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Abstract. The paper presents the method of combining the prior knowledge of mono-
tonicity with a Multi-Input-Single-Output (MISO) unnormalized Interval Type-2 (IT2)
Takagi-Sugeno-Kang (TSK) Fuzzy Logic System (FLS) and applies the method to an
NARX model such that the model can approach a given monotonic nonlinear system.
We first provide sufficient conditions to guarantee the monotonicity of the NARX model
with reference to its each input. And then based on the conditions, we show how to
design the unnormalized interval type-2 fuzzy monotonic NARX models by means of a
constrained least squares algorithm. Finally, an application to identify a coupled-tanks
liquid-level system is given to illustrate the usefulness and advantages of the method un-
der noisy circumstances.
Keywords: System identification, Prior knowledge, Type-2 fuzzy logic, NARX model

1. Introduction. In many system identification problems, prior knowledge, such as con-
tinuity, monotonicity and convexity, etc., can play an important role, especially when
mathematical models of target systems are unknown or the input-output data are not
informative enough or corrupted by noise. A lot of excellent work has been done on how
to use the prior knowledge [2-5]. Lindskog [2] have proposed a fuzzy model structure to
ensure monotonic gain characteristics in identified models. In recent years, interval type-2
fuzzy logic theory has gained considerable concern from different research areas [1,3,4,7].
In [3], Li have studied the issue of the SISO monotonic normalized IT2 FLSs. But, at
present, to the authors’ knowledge, there are no literatures that incorporate prior knowl-
edge into MISO Unnormalized Interval Type-2 Takagi-Sugeno-Kang Fuzzy Logic Systems
(UIT2FLSs). In this paper, we combine the prior knowledge of monotonicity with MISO
UIT2FLSs and apply the method to an NARX model. And then, we solve optimization
problem to obtain the model parameters via a constrained least squares algorithm such
that the model can approach a given monotonic target system.

2. Multi-input Zeroth-order UIT2FLS. An UIT2FLS is depicted by fuzzy IF-THEN
rules. It has a complete rule base, each having M antecedents, where the ith rule Ri is
denoted as

Ri : IF x1 is Ãj11 and x2 is Ãj22 and . . . and xN is ÃjNN , THEN Y i = [wi, wi],

where i = j1, j2, . . . , jN is a grid-oriented multi-index, jl = 1, 2, . . . ,Ml, i = 1, 2, . . . ,M ,

M =
∏N

k=1Mk, which is the number of fuzzy rules in this base; Ãjll (l = 0, 1, . . . , N) are the
interval type-2 fuzzy sets shown in Figure 1. For an input vector xxx = [x1, x2, . . . , xN ]

T ,
the firing set F i(xxx) of rule Ri, is an interval type-1 set under product operator, i.e.,
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Figure 1. Interval type-2 fuzzy partition

F i(xxx) =
[
f i(xxx), f

i
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]
, where f i(xxx) = µ
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l

(xl)s and µÃjl
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equations, are the upper and lower membership functions of the interval type-2 fuzzy set
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where ãl ≤ al, c̃l ≤ cl, b
i
1l ≤ bil, b

i
2l ≥ bil. According to Theorem 13-2 in [1], the overall

output of the unnormalized type-2 TSK model is inferred as

ŷ(xxx,www) =
1

2

M1∑
j1=1

. . .

MN∑
jN=1
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l=1

µ
Ã
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(xl)w
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l

(xl)w
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(1)

where www is a column vector which comprises 2
∏N

i=1Mi elements and

www =
[
w11...11, w21...11, . . . , wM11...11, w12...11, . . . , wM12...11, . . . , wM1M2...MN−1MN ,

w11...11, w21...11, . . . , wM11...11, w12...11, . . . , wM12...11, . . . , wM1M2...MN−1MN

]T
.

Next, we give the sufficient conditions which ensure multiple-input single-output UIT2F
LSs are monotonic without proof.

Theorem 2.1. Assume that an UIT2FLS is N -input single-output, xl (l = 1, 2, . . . , N)
denotes an input variable of the UIT2FLS, and that the corresponding input domain Ul =

[ul, ul] is partitioned by Ml triangular IT2FSs Ã
1
l , Ã

2
l , . . . , Ã

Ml
l . The UIT2FLS represented

by (1) monotonically increases in the input vector xxx ∈ RN , if the following conditions are
satisfied:
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1. Two fuzzy rules are fired, i.e., a1l = a1l = b11l = b1l = ul, b
M
l = bM2l = cMl = cMl = ul,

bil = ai+1
l , cil = bi+1

l and ail ≥ ail, b
i
l > bi1l, b

i
2l > bil for i = 1, 2, . . . ,M − 1;

2. µÃi
l
(xl) + µÃi+1

l
(xl) = hl and µÃi

l

(xl) + µ
Ãi+1

l

(xl) = hl, for xl ∈ Sil , i = 1, . . . ,Ml − 1;

3. for all combinations of j1, . . . , jl−1, jl+1, . . . , jN , it holds that w
j1...jl...jN ≤ wj1...jl+1...jN

and wj1...jl...jN ≤ wj1...jl+1...jN .

2.1. Interval type-2 fuzzy NARX model. NARX models are widely applied in many
nonlinear identification solutions. Based on the interval type-2 fuzzy logic, the NARX
model is given as follows:

ẑ(t) = ŷ(φφφ(t),www), (2)

where ẑ(t) is the predicted value of the model output z(t) at time t; ŷ(.) is a predictor which
is a multi-input single-output UIT2FLS parameterized by www as shown in (1), and φφφ(t) =
[φ1(t), φ2(t), . . . , φN(t)]

T = [y(t− 1), . . . , y(t−ny), u(t− 1), . . . , u(t−nu)]T represents the
regressors, where N = ny + nu.

Remark 2.1. Just changing the input vector xxx in (1) into φφφ(t), we can obtain the in-
terval type-2 fuzzy NARX model, meanwhile we should note that the monotonicity that
UIT2FLSs satisfy is identically fit for the NARX model.

3. Designing UIT2FLSs Via Constrained Least Squares Algorithm. In this part,
we will design monotonic NARX fuzzy model to identify target systems by means of a
constrained least squares algorithm.

It is quite obvious that Equation (1) can be written as

ŷ(φφφ(t),www) = ϕϕϕT(φφφ(t))www (3)

where the column vector ϕϕϕ(φφφ(t)) consists of 2
∏N

i=1Mi elements, and the orders of its

elements ϕj1j2...jN (φφφ(t)) and ϕ
j1j2...jN

(φφφ(t)) are the same as the orders of the elements

wj1j2...jN and wj1j2...jN in www, and ϕj1j2...jN (φφφ(t)) = 1
2

∏N
i=1 µÃji

i

(φi(t)), ϕ
j1j2...jN

(φφφ(t)) =

1
2

∏N
i=1 µÃji

i
(φi(t)). From (3), we conclude that the output of the UIT2FLS is linear with

its consequent parameters.
Suppose that there exist the input-output training data

(
φφφ(1), z(1)

)
, . . . ,

(
φφφ(r), z(r)

)
which are used to train the consequent parameters of the interval type-2 fuzzy NARX
model. In the event that the fuzzy partitions of the model are determined, the interval
weights of the consequent parts can be optimized by a least squares algorithm under the
following training criteria, E = minwww

∑r
t=1 |ẑ(t) − z(t)|2, where ẑ(t) is the output of the

NARX predictor. Noting that ẑ(t) is linear with its consequent parameters, the training
criteria is rewritten as:

E = min
www

(Φwww − zzz)T (Φwww − zzz) , (4)

where zzz = [z(1), z(2), . . . , z(r)]T, Φ =
[
ϕϕϕT(φφφ(1)), ϕϕϕT(φφφ(2)), . . . ,ϕϕϕT(φφφ(r))

]T
.

The prior knowledge of monotonicity can be abstractly expressed as Pwww ≤ 0, where P is
a constrained matrix. It is clear that the optimization problem in (4) can be transformed
into the following constrained least squares optimization problem:{

min
www

(Φwww − zzz)T(Φwww − zzz)

subject to Pwww ≤ 0
(5)
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For two-input case, the constraint inequalities Pwww ≤ 0 can be rewritten as
H2

1 000(M1−1)M2×M1M2

H2
2 000M1(M2−1)×M1M2

000(M1−1)M2×M1M2 H2
1

000M1(M2−1)×M1M2 H2
2

IM1M2 −IM1M2

www ≤ 000(5M1M2−2M1−2M2)×1, (6)

where

H2
1 = ΘM1 ∈ R(M1−1)M2×M1M2 , H2

2 = ΨM1 ∈ RM1(M2−1)×M1M2 ,

Θn =


Ω(n−1)×n 000 . . . 000

000 Ω(n−1)×n . . . 000
...

...
. . .

...
000 000 . . . Ω(n−1)×n

 , Ψn =


In −In 0 . . . 0 0
0 In −In . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . In −In



in which Ω(M−1)×M =


1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −1

 and IM is the M ×M identify matrix.

In conclusion, we can obtain an MISO interval type-2 fuzzy NARX via the following
steps:

1. Determine the membership functions of IT2FSs Ã1
l , Ã

2
l , . . . , Ã

M
l according to the first

two conditions in Theorem 2.1;
2. Solve the following constrained least squares optimization problem (5), and obtain

the consequent parameter vector www by means of numerical optimization methods.

4. Simulation. In this part, we will consider a simulation example to identify a coupled-
tanks liquid-level system, which is modeled by the state-space model equations [6,7]:

A1
dH1(t)

dt
= Q1(t− τ)− α1

√
H1(t)− α3

√
H1(t)−H2(t),

A2
dH2(t)

dt
= α3

√
H1(t)−H2(t)− α1

√
H1(t), z(t) = H2(t), (7)

where A1 = A2 = 36.52, α1 = α2 = 5.6186, α3 = 15, τ = 3 second. 0 ≤ H1, H2 ≤ 60cm.
Q1 is the input flow rate and Q1 ≤ 90cm3/s. z(t) is the output of the system. Also, the
regressors of the NARX model are chosen as φφφ(t) = [Q1(t− 3), z(t− 1)].
It can be proved that if Q1 is a certain constant value then the output z(t) eventu-

ally keeps a constant liquid level. Simulations show this system output monotonically
increases when the constant input is greater than 49 and the initial status vector [H1;H2]
is [25; 16]cm. Starting from such a state condition we also can justify that an increase in
the inflow results in the liquid level to increase in a non-oscillatory manner and settle at a
higher level. We can consider the property of the coupled-tank liquid-level system as the
prior knowledge of monotonicity. Therefore, we can use the IT2 fuzzy monotonic NARX
model above to identify the system.
The identification problem here is to predict the liquid levels z(t) with respect to the

input flow rate Q1. From (7), we can obtain r = 500 input-output data pairs (φφφ(t), z(t))
(t = 1, 2, . . . , r) to identify this nonlinear system. In this section, we do two numerical
simulation and the input signal of the first simulation is uniformly distributed random
numbers on interval [0, 90], and the second one is monotonically increasing signal. In
these simulations, the output data are corrupted by uniformly distributed additive noise
in U =

[
− nbmax

(
H2

)
, nbmax

(
H2

)]
to obtain the training data pairs (φ̃φφ(t), z̃(t))s, i.e.,

φ̃φφ(t) = [Q1(t − 3), z̃(t − 1)], z̃(t) = z(t) + noise, where noise ∈ U , max
(
H2

)
denotes
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Ã2

2
Ã3
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Figure 2. Interval type-2 membership functions of Q1(t− 3) and z(t− 1)

Table 1. Fuzzy rules of the four NARX models

Antecedent part Consequent part z(t)

Q1(t− 3) z(t− 1) MUIT2FLS NMUIT2FLS MT1FLS NMT1FLS

Ã1
1 Ã1

2 [18.20, 21.36] [−7.12, 34.89] 20.74 20.73

Ã2
1 Ã1

2 [18.20, 22.75] [−24.08, 49.08] 21.13 21.26

Ã3
1 Ã1

2 [18.20, 22.75] [−28.26, 53.89] 21.13 21.02

Ã1
1 Ã2

2 [18.20, 22.03] [−39.05, 65.22] 20.74 21.26

Ã2
1 Ã2

2 [18.78, 22.75] [−20.55, 49.99] 21.44 21.68

Ã3
1 Ã2

2 [18.78, 22.75] [−8.81, 37.16] 21.44 20.92

Ã1
1 Ã3

2 [18.20, 22.03] [13.17, 13.17] 20.74 18.85

Ã2
1 Ã3

2 [20.21, 22.75] [3.30, 33.35] 21.98 21.92

Ã3
1 Ã3

2 [22.75, 22.75] [11.49, 30.23] 23.04 23.22

the maximum value of the r output sample data; nb is the level of noisy disturbance;
nb = 10% in the first simulation and nb = 15% in the second simulation. In each noisy
circumstance, ten cases are considered. In case i, the training data set is chosen as
Di = {(φ̃φφ(1), z̃(1)), . . . (φ̃φφ(ri), z̃(ri)} where ri = 50i, (i = 1, . . . , 10). Moreover, for each
case, the evaluation data set is chosen as Ei = {(φφφ(1), z(1), . . . (φφφ(ri)), z(ri))} which can
be used to check whether the trained model could follow the characteristics of the original
signal.

Thought the data, we use the following two RMSE performance indexes in case i

api =

(
1

ri

ri∑
t=1

(
ŷ(φ̃φφ(t),www)− z̃(t)

)2) 1
2

, gpi =

(
1

ri

ri∑
t=1

(
ŷ(φ̃φφ(t),www)− z(t)

)2) 1
2

, (8)

where ri is the size of the training data set Di and the evaluation data set Ei in case i;
api can reflect the approximation ability of fuzzy NARX models for the training data,
and gpi can reflect the generalization ability of the fuzzy models for original noise-free
signal. Also, the statistical indexes, apsi and gpsi, which are the arithmetic mean of the
corresponding indexes obtained in 50 run times, are shown in Figures 3 and 4.

In the simulations, in order to demonstrate the superiority of the prior knowledge of
monotonicity, we use two fuzzy models to identify the coupled-tanks liquid-level system:
Monotonic UIT2FLS (MUIT2FLS), UIT2FLS without Monotonic constraints (NMUIT2F
LS), Monotonic Type-1 FLS (MT1FLS) and Type-1 FLS without the constraints (NMT1F
LS). For each input variables, we use 3 membership functions. The membership functions
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Figure 3. The performance curve using rand data when nb = 10%
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Figure 4. The performance curve using monotonic signal when nb = 15%

of their antecedent parts are showed in Figure 2, and note that the antecedent parameters
satisfy the first two conditions of Theorem 2.1. In this study, we can obtain the consequent
parameters according to the developed solution. These consequent parameters of the two
fuzzy systems are shown in Table 1.
In Figure 3, it can be seen that the approximation performances apsi (i = 1, 2, . . . , 10)

and the generalization performances gpsi (i = 2, 3, . . . , 10) of NMUIT2FLS perform best
than other FLSs’ counterpart. The reason for this is that type-2 FLSs have more param-
eters than type-1 FLSs and the FLSs without constraints have more freedom than the
FLSs with constraints.
In Figure 3, gps1 of MUIT2FLS outperforms that of NMUIT2FLS because the beginning

of the output curve of the coupled-tanks system monotonically increases, which is triggered
by the initial values H1 = 40cm and H2 = 20cm in the simulation. When the input signal
monotonically increases, the system output monotonically increases. From Figure 4, the
approximation performances apsi (i = 1, 2, . . . , 10) of NMUIT2FLS are still superior to
the other FLSs’, whereas, the generalization performances gpsi (i = 1, 2, . . . , 10) of the
MUIT2FLS is best. Also, in Figures 3 and 4, in general, the UIT2FLS with monotonic
constraints performs best among the four FLSs. The reason for this is that the prior
knowledge provides the information that curve-fitting needs, and when input-output data
is not enough, the prior information become more important.
In conclusion, NMUIT2FLS has better approximation performance than MUIT2FLS,

whereas the generalization performance of MUIT2FLS is superior to other FLSs’, when
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target systems take on monotonicity or training data are not enough. Therefore, com-
bining the prior knowledge of monotonicity and unnormalized interval type-2 fuzzy logic
NARX model gives more satisfactory overall performance.

5. Conclusions. In this paper, we encode the prior knowledge of monotonicity into an
MISO unnormalized interval type-2 TSK FLS, and then, apply the method to an NARX
model such that the model can approach a given monotonic system. A numerical simu-
lation example is provided to verify the usefulness of the derived theorems and methods.
The simulation results have demonstrated that when the target system is monotonic or
training data are not enough, the unnormalized interval type-2 fuzzy logic NARX model
with monotonic constraints outperforms other FLSs on the whole. In practice, the prior
knowledge may be obvious and input-output data may always not be sufficient. Under this
circumstances, the information from prior knowledge may be an excellent supplementary
to the information from input-output data. Hence, it is quite important to incorporate
the prior knowledge into the system identification.
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