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Abstract. This paper presents a novel method for solving global path planning problem
of AUV using a modified particle swarm optimization (PSO). Firstly, a polar coordina-
tion model of the obstacle environment is established, and a candidate path representation
method is adopted. Secondly, we give an equilibrious distribution parameter and propose
a modified PSO evolutionary strategy which can avoid particles clustering within a sub-
area of the problem scope. Thirdly, an AUV global path planning algorithm based on
EDPSO is designed. Simulation experiments indicate the algorithm is effective and can
provide a safe path in the sea field environment.
Keywords: Particle swarm optimization, Global path planning, Autonomous underwa-
ter vehicle

1. Introduction. Planning a collision-free path is a fundamental issue for an autonomous
underwater vehicle (AUV) to execute its tasks. The goal of path planning is to generate
a collision-free trajectory for an AUV to move from an initial configuration to a goal con-
figuration. There are many methods suggested by researchers to solve this problem. Most
of Classic path planning approaches [1-3], such as cell decomposition, road map and po-
tential field, have some weakness in common. Particle Swarm Optimization (PSO), firstly
presented by Kennedy and Eberhart [4,5] in 1995, is a kind of heuristic and random-search
algorithm where particles collaborate as a population to reach a collective goal. There
have been some proposed solutions for obstacle avoidance with PSO [6-8].

Compared with other evolutionary technology such as GA, PSO has many advantages,
such as fewer control parameters and quick convergence, while it has some shortcomings.
One shortcoming is that candidate particles will cluster within a sub-area of the whole
solution scope. It will result in local optimization results. In this paper, a novel method
for solving global path planning problem of AUV using a modified PSO with equilibrious
distribution parameter (EDPSO) is proposed. The parameter can measure the diversity
of candidate particles and guarantee the escaping from the sub-optimum trap.

2. Environment Modeling and Problem Description.

2.1. Polar coordination model. In this paper, we build the obstacle environment under
the polar coordinate using electronic chart data which is stored in the grid environment
and shown in Figure 1. The proposed polar coordination model is described in Figure
2: Take the starting point S as the origin, and the line SG as the polar axis. Divide
line SG into n equal segments with n − 1 points, and further draw n − 1 circles which
have the same origin S. Take random points Pi on every circle and construct a path:
Path = {S, P1, . . ., Pi, Pn−1, G}.
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Figure 1. Electronic chart
data model

Figure 2. Polar coordination
environment model

The ith point Pi (Ri, αi) on a candidate path can be described through mathematical
conversion as follows: ⎧⎨

⎩
Ri =

√
x′2i + y′2i

αi = a tan(y′/Ri)
(1)

where x′i, y′i is latitude and longitude of P ′i in S-X ′Y ′ coordinate which is obtained though
O-XY coordinate rotation. Two different coordinates S-X ′Y ′ and O-XY conversion
relation is described as follows:[

x′i
y′i

]
=

[
cos θ
− sin θ

sin θ
cos θ

] [
xi

yi

]
+

[ −xs cos θ − ys sin θ
xs sin θ − ys cos θ

]
(2)

2.2. A candidate path representation. In our algorithm, a candidate path is repre-
sented by a sequence of path waypoints as shown in Figure 3, in which Ri is polar distance
of ith waypoint, αi is its polar angle, and Hi is its water depth data.⎧⎨

⎩
αi =

i∑
j=0

Δαj

Ri = i ∗Rbasic

(3)

where Δαi is the turning angle of ith waypoint on the path, and Rbasic is the first dimension
circle radius. The particle representation can be simplified into P = {Δα0, H0, Δα1, H1,
. . ., Δαi, Hi, Δαn, Hn}.

Figure 3. The representation of a particle

3. A PSO Algorithm with Equilibrious Distribution Parameter (EDPSO).

3.1. Traditional PSO. Each particle is treated as a point in the n-dimensional problem
space. A particle represents a candidate solution to the problem. The particle is repre-
sented as Xi = (xi0 , xi1 , . . ., xin−1 ), i = 1 , 2 , . . .,PNum, where PNum is the swarm size
and n is the total dimension number of each particle. Each particle adjusts its trajectory
toward its own previous best position pBest and the previous best position gBest at-
tained by the whole swarm [4]. The particles are manipulated according to the following
equations:

vid = w ∗ vid + c1 ∗ r1 ∗ (pid − xid) + c2 ∗ r2 ∗ (pgd − xid) (4)
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xid = xid + vid (5)

where c1 and c2 are acceleration constants, r1 and r2 are random numbers within the
interval of [0, 1]. Changing velocity this way enables each particle to search around its
individual best position and global best position.

3.2. Modified PSO evolutionary strategy. In order to effectively avoid particles clus-
tering within a sub-area of the problem scope, we define a new parameter which can mea-
sure the swarm particles equilibrium of distribution degree. In addition, a new particle
evolutionary strategy is presented which can direct the particle rational flying behavior.

1) Equilibrious Distribution Parameter. The diversity measure method proposed
by Riget [9] adopt a parameter “particle-dimension-distance” to measure the distance be-
tween different particles, but the method can not measure the distance between dimension
vectors of particles. A new parameter “particle-distribution-degree” which can improve
the sufficiency of PSO diversity measure in evolutionary process is given here.

Definition 3.1. Equilibrious Distribution Parameter. “particle-distribution-degree”

dis(S) =
1

Dim
·

Dim∑
i=0

√√√√ N∑
l=1

(
PNum

N
− ail

)2

(6)

where Dim is the dimensionality of the problem, N is the equal separation size of the
particle swarm, PNum is the swarm size. ail is the sum of dimension vectors in ith
dimension and lth separation area.

a) If particles distribute equally in problem scope, the value dis(s) will be zero.
b) If particles cluster in the same dimension area, dis(s) will satisfy Equation (7).

dis(S) =
1

Dim
·

Dim∑
i=0

√√√√(
PNum

S
− PNum

)2

+
S−1∑
l=1

(
PNum

S

)2

= PNum

√
1− 1

S
(7)

In addition, we adopt the parameter “particle-dimension-distance” suggested by Riget
[9] to measure the diversity degree which is defined as follow:

diversity(S) =
1

|S| ·
|S|∑
i=1

√√√√Dim∑
j=1

(pij − pj)2 (8)

where S is the swarm, |S| is the swarm size, Dim is the dimensionality of the problem,
pij is the jth value of the ith particle and pj is the jth value of the average point p.

2) Particle Evolutionary Strategy. At the base of above improvement, we pro-
pose a modified PSO evolutionary strategy in order to increase the algorithm calculation
efficiency in this section. The flow of EDPSO Algorithm is shown as follows:

Function Diversity Measure
Input: swarm S parameters and thresholds dis Max, div Low
Output: dis(S), diversity(S)
Steps:
1. Calculate dis(S) using Equation(6);
2. Calculate diversity(S) using Equation(7);
3. If diversity(S) < dis Low and dis(S) > dis Ma

satisfy diversity conditions and go to next step:
else diversity(S) > dis Low, or dis(S) < dis Ma

lost diversity, and recalculate velocity and position with Equations (4)-(5);
4. return to Step 2 in EDPSO.
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Algorithm EDPSO
Input: set parameter c1 = c2 = 1, wmax = 0.95, wmin = 0.2, pDim = 20, pNum = 30;

Fitness function fitness(Xi);
Output: Global particle pBest.
Steps:
1. Initialize particles X1, X2, . . ., XpNum,
2. For every particle Xi

a. Calculate particle new velocity V t+1
i using Equation (4);

b. Calculate particle new position estimated Xt+1
i using Equation (5);

c. For every dimension Xij

if fitness(Xt+1
ij , Xt

ij) > fitness(Xt+1
ij )

and fitness(Xt+1
ij , Xt

ij) > fitness(estimated Xt+1
i )

estimated Xt+1
i is not a better position, and Xt+1

ij = Xt
ij ;

else
estimated Xt+1

i will be adopted, and Xt+1
ij = estimated Xt+1

i

end for dimension Xij

d. Calculate particle new position Xt+1
i using jth dimensional vector Xt+1

ij

with Equation (5);
e. run Diversity Measure ( ) function;

end every particle Xi

4. AUV Global Path Planning Algorithm Using EDPSO. This section describes
an AUV path planning algorithm based on EDPSO. Firstly, the obstacle collision avoid-
ance strategy is introduced.

1) Collision Avoidance Strategy. We can adjust the AUV heading to avoid collision
of obstacles, and avoid entering some danger or forbidden areas. We define FZi as danger
and forbidden areas in the ith dimension of a path which can be described in Figure 4
and Figure 5.

FZi =
obs num∑

i=0

Scopeθi
(9)

where obs num is the obstacle number in current dimension area, and Scopeθij is the angle
scope of jth obstacle forbidden area. Scopeθij can be calculated as follow:

Scopeθ = [orientation(Pi, Oij)−Δθij, orientation(Pi, Oij) + Δθij] (10)

Δθij = arctan
roij + ε

distance(Pi, Oij)
(11)

where ε is the safe coefficient, roij is the radius of jth obstacle circle in ith dimension.

Figure 4. Collision avoid-
ance modeling

Figure 5. Forbidden area an-
gle scope Sθij
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2) Cost Function. In our algorithm, the cost function of a candidate path is defined
according to the following equations.

f(X) =
Dim−1∑

i=0

(ω1Δli + ω2Δαi + ω3ΔHi) (12)

where Δli is the length of the ith segment on candidate path, and Δαi is the turning
angle of the ith waypoint and ΔHi is its water depth adjusting value, ω1, ω2 and ω3 are
the weighting coefficients.

5. Tests and Results. Here some tests are carried out to illustrate the proposed al-
gorithm in following environments. The algorithm is implemented on a Pentium 4 PC,
and the same set of parameter values are set as: pDim = 20, wmax = 0.95, wmin = 0.2,
runMax = 100, c1 = c2 = 1.

Simulation 1: We adopt an environment of 60×38 grids size which is mathematically
modeled based on an electronic chart data (range of Lng. 0.0895◦×Lat. 0.0462◦). Through
adjusting values of the weighting coefficients ω1, ω2 and ω3 in Equation (12), we get the
different paths as shown in Figure 6.

Figure 6. Path planning results in environment 1 in different visual angles

Table 1. Parameter setting and path results

Pathi Path1 Path2 Path3

wi(i = 1 , 2 , 3 ) w1 = 0 .5 ,w2 = 0 .5 , w1 = 0 .5 ,w2 = 0 .5 , w1 = 0 .5 ,w2 = 0 .5 ,
w3 = 0 w3 = 8 w3 = 12

Path length/ km 28.374 15.116 21.635

From the results we get the conclusion that through adjusting the value of the weighting
coefficients ω1, ω2, ω3, we can adjust the different paths with different smooth degree. The
candidate Path 2 is the best result.

Simulation 2: We adopt an accurate mathematical model of 170×170 grids size (Lng.
0.0025◦× Lat. 0.0025◦). We select values of the weighting coefficients w1 = 0.5, w2 = 0.5,
w3 = 8 in cost function and get the result in Figure 7. From the result we can get the
conclusion that the EDPSO algorithm can solve the global path planning problem and
get feasible paths.
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Figure 7. Path planning result in environment 2 in different visual angles

Table 2. Path results in different environments

Experiment 1 Experiment 2
Test contents Time/s Length/km Time/s Length/km

Results 2.542 15 .116 11 .679 57 .267

6. Conclusions. In this paper, we give an equilibrious distribution parameter and pro-
pose a modified PSO evolutionary strategy in order to effectively increase PSO global
optimization ability. Then, we design a path planning method for an AUV in a sea
field environment. Simulation results in different sea field environments show EDPSO
algorithm is feasible for AUV global path planning problem.
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