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Abstract: A neuro-hierarchical sliding mode controller is presented for a class of under-actuated 
systems with a stable equilibrium point. Such controller is combined with the concept of neural 
networks and the methodology of hierarchical sliding mode control. At first, the hierarchical 
sliding mode control law is designed for the class as follows. The system is divided into several 
subsystems and the sliding surface of every subsystem is defined. Then, the sliding surface of 
one subsystem is selected as the first layer sliding surface. The first layer sliding surface is then 
to construct the second layer sliding surface with the sliding surface of another subsystem. This 
process continues until the sliding surfaces of all the subsystems are included. The control law is 
derived from Lyapunov theorem. By aiming at unknown factors and uncertainties, the neural 
networks are designed to approximate the terms of the hierarchical sliding mode control law. The 
asymptotic stability of the entire sliding surfaces and the convergence of the network weights are 
proven theoretically. Simulation and physical experiment results show the controller’s validity 
and robustness. 
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1 Introduction 

Under-actuated systems are characterised by the fact  
that they have fewer actuators than the degrees of freedom 
to be controlled. Such systems arise in extensive 
applications (Spong, 1998). The class of under-actuated 
systems referred in this paper with a control input and 
multiple outputs is rather large, including Acrobots, inverted 
pendulum systems, ball-beam systems, overhead cranes, and  
single-input horizontal under-actuated manipulators, etc. 
They are often used for research on non-linear control and 
education in various concepts (Fang et al., 2003). There are 
three types of under-actuated systems in the class from the 
viewpoint of the property of equilibrium points. The first 
type has a stable equilibrium point such as overhead cranes, 
the second one has an unstable equilibrium point such as 
Acrobots, the third one has infinite equilibrium points such 
as single-input horizontal under-actuated manipulators. 
Here, we only focus on a part of the class that has a stable 
equilibrium point. 

In recent years, there are increasing interests in the 
control problems of under-actuated systems (Yi et al., 2002; 
Zhang and Tarn, 2002; Reyhanoglu et al., 1999; Hussein 
and Bloch, 2008). The dynamics of under-actuated systems 
often contain non-linearities, non-holonomic constraints, 
couplings and so on. These make their control design 
difficult. Sliding mode control (SMC) is a powerful  
non-linear design method, which has been developed  
and applied for the last three decades (Kaynak et al., 2001). 
The SMC provides a good candidate for the control 
problems of under-actuated systems (Wang et al., 2004;  
Xu and Özgüner, 2008). But designing a conventional 
sliding surface is not appropriate for under-actuated 
systems, because the parameters of the sliding surface can’t 
be obtained directly according to Hurwitz condition as 
linear systems (Wang et al., 2004). On the other hand, the 
computation of the equivalent control requires the exact 
knowledge of system dynamics and parameters. For partly 
known or uncertain systems, there exist some difficulties 
during the computation of the equivalent control, which 
may lead to an ineffective sliding mode controller. In this 
paper, we work at the structure design of the sliding  
 
 

surfaces for the class and how to utilise the control law for 
the systems with uncertainties. 

Neural networks (NNs) are a developing intelligent 
method. NNs provide a good candidate for the computation 
of the equivalent control of such partly known or uncertain 
systems. In Kim and Oh (1995), Jezernik et al. (1997), 
Ertugrul and Kaynak (2000) and Tsai et al. (2004),  
neuro-sliding-mode-control methods were addressed. In 
those methods, NNs were used to calculate the equivalent 
control. An inherent problem is that such network 
architecture may lead to calculational burden as the inputs 
increase. Moreover, none of them gives the convergence 
analysis about their NNs and sliding surfaces in theory. 

The structure characteristic of the class of  
under-actuated systems with a stable equilibrium point  
is that they can be divided into several subsystems. Based 
on this structure, the hierarchical sliding mode control 
(HSMC) was presented in Wang et al. (2004), Lin and Mon 
(2005) and Qian et al. (2008). Further, this structure 
provides an idea to simplify the network structure, which 
could solve the above problem associating with the 
computational burden. Therefore, we consider designing a 
neuro-hierarchical sliding mode controller for the class of 
under-actuated systems with a stable equilibrium point. 

Based on the concept of NNs and the methodology of 
HSMC, the neuro-hierarchical sliding mode control 
(NHSMC) is presented in this paper. The reminders are 
organised as follows. In Section 2, the NHSMC law is 
designed. The asymptotic stability of the entire sliding 
surfaces and the convergence of the network weights are 
proven theoretically in Section 3. Simulation and physical 
experiment results in Sections 4 and 5 show the validity and 
the robustness of this method, respectively. Conclusions are 
derived in Section 6 at last. 

2 Design of NHSMC 

2.1 Design of HSMC 

The state space equation of the class can be depicted by a 
canonical expression as the following form: 
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Here, X = [x1, x2, …, x2n]T is the state variable vector; fi(X) 
and bi(X) (i = 1, 2, …, n) are the non-linear functions of the 
state variables X, they are abbreviated as fi and bi; and u is 
the single control input. 

Equation (1) is the normal form of the class. It could 
describe different systems by different n, fi and bi. If n = 2, it 
can represent Acrobots, single inverted pendulum systems, 
Pendubots, and cranes; if n = 3, it can express double 
inverted pendulum systems, double-pendulum type cranes, 
and double-pendulum systems; if n = 4, it can be considered 
as triple inverted pendulum systems, etc. In this paper, we 
only focus on a part of the class with a stable equilibrium 
point, such as cranes and pendulum systems. 

Further, (1) can be divided into several subsystems 
according to the physical structure. For example, a series 
triple inverted pendulum system consists of four 
subsystems: upper pendulum, middle pendulum, lower 
pendulum, and cart. The state variables (x2i−1, x2i) can be 
treated as the states of the ith subsystem. The sliding surface 
of the ith subsystem is defined below: 

2 1 2i i i is c x x−= +  (2) 

Here, ci is a positive constant. By differentiating si with 
respect to time t in (2), the equivalent control can be 
obtained from 0is =  as: 

( )2 f / beqi i i i iu c x= − +  (3) 

The structure of the hierarchical sliding surfaces is designed 
as follows. Without loss of generality, the sliding surface of 
the first subsystem s1 is chosen as the first layer sliding 
surface S1. Then, S1 is used to construct the second layer 
sliding surface S2 with s2. This process continues until all of 
the sliding surfaces of the subsystems are included. Such 
structure is shown in Figure 1. 

Figure 1 Hierarchical structure of the sliding surfaces 

 

In the presented hierarchical structure, we know that the ith 
layer sliding surface includes the information of the ith 
subsystem sliding surface and the other i – 1 lower layer 
sliding surfaces. As a result, the ith layer sliding surface Si, 
its control law ui, and its Lyapunov function Vi can be 
defined as follows: 

1 1i i i iS a S s− −= +  (4) 

1i i eqi swiu u u u−= + +  (5) 

2( ) / 2i iV t S=  (6) 

Here, ai–1 is a constant and a0 = u0 = 0. 
Differentiating Vi with respect to time t in (6), and 

letting sgni i i iiS k S Sη= − −  (ki > 0; ηi > 0), in light of 
Lyapunov theorem, we could have the following HSMC law 
at the ith layer sliding surface. The detailed deduction could 
be found in Qian et al. (2008): 

( )
( ) ( )

1

1 1

sgn
ii

j r eqrr j r i i i i
i i ii i

j r j rr rj r j r

a b u k S S
u

a b a b

η= =

= == =

+
= −
∑ ∏
∑ ∑∏ ∏

 (7) 

2.2 Approximation by NNs 

In (7), the final control un could be derived from n = i. But 
we have to know the exact fi and bi to calculate un. But un 
can not be calculated directly for partly known or uncertain 
systems. This weak point restricts the applications of the 
HSMC. Aiming at such weak point, we attempt to make use 
of NNs to handle it. According to the mentioned physical 
characteristic of the class, the n + 1 NNs are designed  
and every network is to approximate a term of (7) in this 
subsection. From (7), the NHSMC law can be defined as: 

sgn
1

n
nn nn nn
n eqi

i

u u u
=

= +∑  (8) 

Here, nn
nu  is the NHSMC law at the nth layer sliding 

surface; nn
eqiu  is the ith network output to approximate the 

1[( )  ] / [ ( ) ]i i i
j r j r eqr r j r j ra b u a b= = =Π Σ Πi  term; sgn

nnu  is used to 

approximate the 1[ sgn ] / [ ( ) ]i i
i i i i r j r j rk S S a bη = =− − Σ Π  term. 

Figure 2 Structure of the neuron to calculate sgn
nnu  
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Figure 3 Structure of the RBF NN to calculate nn
eqiu  
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The structures of the NNs used to calculate sgn
nnu  and nn

eqiu  

are shown in Figure 2 and Figure 3, respectively. As  
Figure 2 has shown, the neuron is designed to calculate 

sgn .nnu  The symbols in Figure 2 are defined as follows. si is 

the sliding surface of the ith subsystem; vi is the connecting 
weight between the ith input unit and the neuron; Ks is the 
gain; sgn

nnu  is the neuron output. The network adopted  

in Figure 3 is RBF network, because RBF network owns the 
ability to approximate complex non-linear mapping directly  
from input-output data with a simple topological structure 
(Huang et al., 2005). The symbols in Figure 3 are defined as 
follows. X = [x1; x2; …; x2n]T is the input vector of the ith 
RBF network; m is the number of the hidden layer unit; nn

eqiu  

is the output of the ith RBF network; wij is the connecting 
weight between the jth hidden layer unit and the output 
layer unit; Ki is the gain; the non-linear function of the 
hidden layer is the radial basis function, which is shown 
below: 

( )2 2( ) exp || || /ij ij ijX X Cϕ σ= − −  (9) 

Here, Cij and σij are the centre and width of the jth hidden 
layer unit of the ith RBF network (i = 1; …; n; j = 1; …; m), 
respectively. 

The gradient descent method is adopted to update the 
parameters of the neuron and the RBF NNs. In general, the 
cost function is the error between the actual output and the 
desired output. But there is no supervisory signal before the 
neuro-controller works (Tsai et al., 2004). Thus, other 
substitution should be found. In (7), the last term works 
when any system state deviates from the nth layer sliding 
surface. Moreover, the other n terms make the states of the 
subsystems slide on their own sliding surfaces. Based on the 
above viewpoints, the cost functions and the update 
formulas can be gotten in the following description. 

For the neuron, the cost function Jsgn can be defined as: 
2

sgn / 2nJ S=  (10) 

(10) means minimising the distance between the entire state 
variables and the last layer sliding surface. Further, the 
update formula of the neuron can be deduced as: 

sgn     i n i
i

J
v S s

v
μ μ
∂

Δ = − = −
∂

i i  (11) 

Here, positive constant μ is learning rate. 

As we have expressed, bi and fi are the non-linear 
functions of the state variables. Thus, the state vector X is 
selected as the input. For the ith RBF network, its cost 
function Jeqi is defined as: 

2 / 2eqi iJ s=  (12) 

(12) means minimising the distance between the state 
variables of the ith subsystem and its own sliding surface. 
By the gradient descent method, the update formulas of the 
parameters of the ith RBF network can be deduced as: 
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Here, positive constant λi is learning rate of the ith RBF 
network. 

3 Convergence analysis 

The designed controller combines the concept of the HSMC 
and the methodology of the NNs. In this section, the 
stability of the sliding surfaces and the weight convergence 
of the neuron and the parallel RBF networks are detected. 

Theorem 1: Consider a class of under-actuated systems with 
a stable equilibrium point as (1), design the entire sliding 
surfaces as (2) and (4), and adopt the control law as the 
NHSMC (8). If si and is  are bounded, then the entire sliding 
surfaces are asymptotically stable, and the weights of the 
neuron and the parallel RBF NNs are bounded. 

Proof: In the ith RBF network, for minimising the cost 
function (12), there exist: 

2

0
is

∞

< ∞∫  (16) 

Thus, we have 2is L∈  (si is square integral). 
According to the known condition that si and is  are 

bounded, we can obtain: 

is L∞∈  (17) 

and 

is L∞∈  (18) 

From (16), (17) and (18), we have lim 0it
s

→∞
=  according to 

Barbalat’s lemma. 
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From lim 0,it
s

→∞
=  we know that Δwij, ΔCij, Δσij are 

convergent to zero as t →∞ in (13), (14) and (15). Thus, the 
weights of the ith RBF network are bounded. 

In the neuron, the following recursive formula could be 
gotten from (4): 
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Equation (20) means that the ith layer sliding surface is 
asymptotically stable. From it, Δvi is convergent to zero as  
t → ∞ in (11). Thus, the weights of the neuron are bounded. 

Remark: Theorem 1 is presented for the under-actuated 
systems with a stable equilibrium. Therefore, the premise 
that si and is  are bounded can easily be satisfied. For 
instance, the upper and lower pendulums of a double 
pendulum system could satisfy this bounded assumption at 
its downward stable equilibrium, respectively. But for the 
under-actuated systems with an unstable equilibrium, the 
premise that si and is  are bounded are hardly satisfied. 
Thus, how to use this NHSMC method solves control 
problems of the under-actuated systems with an unstable 
equilibrium is still an interesting field. 

4 Simulation results 

In this section, we shall demonstrate that this control 
strategy is applicable to an overhead crane system. 
Overhead crane is a typical under-actuated system with a 
stale equilibrium (Wang et al., 2004). It works in many 
places such as workshops and harbours to transport massive 
goods. The control objective of overhead crane systems is to 
transform the loads to the required position as fast and  
as accurately as possible without collision with other 
equipments, meanwhile, the swing angle of the loads should 
be kept as small as possible (Liu et al., 2005). The structure 
of the overhead crane system is shown in Figure 4. 
Obviously, it is made up of two subsystems: the trolley and 
the load. The symbols in Figure 4 are defined as follows. M 
is the mass of the trolley which moves on x direction rail; m 
is the mass of the load which is suspended from the trolley 
by a rigid rope; x is the distance of the trolley from the rail 
origin, L is the length of the suspension rope; θ is the swing 
angle of the load; f is the control force; xm = x + Lsinθ,  
ym = –Lcosθ. 

Considering the following standard assumptions: 

1 the trolley and the load are regarded as point masses 

2 friction force is neglected 

3 the rope is rigid 

4 the trolley moves in the x direction 

5 the load moves on the x–y surface. 

By using Lagrange’s method, the system dynamics can be 
obtained as: 

2cos sin
cos 0sin

M m mL fmLx
L g

θ θ θθ
θ θ
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Here, g is the gravitational acceleration. Let x1 = x, it is the 
trolley position with respect to the origin; x3 = θ, it is the 
swing angle of the load with respect to the vertical line; x2 is 
the velocity of the trolley; x4 is the angular velocity of the 
load. From n = 2, the non-linear functions fi and bi (i = 1; 2) 
in (1) are gotten as: 
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Figure 4 Structure of an overhead crane system 

 

In the simulation, the parameters of the overhead crane 
system are chosen as trolley mass M = 1.0 kg, load mass  
m = 0.8 kg, rope length L = 0.305 m and gravitational 
acceleration g = 9.81 m•s–2. The parameters of the sliding 
surfaces are selected as c1 = 0.9 and c2 = 10.2 after trial and 
error. The initial weights of the RBF NNs are chosen as the 
random numbers between –1 and 1; the initial centres and 
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widths of all radial basic functions are chosen as 0 and 2, 
respectively. The other network parameters are selected as 
λ1 = 2, λ2 = 15, K1 = 2, K2 = 2 and m = 4. The initial weights 
of the neuron are chosen as v1 = –9.5 and v2 = 0.9 after trail 
and error. Learning rate of the neuron is μ = 0.1; the gain Ks 
is 1.4. The simulation results are shown in Figure 5 and 
Figure 6 from the initial conditions x1 = 0 m, x2 = 0 m·s–1,  
x3 = 0 rad and x4 = 0 rad·s–1 to the desired states x1d = 2 m, 
x2d = 0 m·s–1, x3d = 0 rad and x4d = 0 rad·s–1. And the  
sliding mode surfaces of the two subsystems are gotten as  
s1 = c1(x1 – x1d) + (x2 – x2d) and s2 = c2(x3 – x3d) + (x4 – x4d). 

Figure 5 Response curves without a disturbance, (a) is the 
trolley position and the swing angle of the load (b) is 
the sliding surface of the first subsystem and the output 
of the first RBF network (c) is the sliding surface of the 
second subsystem and the output of the second RBF 
network (d) is the total sliding surface and the output of 
the neuron (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

As Figure 5 has shown, the designed NHSMC control 
law can achieve the control objective. The entire sliding 
surfaces are asymptotically stable and the network outputs 
are convergent as has been proven. In Figure 6, a periodic 
disturbance y = 0.2•sin2πt is added between 10 s and 15 s. 
As Figure 6 has shown, this control method is robust and 
the controller can resist external disturbances effectively. 

Further, we can find that the neuron output is larger than 
the outputs of the two RBF networks. The reason of this fact 
is explained as follows. The inputs of the neuron are two 
subsystem sliding surfaces s1 and s2. The parameters of the 
subsystem sliding surfaces are offered by designers so that 
the neuron plays an important role in the dynamic process. 
The two RBF networks contain no information of the 
system before the dynamic process. They get the system 
information through the online learning. Thus, a good 
‘tutor’ is necessary to make the two illiterate RBF networks 
get enough knowledge. In our method, the ‘tutor’ is the 
neuron. But this ‘tutor’ is an online tutor, which is different 
from the supervised learning. If designers could not offer a 
group of good parameters of the subsystem sliding surface, 
the RBF networks would get some bad information. This 
may lead to an ineffective control process owning to a bad 
‘tutor’ in our control system. 

Figure 6 Response curves with a period disturbance, (a) is the 
trolley position (b) is the swing angle of the load  
(see online version for colours) 

 
(a) 

 
(b) 

In Fang et al. (2003) and Wang et al. (2004), two-dimension 
and one-dimension overhead cranes were used as controlled 
plants, respectively. But both of their methods are based on 
dynamic models, which mean that fi, bi (i = 1; 2) are needed 
to get their control laws. Their control laws may not work 
well when there exist unknown factors of dynamics models. 
Under such unknown condition, the NHSMC law could still 
work and realise the control objective as we have shown by 
simulations. Tsai et al. (2004) designed a neuro-sliding 
mode controller for a seesaw system. In his method, only a 
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network was used to calculate the equivalent control. The 
computational burden may lead a complex network 
structure as the network inputs increase. For two-order 
systems (under-actuated systems with two subsystems), our 
design is more complex than Tsai et al. (2004). But our 
method could distribute the computational burden for  
under-actuated systems with more subsystems than two. 

5 Experiment results 

In this section, the control method is implemented on an 
overhead crane testbed system in Figure 7. Liu et al. (2005) 
gave the introduction of this testbed in detail. It is a  
two-dimension crane. Here, we use it as a one-dimension 
one. The motion control card is PMAC card made by Delta 
Company. The sample time is 0.025 s offered by the 
multiple media timer in Microsoft Visual C++. The physical 
parameters are determined as the trolley mass M = 37.32 kg, 
the load mass m = 5.00 kg, the rope length L = 1.05 m, the 
gravitational acceleration g = 9.81 m•s–2. 

Figure 7 Overhead crane testbed (see online version for colours) 

 

In light of the limitation of the control card in the testbed, it 
is difficult to calculate the online weights of the neuron and 
the two RBF NNs. Thus, we train the neuron and the two 
parallel RBF NNs by simulations. When the weights 
converge, the network parameters are used for our online 
control. The experiment results are shown in Figure 8, in 
which the initial states are X = [0; 0; 0; 0]T and the desired 
states are X = [0.9; 0; 0; 0]T. In Figure 9, two random 
disturbances were added to the load when the crane system 
arrived at the desired position [1.2; 0; 0; 0]T from its origin 
[0; 0; 0; 0]T. The amplitude of the first disturbance was 
smaller than the second one. The curves with disturbances 
show the controller is robust and the method could resist 
external disturbances effectively. 

The experiment results show the controller could work 
well after it gets enough information of the system by 
simulation learning. As our physical experiment results 
have shown, the controller could still work although there is 
no online update of the network weights. Further, we could 

also deduce that the controller does not work once the new 
information overs the controller’s capability. Under such 
condition, the NHSMC have to re-learn and update the 
system information for an effective control process. 

Figure 8 Experiment results without a disturbance, (a) shows the 
trolley position (b) shows the swing angle (see online 
version for colours) 

 
(a) 

 
(b) 

Figure 9 Experiment results with a random disturbance,  
(a) shows the trolley position (b) shows the swing 
angle (see online version for colours) 

 
(a) 

 
(b) 

6 Conclusions 

The NHSMC has been presented for a class of  
under-actuated systems with a stable equilibrium in terms of 
their physical structure characteristic. Based on the HSMC  
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law, the neuron and the parallel RBF NNs have been 
designed to realise this control law for partly known or 
uncertain systems. The asymptotic stability of all the sliding 
surfaces and the convergence of the network weights have 
been proven theoretically. The simulation and experiment 
results show the feasibility and the robustness of this control 
method. But this method could only be applied to the  
under-actuated systems with a stable equilibrium. This fact 
represents the weak point of the presented approach: the 
method described here failed when it is applied to  
under-actuated systems with an unstable equilibrium or 
infinite equilibrium. This would constitute an important area 
for future research. 
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