionuclides in 
combination, which increased the detection accuracy 
rate (rising to 78 % for blue dye, 100 % for NIR fluo-
rescence, and 88 % for radioactivity) [126]. 

Although blue dyes, ICG, and radionuclides can 
effectively trace the location of SLNs, they also travel 
from the injection site to higher tier nodes. To prevent 
migration, dyes are modified to inhibit migration; 
radionuclides are commonly conjugated to a colloid to 
increase the hydrodynamic diameter or to a ligand to 
increase retention [127]. For fluorescent dyes, the 
choice of conjugant can affect the optical properties, as 
ICG cannot be conjugated covalently to sulfur colloids 
without altering its chemical structure [128]. The 
performance of targeting tracers should be further 
evaluated in direct comparison to existing agents for 
clinical use. 

As the FDA approval of ICG has played an im-
portant role in clinical SLN mapping, some recent 
studies have reported on the detection of HCC using 
intraoperative FMI technology [45, 129]. The strongest 
fluorescent signals in patients were found if ICG was 
given several days before surgery as a routine pre-
operative liver function test [40, 129-133]. These re-
ports offer new opportunities for intraoperative pan-
creatic tumor visualization.  

With the advent of FMI techniques and systems, 
intraoperative liver cancer and metastases resection is 

becoming a simple, low-risk, and highly sensitive 
procedure. Ishizawa et al. used ICG at the dose of 0.5 
mg/kg for routine liver function testing within 2 
weeks of surgery to achieve highly sensitive identifi-
cation of HCC through the visualization of noncan-
cerous liver parenchyma around the tumor. The re-
sults showed that intraoperative ICG fluorescence 
imaging was useful for detecting superficially located 
small HCCs and confirming that these lesions had 
been removed with sufficient surgical margins [134].  

Although liver cancer detection using ICG has 
already been proven to be feasible for clinical use, the 
true mechanism by which ICG accumulates in can-
cer-affected organs remains uncertain. In another 
study, Ishizawa et al. proved that uptake of ICG in 
differentiated HCC cells is mediated by 
Na+/taurocholate cotransporting polypeptide (NTCP) 
and organic aniontransporting polypeptide 8 
(OATP8) in bile duct disorders, causing ICG to adhere 
to cancerous tissues. This enables highly sensitive 
detection of HCC via intraoperative ICG fluorescence 
imaging [135]. ICG-fluorescent imaging prior to re-
section recognized 21 out of 41 HCCs (51%), while all 
of the 16 metastases could be extensively character-
ized. This dye has further been successfully applied 
for the real-time differentiation of minute and grossly 
non-identifiable liver cancers [133]. 

Clinical applications using tumor-specific 
agents 

ICG has FDA approval for many clinical appli-
cations. However, its inability to precisely and selec-
tively target certain tumors and tissues limits its use-
fulness for many applications of intraoperative tumor 
detection. In 2011, European researchers reported 
intraoperative ovarian cancer detection by a folate 
receptor-α targeting fluorescent agent [7]. This 
method highlighted its potential applications in pa-
tients with ovarian cancer for improved intraopera-
tive staging and more radical cytoreductive surgery. 
However, larger international multicenter studies 
using standardized, uniformly calibrated FMI systems 
are needed to further confirm the diagnostic (accura-
cy, sensitivity, and specificity) and therapeutic value 
of the reported approach in a larger series of patients. 
Results from studies of intraoperative surgical navi-
gation system applications are shown in figure 2. 

With regard to early stage tumor targeting 
agents, Sturm et al. presented a tumor-specific 
ASY*-FITC probe that was used in early stage 
esophageal adenocarcinoma detection during sur-
gery. Although the detection was challenging because 
of the premalignant lesions’ flat appearance, 75% 
sensitivity and 97% specificity was achieved in this 
first in vivo human study. The results showed that this 

ThinkPad
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targeted imaging agent was safe and could be useful 
for guiding tissue biopsy and for early detection of 
esophageal neoplasia and potentially other cancers of 
epithelial origin [136].  

Precise and specific targeting of tumors by selec-
tive detection agents would also be of high clinical 
value. Report on urokinase plasminogen activator 
(uPA) labeled with NIR dye supports the potential of 

tumor margin imaging and theranostic for im-
age-guided surgery [137]. A few targeted antibodies 
for various tumors and tumor markers have been 
clinically approved, such as bevacizumab against 
VEGF, cetuximab against EGFR, and trastuzumab 
against HER2 [138]. A phase 1 clinical trial on breast 
cancer intraoperative visualization with bevacizumab 
conjugated to the IRDye 800CW has been approved 

and is undergoing trials [139]. In or-
der to widely apply the intraoperative 
surgical navigation technology, clini-
cal approved radionuclides using 
Cerenkov-induced fluorescence im-
aging can also be an effective method 
for intraoperative visualization of 
radiolabeled contrast agents [140]. 
Radiolabeled tumor-targeting pep-
tides for molecular imaging, such as 
targeting integrin αvβ3, have been 
successfully translated into the clini-
cal setting and showed potential for 
NIR fluorescence imaging [141]. Cur-
rently, these advanced systems and 
agents are available to re-
search-oriented clinical trials; hence, 
surgeons are verifying this method 
and extending their application. 

Preclinical Studies with 
Clinical Translational Poten-
tial 

Recently, the non-targeted fluo-
rescent dye ICG was adopted for 
clinical use after FDA approval. Cur-
rent research focuses on increasing 
the availability of novel, fluorescently 
labeled agents to identify crucial 
landmarks, including: tumor margins, 
lymph nodes, and vital structures. 
Though many agents have proven 
their potential for clinical translation, 
profiles should first be considered 
before clinical use. Although many 
contrast agents have superior effec-
tiveness in cancer detection, they may 
not be safe in patients and achieve 
FDA approval. Thus, satisfying safety 
profile requirements and the financial 
costs of clinical trials are challenges to 
the future approval of additional FMI 
agents.  

Many promising imaging agents 
for different types of tumor targeting 
applications with clinical translational 
potential have been reported. Re-

 
Figure 2. Clinical application results using surgical navigation systems. a) SPY imaging demonstrates perfusion 
to the thumb, index, and middle fingers via scanning with indocyanine green[142], b) Instructions for the 
Artemis Handheld system, c) Intraoperative NIR fluorescent image of the Fluobeam camera system[143], d) 
fluorescent signal and/or blue color of lymph nodes detected by PDE[144], e) Single SLN identification by the 
FLARE system [10], f) In vivo fluorescence imaging of a lymph node detected by the Multispectral FMI system 
[17], g) ICG-guided intraoperative detection and resection of the SLN in humans by the surgical navigation 
system GXMI Navigator [60]. 
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searchers have developed “smart” agents, which can 
for instance target tumor cells, tumor angiogenesis, or 
the tumor microenvironment. These “smart” agents 
specifically target either through conjugation with 
tumor-specific antibodies [145-147], nanobodies [148], 
aptamers, or peptides with high affinity binding for 
proteins on the cell surface [149]; or through the pre-
cise localization and amplification of enzymes for 
fluorescence activation [41, 150-154].  

In order to provide molecularly specific detec-
tion of cancer cells, NIR fluorescent agents are usually 
conjugated with a specific targeting ligand or mono-
clonal antibody targeting tumor cell receptors, such as 
epidermal growth factor receptor (EGFR), human 
epidermal growth factor receptor-2 (HER2), or vas-
cular endothelial growth factor (VEGF) receptor 
[155-157]. Heath et al. conjugated the fluorescenct dye 
(IRDye800CW) to a monoclonal antibody targeting 
EGFR to detect head and neck squamous cell carci-
noma (HNSCC) in preclinical models. The specificity 
of tumor detection was confirmed by histology and 
immunohistochemistry (n = 25 of 25). The results 
demonstrate the feasibility of detection and dissection 
of HNSCC using this probe in clinical settings [158].  

Sano et al. synthesized two probes, AlexaFlu-
or680 conjugated panitumumab to target EGFR and 
ICG conjugated trastuzumab to target against HER2, 
to evaluate the feasibility of specifically detecting 
breast cancer cells in vitro and in vivo. The results 
showed specific expression in two breast tumor cell 
lines, MDA-MB-468 (EGFR+/HER2-) and 3T3/HER2 
(EGFR-/HER2+), by the two activatable fluorescent 
probes. By using this method, intraoperative breast 
cancer molecular subtype classification can be real-
ized [159]. For example, Scheltinga et al. labeled Zr-89 
in the anti-VEGF antibody bevacizumab and an-
ti-HER2 antibody trastuzumab with IRDye 800CW. 
Tumor uptake of the probes was determined in xen-
ograft mice with radioactive counterparts for PET. 
Submillimeter level tumor lesions were also detected 
by real-time intraoperative FMI imaging method and 
confirmed by histology, immunohistochemistry, and 
fluorescence microscopy analyses [160]. The prospects 
of these cancer cell-specific imaging methods are en-
couraging for their future clinical translation to in-
traoperative image-guided surgery. 

For the imaging of tumor angiogenesis, the 
molecule alpha-v-beta-3 (αvβ3) integrin is widely 
used [161] , as it targets neovascularization at the tu-
mor sites and can be visualized by conjugating it to an 
NIR fluorescent dye such as Cy 5.5 or IRdye800CW. 
Cyclic arginine-glycine-aspartate (RGD) is the com-
monly used ligand for targeting αvβ3. However, the 
existing drawback of RGD is its short blood circula-
tion half-life, which greatly compromises its targeting 

efficacy. Chen et al. have solved this problem with a 
cyclic peptide. The c(RGDyK) and an organic dye 
(IRDyc800 or Cy5.5) were covalently bound to human 
serum albumin (HSA), which improved the robust-
ness of RGD targeting. Histology indicated that tumor 
vascular binding initially occurred where both tumor 
blood vessels and cell integrin were bound in vivo. 
This method may also be applied to other pep-
tide-based probes that can be combined with HSA or 
other molecules for long-lasting tumor contrast and 
enhanced pharmacokinetics [162]. As further exam-
ple, quantum dots (Qdots) possess excellent bright-
ness, photostability, monodispersity, and fluorescent 
yield [163]. Li et al. synthesized cyclic RGD to the 
surface of NIR CdTe Qdots. Image-guided surgery 
was accomplished successfully with clear tumor 
margins visualization intraoperatively, demonstrating 
their potential for intraoperative tumor dissection 
[164]. 

The activatable strategy for the imaging tumor 
microenvironment takes advantage of the differences 
between tumor cells and normal cells, such as specific 
enzymes, pH value, temperature and other stimula-
tions [165]. In vitro, these activatable probes are either 
not fluorescent or have little fluorescence due to the 
quenching effects of these conditions; however, after 
specific activation at the target site in vivo, they 
achieve strong fluorescence through the effect of 
dequenching. When the probes are activated, they 
exhibit high SBR compared to a constitutively fluo-
rescent agent [19, 20, 166-173].  

In order to improve SBR effectiveness, Elam-
prakash et al. designed a ratiometric activatable 
cell-penetrating peptide (RACPP) and coupled it with 
the fluorescence resonance energy transfer (FRET) 
technique using Cy5 and Cy7 dyes. Such ratiometric 
imaging increased SBR 40-fold and provided an ac-
celerated and quantifiable metric to identify primary 
tumors and metastases in liver and lymph nodes with 
increased sensitivity and specificity [20].  

For the purpose of real-time imaging, Zhu et al. 
discovered a method, which in a small animal model 
is able to boost fluorescent signals upon protease 
cleavage of the target molecule approximately half an 
hour post-injection. A strong fluorescent signal is then 
sustained for up to 24 hours. This particular method 
can identify any target protease with a specific pep-
tide substrate and can adapt to a variety of real-time 
imaging applications, such as in vivo drug screening, 
drug efficacy trials, disease onset monitoring, and 
animal model development [166].  

In order to improve sensitivity, Myochin et al. 
derived a new strategy to obtain a NIR fluorescence 
probe that can be rapidly activated by extracellular 
MMP. This design can be applied to develop a range 
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of more sensitive and rapidly responsive NIR fluo-
rescent probes not only for MMP activity, but also for 
other proteases [168]. However, the major limitation 
for the clinical application of new NIR fluorescent 
agents is that each fluorophore-ligand conjugate must 
receive regulatory approval separately, which is 
costly and time consuming [174].  

Radionuclide probes are FDA approved and 
widely used clinically. These agents can be used to 
generate Cerenkov luminescence (CL), which is light 
generated when charged particles exceed the speed of 
light in a dielectric medium. Recently, the feasibility 
of CL imaging in patients undergoing diagnostic 
18F-FDG scans to detect nodal disease has been vali-
dated in clinical experiments [140]. This means that 
optical methods for the detection of numerous radi-
onuclide probes can be applied in clinical practice. In 
addition to enabling Cerenkov optical imaging for 
intraoperative clinical use, tumor-specific clinical ap-
plied radiotracers have synergistic advantages for 
PET-based diagnostics and therapeutics. Thorek et al. 
reported that disease markers were detected using 
nanoparticles to produce secondary Ceren-
kov-induced fluorescence and could be applied to 
monitor other markers, representing a shift toward 
activatable nuclear medical agents [175]. New ap-
proaches using clinical PET tracers to produce sec-
ondary Cerenkov-induced fluorescence provide us 
with the opportunity to adopt their use for surgical 
applications [175]. These FDA approved radioactive 
agents expand the range of applications available 
during surgery [176, 177]. 

Conclusions and Perspectives 
Precise medical diagnosis and treatment will 

approved the ability of surgeons to treat cancer. In-
traoperative image-guided cancer surgery using FMI 
technology may provide the most valuable goal for 
addressing diseased and abnormal tissues in surgical 
practice. White-light reflectance supplies insufficient 
visual information between the tumor and normal 
tissue, whereas fluorescence can provide additional 
information to potentially prevent cancer persistence 
or recurrence, and unacceptable morbidity. Although 
FMI technology has been of substantial benefit to pa-
tient outcomes, much more work is necessary for 
clinical translation of the rapidly expanding number 
of targeted agents and imaging systems currently in 
the research pipeline. 

Intraoperative FMI has good performance in 
clinical applications, and many patients benefit from 
this method. As penetration depth is a challenge in 
optical imaging, intraoperative multimodal data fu-
sion (such as adding rescanned CT and/or ultraso-
nography) provides possible solutions [45, 178, 179]. 

These techniques will augment the tools for accurate 
preoperative diagnosis, such as radiography, CT, 
MRI, and PET, which will provide important aid in 
advancing intraoperative FMI detection.  

Some preclinical results using the NIR imaging 
technique combined with other imaging methods 
such as ultrasonography [45], MRI [180] and X-ray CT 
[178] compensate for the depth issues and have al-
ready demonstrated the possibility of using the FMI 
guided multi-modality method to precisely excise 
tumors. Zhang et al. declared that tumor metastatic 
lymph nodes and reactive lymph nodes located in 
deep-seated area were distinguished with diffu-
sion-weighted and super-paramagnetic iron oxide 
enhanced MR imaging [181]. Visualization of tumor 
draining SLNs at distant depths using NIR, MR and 
PET triple-modal imaging methods was done in a 4T1 
tumor metastasis model and provided helpful guid-
ance for SLN mapping and tumor metastasis diagno-
sis thereby revealing its potential clinical utility [182]. 
With breakthroughs in computer-aided treatment 
technology, multi-modality image registration with 
optical imaging methods has achieved clinical use in 
intraoperative applications. Through the develop-
ment of intraoperative image-guided agents and im-
aging systems in cancer surgery, FMI technology will 
extend other modality imaging methods into the clinic 
empowering surgeons to improve patient outcomes. 

Finally, it is important for surgeons to incorpo-
rate intraoperative surgical navigation technology 
into their practice. Along with innovation in fluores-
cent agent development, there is a parallel path of 
innovation in the field of instrumentation that will 
extend the traditional view of surgery. Although these 
advances in FMI navigation have the potential to im-
prove the surgical paradigm, there is the remaining 
challenge of defining clinical end points that will most 
benefit surgeons and patients utilizing these molecu-
lar navigation techniques. Minimally invasive surgi-
cal techniques have altered surgical practices in a way 
that coincides with and complements these promising 
technological advances. Minimally invasive surgical 
modalities have limited the handling of tissues, forc-
ing surgeons to rely more heavily on tissue visualiza-
tion. For open surgeries, real time improvement in 
visual differentiation between dissimilar tissue types 
during surgery will be particularly advantageous. 
With the development of imaging techniques and 
contrasts, FMI method can provide powerful assis-
tance to theranostics for patients. Significant advances 
in intraoperative imaging-guided cancer surgery are 
expected in the next few years. 
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